# **OF WHITE SULPHUR SPRINGS**



# **CITY OF WHITE SULPHUR SPRINGS**

Water System
Improvements
Preliminary Engineering Report



November 2023



November

2023

# **CITY OF WHITE SULPHUR SPRINGS**

## **Preliminary Engineering Report**

**Water System Improvements** 

November 2023

Prepared By: Jessica Salo, PE

**QA/QC By:**Bob Church, PE





# **Table of Contents**

| 1.0 |     | EXE  | ECUTIVE SUMMARY                                       | 1  |
|-----|-----|------|-------------------------------------------------------|----|
|     | 1.1 |      | Introduction and Background                           | 1  |
|     | 1.2 |      | Problem Definition                                    | 2  |
|     | 1.3 |      | Alternatives Considered                               | 3  |
|     | 1.4 |      | Preferred Alternative                                 | 3  |
|     | 1.5 |      | Project Costs and Budget                              | 4  |
| 2.0 |     | PRO  | OJECT PLANNING                                        | 5  |
|     | 2.1 |      | Location                                              | 5  |
|     | 2.2 |      | Environmental Resources Present                       | 9  |
|     |     | 2.2. | .1 Land Resources                                     | 9  |
|     |     | 2.2. | .2 Biological Resources                               | 11 |
|     |     | 2.2. | .3 Water Resources                                    | 12 |
|     |     | 2.2. | .4 Floodplains                                        | 15 |
|     |     | 2.2. | .5 Wetlands                                           | 15 |
|     |     | 2.2. | .6 Cultural Resources                                 | 16 |
|     |     | 2.2. | .7 Socio-economic and Environmental Justice Issues    | 17 |
|     | 2.3 |      | Population Trends                                     | 17 |
|     | 2.4 |      | Community Engagement                                  | 19 |
| 3.0 |     | EXI  | STING FACILITIES                                      | 20 |
|     | 3.1 |      | Location Map                                          | 20 |
|     | 3.2 |      | History                                               | 20 |
|     | 3.3 |      | Condition of Existing Facilities                      | 24 |
|     |     | 3.3. | .1 Supply                                             | 24 |
|     |     | 3.3. | 2 Treatment                                           | 41 |
|     |     | 3.3. | .3 Storage                                            | 47 |
|     |     | 3.3. | 4 Pumping Stations                                    | 48 |
|     |     | 3.3. | .5 Distribution System                                | 48 |
|     | 3.4 |      | Operational and Management Practices and Capabilities | 59 |
|     | 3.5 |      | Financial Status of any Existing Facilities           | 59 |
|     | 3.6 |      | Water/Energy/Waste Audits                             | 64 |
| 4.0 |     | NEE  | ED FOR PROJECT                                        | 65 |
|     | 4.1 |      | Health, Sanitation and Security                       | 65 |

|     | 4.2 A  | ging Infrastructure                                         | 68  |
|-----|--------|-------------------------------------------------------------|-----|
|     | 4.3 R  | easonable Growth                                            | 69  |
| 5.0 | ) ALTE | ERNATIVES CONSIDERED                                        | 70  |
|     | 5.1 A  | Iternative Screening                                        | 70  |
|     | 5.2 S  | upply Alternatives                                          | 70  |
|     | 5.2.1  | Alt. S-1: No Action                                         | 71  |
|     | 5.2.2  | Alt. S-2: Intake Pond Improvements                          | 71  |
|     | 5.2.3  | Alt. S-3: Groundwater Well Improvements                     | 76  |
|     | 5.3 T  | reatment Alternatives                                       | 79  |
|     | 5.3.1  | Alt. T-1: No Action                                         | 80  |
|     | 5.3.2  | Alt. T-2: Reduce Algae and Turbidity Loads on WTP           | 80  |
|     | 5.3.3  | Alt. T-3: Replace Filter Media                              | 81  |
|     | 5.3.4  | Alt. T-4a: Implement Scraping/Throw Over Cleaning Technique | 84  |
|     | 5.3.5  | Alt. T-4b: Implement Harrowing Cleaning Technique           | 87  |
|     | 5.3.6  | Alt. T-5: Install Combined Filter Effluent Turbidimeter     | 90  |
|     | 5.3.7  | Alt. T-6: Install Two New Slow Sand Filters                 | 93  |
|     | 5.4 S  | torage Alternatives                                         | 97  |
|     | 5.5 P  | umping Station Alternatives                                 | 98  |
|     | 5.6 D  | istribution System Alternatives                             | 98  |
|     | 5.6.1  | Alt. D-1: No Action                                         | 99  |
|     | 5.6.2  | Alt. D-2: Replace 12-inch Transmission Main                 | 99  |
|     | 5.6.3  | Alt. D-3: Water Main Distribution Replacements              | 103 |
|     | 5.6.4  | Alt. D-4: Water Main Looping                                | 107 |
| 6.0 | ) SELE | ECTION OF AN ALTERNATIVE                                    | 112 |
|     | 6.1 L  | ife Cycle Cost Analysis                                     | 112 |
|     | 6.2 R  | anking Criteria                                             | 114 |
|     | 6.2.1  | Life Cycle Costs                                            | 114 |
|     | 6.2.2  | Operational and Maintenance Considerations                  | 115 |
|     | 6.2.3  | Permitting Issues                                           | 115 |
|     | 6.2.4  | Social Impacts                                              | 115 |
|     | 6.2.5  | Environmental Impacts                                       | 115 |
|     | 6.2.6  | Sustainability Considerations                               | 116 |
|     | 6.2.7  | Land Acquisition                                            | 116 |
|     | 6.3 S  | coring of Supply Alternatives                               | 116 |

| 6.3.    | Life Cycle Costs                                       | 116 |
|---------|--------------------------------------------------------|-----|
| 6.3.2   | 2 Operational and Maintenance Considerations           | 116 |
| 6.3.3   | Permitting Issues                                      | 117 |
| 6.3.4   | Social Impacts                                         | 117 |
| 6.3.    | 5 Environmental Impacts                                | 118 |
| 6.3.6   | S Sustainability Considerations                        | 118 |
| 6.3.7   | Zuand Acquisition                                      | 118 |
| 6.4     | Scoring of Treatment Alternatives                      | 119 |
| 6.4.    | Life Cycle Costs                                       | 119 |
| 6.4.2   | 2 Operational and Maintenance Considerations           | 119 |
| 6.4.3   | B Permitting Issues                                    | 120 |
| 6.4.4   | Social Impacts                                         | 120 |
| 6.4.5   | 5 Environmental Impacts                                | 121 |
| 6.4.6   | S Sustainability Considerations                        | 121 |
| 6.4.7   | Z Land Acquisition                                     | 122 |
| 6.5     | Scoring of Distribution System Alternatives            | 122 |
| 6.5.    | Life Cycle Costs                                       | 122 |
| 6.5.2   | 2 Operational and Maintenance Considerations           | 123 |
| 6.5.3   | B Permitting Issues                                    | 123 |
| 6.5.4   | Social Impacts                                         | 123 |
| 6.5.5   | 5 Environmental Impacts                                | 124 |
| 6.5.6   | S Sustainability Considerations                        | 124 |
| 6.5.7   | Zuland Acquisition                                     | 124 |
| 6.6 I   | Decision Matrix and Selection of Preferred Alternative | 125 |
| 7.0 PRC | POSED PROJECT                                          | 127 |
| 7.1 I   | Preliminary Project Design                             | 127 |
| 7.2 I   | Project Schedule                                       | 129 |
| 7.3 I   | Permit Requirements                                    | 129 |
| 7.4     | Sustainability Considerations                          | 129 |
| 7.4.    | Water and Energy Efficiency                            | 130 |
| 7.4.2   | 2 Green Infrastructure                                 | 130 |
| 7.5     | Total Project Cost Estimate                            | 130 |
| 7.6     | Annual Operating Budget                                | 131 |
| 7.6.1   | Income                                                 | 131 |

| 7.6.2 Annual O&M Costs                                              | 132   |
|---------------------------------------------------------------------|-------|
| 7.6.3 Debt Repayments                                               | 132   |
| 7.6.4 Reserves                                                      | 132   |
| 8.0 CONCLUSIONS AND RECOMMENDATIONS                                 | 134   |
| 8.1 Funding                                                         | 134   |
| 8.1.1 Funding Sources                                               | 135   |
| 8.1.2 Funding Strategy                                              | 139   |
| 8.2 Implementation                                                  | 140   |
| 9.0 REFERENCES                                                      | 142   |
|                                                                     |       |
| List of Figures                                                     |       |
| Figure 2-1 – Project Location Map                                   | 6     |
| Figure 2-2 – Project Planning Area                                  | 7     |
| Figure 2-3 – Topographic Map                                        | 3     |
| Figure 3-1 – Existing Water System                                  | 21    |
| Figure 3-2 – Pipe Diameter                                          | 50    |
| Figure 3-3 – Pipe Material                                          | 51    |
| Figure 3-4 – 12-inch Transmission Main                              | 53    |
| Figure 3-5 – Existing System Peak Hour Pressures                    | 56    |
| Figure 3-6 – Existing System Fire Flow Availability                 | 57    |
| Figure 3-7 – Improved System Fire Flow Availability                 | 58    |
| Figure 4-1 – Recent Wildland Fire Locations                         | 67    |
| Figure 5-1 – Alternative S-2 Intake Pond Improvements               | 73    |
| Figure 5-2 – Alternative S-3 Groundwater Well Improvements          | 77    |
| Figure 5-3 – Alternative T-3 Replace Filter Media                   | 82    |
| Figure 5-4 – Alternative T-6 Install Two New Slow Sand Filters      | 95    |
| Figure 5-5 – Alternative D-2 Replace 12-inch Transmission Main      | 101   |
| Figure 5-6 – Alternative D-3 Water Main Distribution Replacements   | 105   |
| Figure 5-7 – Alternative D-4 Water Main Looping                     | 109   |
| Figure 7-1 - Preferred Alternative Replace 12-inch Transmission Mai | n 128 |

# **List of Tables**

| Table 2-1 – Soils Data Summary                                              | 10  |
|-----------------------------------------------------------------------------|-----|
| Table 2-2 – Historical Population Data – White Sulphur Springs              | 17  |
| Table 2-3 – Historical Population Data – Meagher County                     | 18  |
| Table 2-4 – Population Projections                                          | 18  |
| Table 3-1 – White Sulphur Springs Public Water Supply Wells                 | 31  |
| Table 3-2 – Water Use Based on Groundwater Source Data                      | 34  |
| Table 3-3 – Water Use Based on Metered Use                                  | 34  |
| Table 3-4 – Estimated Water Loss                                            | 35  |
| Table 3-5 – Projected Water System Demands (based on current source use)    | 37  |
| Table 3-6 – Projected Water System Demands (with assumed reduced leakage)   | 37  |
| Table 3-7 – Water Rights Summary                                            | 38  |
| Table 3-8 – Slow Sand Filter WTP Data                                       | 44  |
| Table 3-9 – Comparison of Requirements and Guidelines for Slow Sand Filters | 45  |
| Table 3-10 – Storage Requirements                                           | 48  |
| Table 3-11 – Distribution System Summary                                    | 49  |
| Table 3-12 – Water System Revenue Summary                                   | 60  |
| Table 3-13 – Water System Expense Summary                                   | 61  |
| Table 3-14 – Net Revenue Summary                                            | 61  |
| Table 3-15 – Existing Water Rate Structure                                  | 62  |
| Table 3-16 – Charges Based on Meter Size                                    | 63  |
| Table 3-17 – EDU Calculation based on Meter Size (Area Method)              | 63  |
| Table 5-1 – Alternative S-2 Opinion of Probable Cost                        | 75  |
| Table 5-2 – Alternative S-2 Opinion of Probable O&M Costs                   | 76  |
| Table 5-3 – Alternative S-3 Opinion of Probable Cost                        | 79  |
| Table 5-4 – Alternative T-3 Opinion of Probable Cost                        | 84  |
| Table 5-5 – Alternative T-4a Opinion of Probable Cost                       | 87  |
| Table 5-6 – Alternative T-4b Opinion of Probable Cost                       | 90  |
| Table 5-7 – Alternative T-5 Opinion of Probable Cost                        | 93  |
| Table 5-8 – Alternative T-6 Opinion of Probable Cost                        | 97  |
| Table 5-9 – Alternative T-6 Opinion of Probable O&M Costs                   | 97  |
| Table 5-10 – Alternative D-2 Opinion of Probable Cost                       | 103 |
| Table 5-11 – Alternative D-3 Opinion of Probable Cost                       | 107 |

| Table 5-12 – Alternative D-4 Opinion of Probable Cost       | 111 |
|-------------------------------------------------------------|-----|
| Table 5-13 – Alternative D-4 Opinion of Probable O&M Costs  | 111 |
| Table 6-1 – Life Cycle Cost Analysis                        | 113 |
| Table 6-2 – Decision Matrix                                 | 126 |
| Table 7-1 – Preferred Alternative Opinion of Probable Cost  | 131 |
| Table 7-2 – Short-Lived Assets                              | 133 |
| Table 8-1 – Funding Scenarios for Water System Improvements | 140 |
| Table 8-2 – Project Budget                                  | 141 |
| Table 8-3 – Project Implementation Schedule                 | 141 |

# **List of Appendices**

| Appendix A | Official Environmental Checklist                                             |
|------------|------------------------------------------------------------------------------|
| Appendix B | Agency Correspondence                                                        |
| Appendix C | Natural Heritage Program Land Cover and Land Management Classifications      |
| Appendix D | NRCS Soils Report                                                            |
| Appendix E | Biological Resource Data                                                     |
| Appendix F | Ground Water Information Center Summary of Area Wells                        |
| Appendix G | Surface Water Data                                                           |
| Appendix H | Floodplain Map                                                               |
| Appendix I | Natural Heritage Program Wetland and Riparian Map                            |
| Appendix J | Census and Income Data                                                       |
| Appendix K | Public Outreach Information                                                  |
| Appendix L | MDEQ Sanitary Survey                                                         |
| Appendix M | Willow Creek Reservoir Sand Filter Schematics                                |
| Appendix N | Source and Metered Water Data                                                |
| Appendix O | Water Rights                                                                 |
| Appendix P | Water Quality                                                                |
| Appendix Q | Source Water Delineation and Assessment Report, Source Water Protection Plan |
| Appendix R | Slow Sand Filter Construction Plans                                          |
| Appendix S | DEQ Surface Water Treatment Rule Reports                                     |
| Appendix T | Hydraulic Water Model Results                                                |
| Appendix U | Financial Information                                                        |

Appendix V Water Rates and Account Information

Appendix W Target Rate and Income Information

### 1.0 EXECUTIVE SUMMARY

### 1.1 Introduction and Background

The City of White Sulphur Springs is a community located in central Montana and serves as the county seat of Meagher County. According to the 2020 Census, the population of White Sulphur Springs is 955. The planning and service area for this study encompasses the city limits of White Sulphur Springs which contains the city's water distribution system and the land immediately east and southeast of the city which contain the city's surface water intake on the South Fork of Willow Creek, transmission main, storage tank, and water treatment plant.

The city water system consists of two groundwater wells, a diversion structure and intake dam on the South Fork of Willow Creek, slow sand filter treatment facility, water storage reservoir, transmission mains, and a distribution system. White Sulphur Springs has the capability to obtain municipal water supply from two separate supply sources. The first is a surface water source located on the South Fork of Willow Creek approximately five miles southeast of the city center. A diversion structure and dam/intake provide water to a 6-inch PVC transmission main that flows via gravity from the intake to a slow sand filter treatment building, approximately three miles northwest of the intake. After treatment, water flows to the storage tank where it is chlorinated before entering the distribution system. The second supply source is two groundwater wells located fairly close together in the northeast part of the city. The wells are pumped directly into the distribution system, feeding the user demands and filling the water storage tank located east of the city. A telemetry system is used to control the tank level and cycling of the well pumps. The storage facility consists of one 560,000-gallon partially buried concrete storage tank. The distribution system consists of main lines varying in size from one to 12 inches.

The city has specified numerous issues with the current water system and needed improvements including replacement of a 1940's era leaking transmission main, Willow Creek intake reservoir improvements, concerns of security of the Willow Creek surface water source due to the threat of wildfire, older cast iron mains in the city in need of replacement, treatment plant deficiencies, implementation of a fire hydrant replacement program, and upsizing/looping water distribution mains.

To best address the deficiencies in the water system and to develop a technically and financially feasible plan to implement the necessary improvements, the city has retained Great West

Engineering to complete the Preliminary Engineering Report (PER) of its water system. The PER follows the interagency Uniform Preliminary Engineering Report Outline and meets all associated requirements.

### 1.2 Problem Definition

The greatest immediate water system health, sanitation, and security concern is the age and condition of approximately 4,000 feet of 1940s era 12-inch steel water transmission main originating near the water storage tank. It is roughly estimated that the system loses approximately 40-50% of the water delivered to the system. The transmission main is believed to be the biggest source of leakage in the system and operators report the line has shown to be actively leaking with the leakage surfacing in the field. Leakage is also probable in the older parts of the distribution system within the city limits. The city's projected 2045 water demands are just at the capacity limit of the system. If leakage is not reduced in the system, the city may be faced with water quantity issues in the future.

Aside from water loss, leaking pipes also increase the threat of backflow contamination. Main breaks result in a loss of pressure, which increases the potential for backflow and contamination of the water system. The transmission main is a critical piece of infrastructure for water delivery to the system and for filling the storage tank. A break along the transmission main would disconnect the storage tank from the system and the city would have to rely solely on delivery of water from the pumped groundwater wells. The system could potentially struggle to meet peak demands and there would be no available source of stored water in the event of a fire.

There are a number of additional concerns with the current state of the water system in White Sulphur Springs. The Willow Creek intake dam wooden catwalk decking is deteriorated and not capable of supporting operations staff and a slide gate flushing valve mounted on the upstream face of the dam is not functional in its current state. As a result of the inability to use the flushing valve, the intake pond is filled with silt, aquatic plants, and deadfall. It is currently not functioning as a storage reservoir or a settling basin and is nothing more than a wide spot in the channel. The buildup of sediment appears to be affecting the quality of water which flows into the intake collection system to the water treatment plant. The Willow Creek drinking water source is only used as turbidity allows, is currently not in use, and has not been used reliably for the past two to three years. It is crucial for this water source to be maintained and sufficiently delivered to customers for domestic and fire flow uses. The city does not have enough capacity from the

groundwater wells alone to meet future maximum day demands. Use of the surface water source is entirely by gravity so it must also be maintained to save energy and costs related to groundwater pumping. Not having a reliable surface water source makes the entire water system dependent on the groundwater system which is limited to a maximum flow rate of 500 gpm. The existing maximum daily demand is 505 gpm which is just slightly above the existing capacity of the wells. If improvements are not made to the intake facility and surface water treatment plant, the city will likely face water quantity issues in the future.

Additional concerns are present within the White Sulphur Springs water distribution system due to undersized and dead-end water mains. Approximately 20 percent of the distribution system is four-inch diameter or less. Undersized lines limit flows that could be critical in an emergency fire situation, creating a safety hazard for the residents of White Sulphur Springs.

### 1.3 Alternatives Considered

Various alternatives exist to address the deficiencies that have been identified in the city's water system. The supply alternatives considered include taking no action, intake pond improvements to replace the catwalk and flushing valve, or groundwater well improvements to improve metering capabilities.

Treatment system improvements include replacement of the filter media at the slow sand filter building, implementation of a new filter cleaning method, installation of a combined filter effluent turbidimeter, and expansion of the slow sand filter facility to include two new filter units.

The alternatives considered for the distribution system consist of taking no action, replacement of 4,000 lineal feet of 12-inch transmission main, replacing cast iron, steel, and undersized pipe in the distribution system, and addition of several segments of 6-inch pipe to the distribution system to create water mains loops for improvement of fire flows and reduction of stagnant water.

### 1.4 Preferred Alternative

The city has identified replacement of the 1940s era deteriorated steel transmission main as one of its top priorities due to concerns regarding the age of this pipe, the suspected large amounts of leakage from this pipe, and the threat of breaks among this pipe. The line has shown to be actively leaking with the leakage surfacing in the field. The city wishes to replace the 1946 steel

line and re-align the main along Castle Mountain Road and along property lines in the adjoining subdivision.

This preferred alternative includes construction of approximately 4,000 lineal feet of new 12-inch PVC water transmission main from the water storage tank to the existing water main connection near the Townsend Ranch property line. The project will abandon the existing 1940's era steel transmission main which is known to be leaking excessively. The new PVC transmission main will deviate from the original 1940s alignment and will follow the Castle Mountain Road alignment as well as existing property lines in the adjoining subdivision. Easement negotiations will be required for this realignment with the goal to benefit property owners by re-aligning the water line along property lines versus the current alignment which traverses through the properties and potentially limits the owner's use of their properties. There will be no water services off of the new transmission main as the subdivision has its own drinking water source and is outside of the city limits. The project will include a pipeline bore underneath the South Side Canal.

### 1.5 Project Costs and Budget

The total project cost for the proposed project is \$1,325,500. This cost is detailed in Table 7-1. The city's preferred funding package and that recommended by this PER includes:

ARPA MAG: \$306,708

SRF Loan Forgiveness: \$750,000

• SRF Loan: \$268,792

Table 8-2 presents a detailed project budget based upon the proposed funding strategy. With the proposed funding package, water rates are anticipated to increase by approximately \$4 per month per EDU.

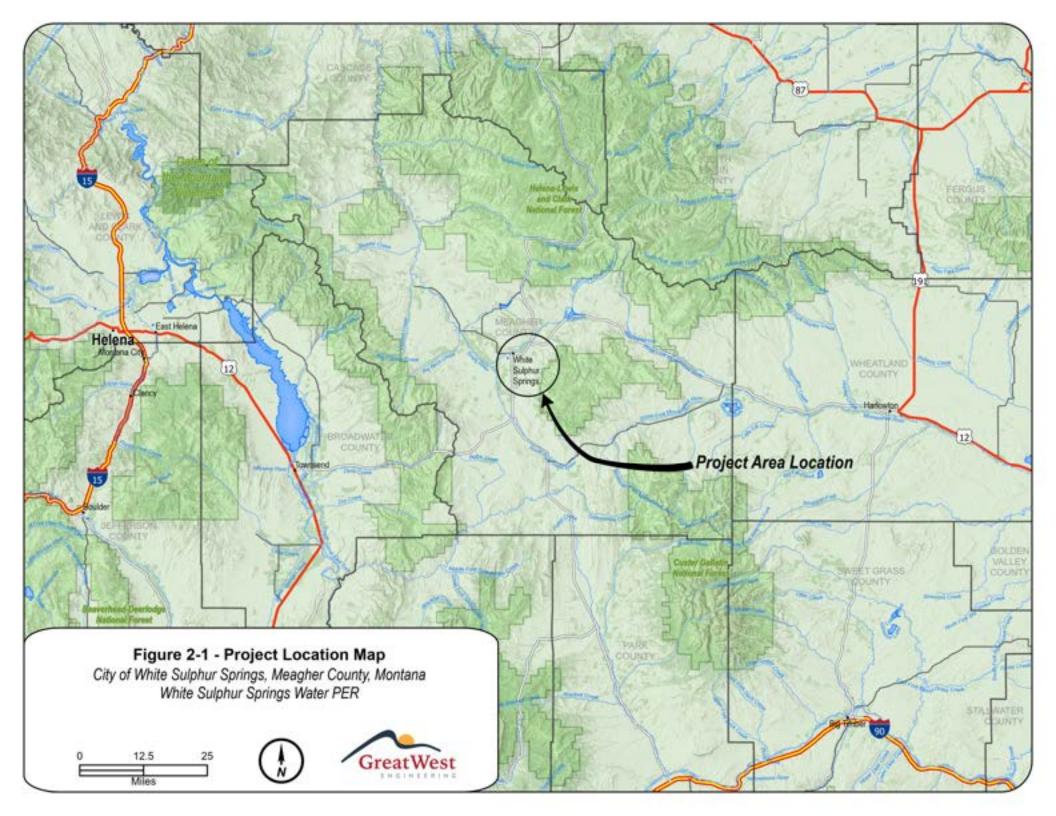
### 2.0 PROJECT PLANNING

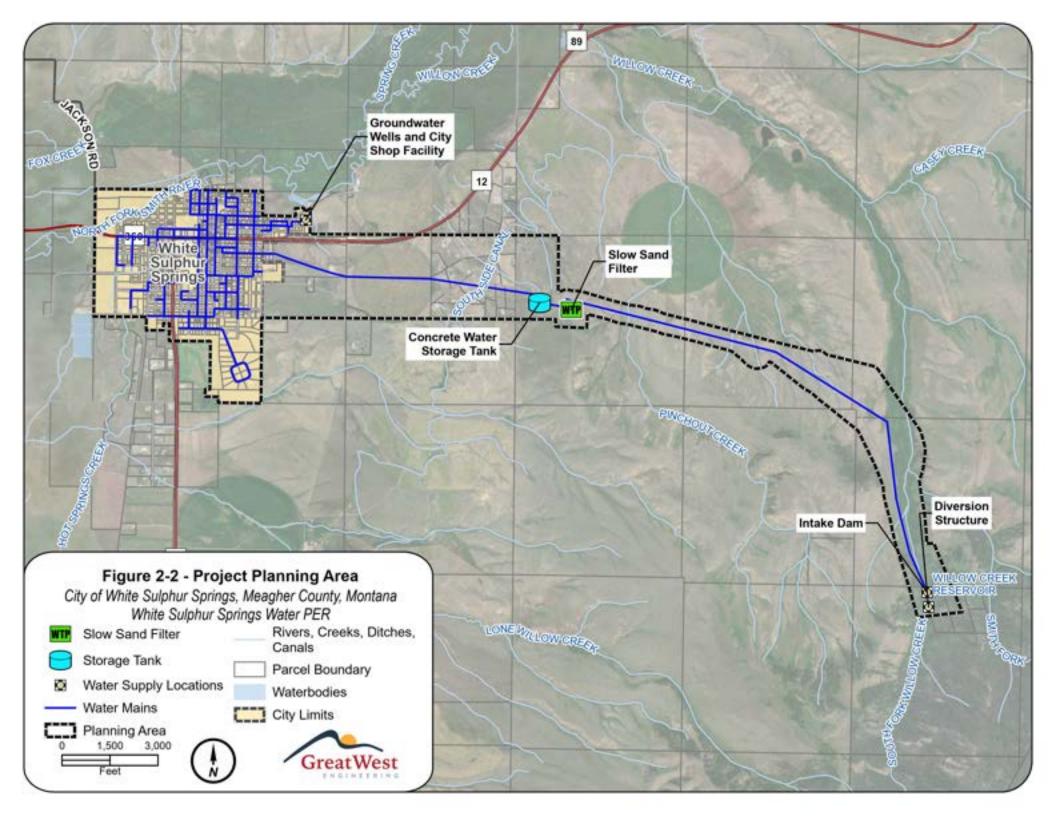
### 2.1 Location

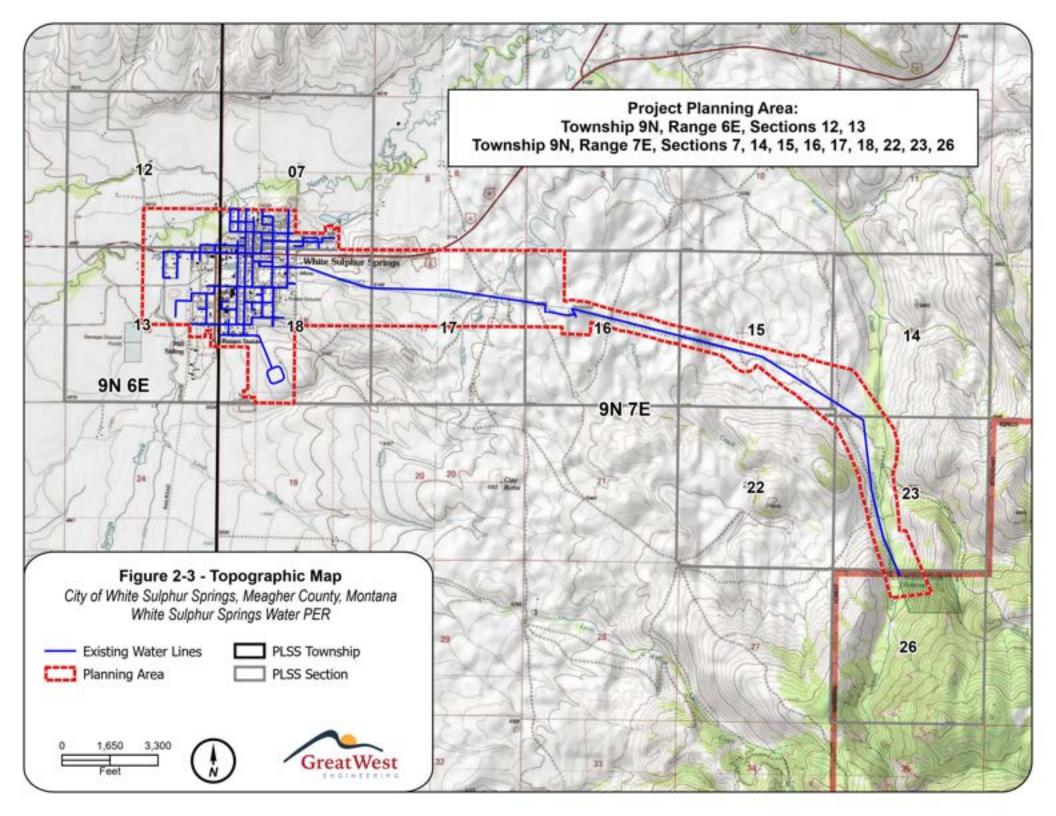
The City of White Sulphur Springs is a community located in central Montana and serves as the county seat of Meagher County. The city, located near the Smith River Canyon, was named after the white deposits that were formed by the hot springs that are located in the city park. According to the 2020 Census, the population of White Sulphur Springs is 955. The location of White Sulphur Springs is further depicted on Figure 2-1.

The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. The North Fork of the Smith River borders the north portion of the city limits and converges with the South Fork of the Smith River to form the Smith River just southwest of the city. Willow Creek is another major surface water in the vicinity that is located east of the city and flows north to converge with the North Fork of the Smith River. Major transportation routes in the area include US Highway 12 and US Highway 89. More specifically, the City of White Sulphur Springs and project planning area is located at:

Township/Range/Section: Township 9N, Range 6E, Sections 12, 13


Township 9N, Range 7E, Sections 7, 14, 15, 16, 17, 18, 22, 23, 26


Latitude/Longitude: 46.55° N / 110.90° W


Elevation: 5,036 ft. near the center of the city

The planning and service area for this study is shown on Figure 2-2. It encompasses the city limits of White Sulphur Springs which contains the city's water distribution system and the land immediately east and southeast of the city which contain the city's surface water intake on the South Fork of Willow Creek, transmission main, storage tank, and water treatment plant.

The topography in the area is primarily gently rolling hills which slope to the northwest. Elevation within the planning area ranges from 5,710 feet at the Willow Creek intake reservoir to 5,000 feet at the western portion of the planning area. Figure 2-3 presents a topographic map of the planning area.







### 2.2 Environmental Resources Present

As part of any major construction project, the potential impacts on the surrounding environment must be considered and provisions made to mitigate any negative impacts. The Uniform Application for Montana Public Facility Projects contains the common forms, requirements, and checklists that must be submitted when applying for financial assistance from agencies that fund water, wastewater, and solid waste projects in Montana. The Uniform Environmental Checklist is a standard form included in the Uniform Application. A completed Uniform Environmental Checklist for the proposed water system improvements in White Sulphur Springs is included in Appendix A.

In addition to the analysis of historic, cultural, and environmental resources, the Uniform Environmental Checklist requires a letter be sent to relevant local, state, and federal agencies to obtain comments on any potential environmental impacts by the proposed project. The letter and agencies' responses can be found in Appendix B.

### 2.2.1 Land Resources

The Montana Natural Heritage Program (MNHP) map viewer was used to determine land cover and land management within the planning boundary and surrounding areas of White Sulphur Springs. These reports are included in Appendix C. Land use within the planning boundary and outside of the city limits of White Sulphur Springs is primarily ranchland and farmland. Areas that are not cultivated for crops are generally sagebrush shrubland or foothill grasslands. National Forest land surrounds the Willow Creek intake reservoir at the southeast end of the planning area and there are some floodplain and riparian systems adjacent to Willow Creek. There is a semi-developed rural residential area within the planning area, approximately one mile east of the city limits. This residential area consists of approximately 15 lots ranging in size from five to 15 acres. Developed areas with the city limits of White Sulphur Springs are comprised primarily of low-intensity residential and commercial areas.

Land ownership within the planning area is primarily private. The Helena-Lewis and Clark National Forest surrounds the Willow Creek intake and diversion structure, although the intake facilities are located on private land. The transmission main from the intake to the city limits traverses private land as well, with a large portion of the private land also designated as a conservation easement managed by the Montana Land Reliance. There are several parcels within the city limits owned by local government entities such as Meagher County and the City of White Sulphur

Springs. Water distribution mains within the city limits are principally located within street rights-of-way.

Farmland classifications within the planning area were determined from the United States Department of Agriculture's (USDA) National Resources Conservation Service (NRCS) Web Soil Survey online database. Soils maps and reports of the area and information on soil characteristics from the Web Soil Survey area are found in Appendix D. Farmland classifications are assessed to determine impacts from conversion of farmland to nonagricultural uses.

Table 2-1 provides a summary of the major soil characteristics within the planning area. Most of the planning area is not classified as prime farmland. The area in the central/southeast city limits is classified as prime farmland if irrigated. Small, isolated segments along the intake transmission main are classified as farmland of statewide importance and one other small area along the intake transmission main is classified as prime farmland. A map of farmland classifications in the area is included as part of the soil survey found in Appendix D.

Table 2-1 – Soils Data Summary

| Planning Area<br>Location                                                                  | Soil Map Unit Names                                                                                                     | Setting                                             | Depth to Water Table  | Farmland<br>Classification  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|-----------------------------|
| East of city limits                                                                        | Reedwest-Roundor-<br>Cabba complex, 2 to 8<br>percent slopes                                                            | Loam/clay loam in valley floor landforms            | More than 80 inches   | Not prime farmland          |
| Central city limits                                                                        | city limits  Fairfield gravelly loam, 1 to 4 percent slopes  Gravelly loam/gravelly clay loam in valley floor landforms |                                                     | More than 80 inches   | Prime farmland if irrigated |
| Area adjacent to the<br>South Fork of Willow<br>Creek and the North<br>Fork of Smith River | Mannixlee-Clunton,<br>frequently flooded-<br>Meadowcreek<br>complex, 0 to 4<br>percent slopes                           | Loams in flood-plain steps, stream terraces         | About 0 to 24 inches  | Not prime farmland          |
| Area adjacent to intake transmission main                                                  | Sixteenmile-Krakon-<br>Breeton complex, 4 to<br>15 percent slopes                                                       | Sandy loams in plains landforms                     | More than 80 inches   | Not prime farmland          |
| East of city limits and north city limits                                                  | Reedwest-Bacbuster-<br>Cabba complex, 8 to<br>35 percent slopes                                                         | Loam in valley floor landforms                      | More than 80 inches   | Not prime farmland          |
| West city limits                                                                           | Bigsandy loam, 0 to 4 percent slopes                                                                                    | Clay loam/sandy loam<br>in flood plain<br>landforms | About 12 to 24 inches | Not prime farmland          |
| Northwest city limits                                                                      | Villsprings silt loam, 0 to 2 percent slopes                                                                            | Silt loams in alluvial fan landforms                | About 12 to 24 inches | Not prime farmland          |

If water distribution system improvements are made, temporary disturbance will occur mostly in previously disturbed areas within the city limits. If water system transmission main, treatment system, storage tank, or intake improvements are made, temporary disturbance will occur within the privately owned rural residential area and agricultural land east and southeast of the city. Landowner input and coordination will be important during final design, so any project does not adversely affect land use and function of the landowner's property.

Areas of disturbance will be restored to their original conditions to the greatest extent possible upon completion of construction. Ultimately, the project will result in minimal change in land use and minimal adverse impacts to land resources. Any water system improvements constructed southeast of town will generally preserve the open space and maintain the rural character of the land.

### 2.2.2 Biological Resources

Wildlife in White Sulphur Springs and surrounding areas primarily consists of small and large mammals such as deer, antelope, coyote, rabbit, skunk, rodents and others, fish such as trout, and numerous species of birds. A MNHP search was conducted and revealed Species of Concern (SOC) within the general vicinity of the planning area. Montana SOC are at-risk due to declining population trends, threats to their habitats, restricted distribution, and/or other factors. The search revealed thirteen SOC within the project area based on mapped Species Occurrence (SO) polygons. The SOC include one fish species (Westslope Cutthroat Trout), two mammal bat species (Little Brown Myotis and Long-eared Myotis), and ten bird species (Bobolink, Brewer's Sparrow, Cassin's Finch, Clark's Nutcracker, Evening Grosbeak, Great Blue Heron, Greater Sage-Grouse, Green-tailed Towhee, Long-billed Curlew, and Verry).

SO polygons for one other Special Status Species (SSS) and two other Important Animal Habitats (IAH) were also identified within the planning area. The identified SSS species is the Bald Eagle and the identified IAHs are bat roosts (cave and non-cave). Although the Bald Eagle is not classified as a Montana SOC, the SSS status indicates the species has some legal protections in place. The MNHP species data can be found in Appendix E, along with lists of other observed non-SOC, observed SOC not associated with SO polygons, and other potentially present species within the planning area. The planning area does fall within sage grouse general habitat, as defined by the Montana Sage Grouse Habitat Conservation Map.

A response was received from the U.S. Fish and Wildlife Service (USFWS) regarding the proposed water system improvements in White Sulphur Springs. The response is included in Appendix B. The USFWS had no comments regarding federally listed or proposed threatened or endangered species or other trust species. The USFWS provided a link to the Information for Planning and Consultation (IPaC) project-planning tool, which is an additional listed species information source used as part of the USFWS environmental review process. The IPac report generated from input of the planning boundary is included within Appendix E. The report identifies potentially affected species in the area such as the Canada lynx, North American Wolverine, Monarch butterfly, Whitebark Pine, and several migratory birds including the Bald Eagle.

An additional response was received from the Montana Department of Fish, Wildlife and Parks (FWP) regarding the proposed water system improvements in White Sulphur Springs. The response is included in Appendix B. FWP noted the native Westslope Cutthroat Trout population upstream of the diversion structure on Willow Creek and stressed the high conservation value of this species. FWP requested that any improvements to the diversion structure not promote or enable additional fish passage upstream. Additionally, FWP would prefer enhancement of the structure to prevent all passage of non-native fish with the goal to preserve the integrity of the upstream Westslope Cutthroat Trout population.

Any disturbance associated with distribution, transmission main, treatment system, or storage infrastructure water system improvements will be temporary in nature. All disturbed areas will be restored to nearly existing conditions upon completion of construction. Overall, minimal adverse impacts to biological resources are anticipated. Potential improvements to the diversion or intake facilities on Willow Creek will involve close consultation with FWP and other agencies to ensure conservation of the Westslope Cutthroat Trout population and other affected biological species and all required environmental permits will be obtained prior to construction.

### 2.2.3 Water Resources

Montana's Groundwater Information Center (GWIC) was used to collect information on groundwater in the planning area and well information was acquired in spatial format through the Montana State Library. GWIC well locations within the planning area and accompanying well data is included in Appendix F. The average depth of wells in the area is 101 feet below ground surface. The average static water level is 36 feet below ground surface with an average yield of 52 gallons per minute. Most of the wells in the vicinity are domestic, monitoring, or stockwater wells. There

is a grouping of domestic wells within the rural subdivision one mile east of the city in the proximity of where a potential transmission main project would occur. According to well log data, these wells are approximately 130 feet deep with surface water levels ranging from 40 to 90 feet below ground surface.

White Sulphur Springs obtains municipal water supply from two groundwater wells located at the city shop facility at the northeastern edge of the city limits. Appendix F includes available well log data for the public water supply groundwater wells. The two city wells are positioned approximately 20 feet apart, are both 200 feet deep, have static water levels of approximately 20 feet below ground surface, and yield 1,000 gpm and 200 gpm respectively, according to the well log data. The drinking water wells for White Sulphur Springs have sufficient quantity and the quality is generally good. Groundwater from both wells is disinfected using chlorine gas since both wells have static water tables less than 25 feet. The city groundwater supply will be discussed further in Chapter 3. The GWIC well data also revealed two additional wells within the city limits that are classified as public water supply. These two wells are associated with the Spa Hot Springs Motel located at the center of the city and these wells are the source of geothermal water for the swimming pools.

There is the potential to encounter groundwater during construction of water system improvements. Groundwater could be a concern during construction, especially if construction takes place during the spring when the groundwater table is at its highest or in the late summer/fall when groundwater is influenced from irrigation practices. Encountering groundwater is not uncommon during construction projects and will be accounted for as part of the project cost. Further, the location of existing groundwater wells will be examined carefully during design of any water system improvements and the contractor will be responsible for developing a pollution prevention plan that details planned contamination avoidance techniques in place during construction.

Surface water within the planning boundary generally consists of the Willow Creek Reservoir, South Fork of Willow Creek, Willow Creek, Pinchout Creek, Hot Springs Creek, and the North Fork of the Smith River. The South Side Canal also runs through the rural subdivision one mile east of the city. In addition to the two groundwater wells, the South Fork of Willow Creek also provides drinking water to the City of White Sulphur Springs. The surface drinking water system and associated water rights will be discussed further in Chapter 3.

Surface water quality information was obtained from DEQ's Clean Water Act Information Center (CWAIC) website and interactive maps. Montana classifies its waters according to present and future beneficial uses they are expected to support. The South Fork of Willow Creek is classified as A-1 use which is considered high-quality with the principal beneficial use of public water supply. All other surface waters in the planning area are classified as B-1. The water quality use class map can be found in Appendix G. Both A-1 and B-1 waters are to be maintained suitable for drinking water after conventional treatment, recreation, agriculture, industry, and propagation of salmonid fishes and associated aquatic life. The only difference between A-1 and B-1 class is that B-1 water must support beneficial use for drinking water after conventional treatment while A-1 water must support beneficial use for drinking water after conventional treatment for removal of naturally occurring impurities only. Beneficial uses for the surface waters within the planning area are not currently threatened or impaired with the exception of the North Fork of the Smith River. The most recent CWIAC surface water report was completed in 2020 and documents that the North Fork of the Smith River in the planning area is not fully supporting the beneficial use of primary contact recreation and a TMDL is required to address the factors causing the impairment or threat. CWIAC surface water reports are provided in Appendix G.

The city is concerned with the quality of water in Willow Creek in terms of turbidity. Willow Creek Reservoir is currently built up with sediment and appears to be affecting the quality of water which flows into the intake collection system to the treatment plant. There are current operational deficiencies at the intake dam which prevent the city from being able to properly operate a flushing valve to eliminate the sediment. As a result, the city has not been able to reliably use the Willow Creek source for the past two to three years. Potential intake improvements are discussed later in this report.

Water quality in Willow Creek may also be affected through increased sediment transport to the water source due to increased deadfall in the area from the effects of recent beetle kill. The city is currently in discussions with the Forest Service and associated planning agencies on the importance of fuels mitigation in the area to manage the increased deadfall. Continued coordination will be important so that appropriate operation and maintenance activities are in place to protect the Willow Creek watershed and water source for the city.

Proposed improvements at the intake dam would take place within Willow Creek Reservoir and Creek. Environmental permitting would be required as part of the construction project and all appropriate approvals would be obtained from FWP, DEQ, U.S. Army Corps of Engineers

(USACE), and other agencies as necessary to assure no adverse impacts to surface water quality as a result of construction activities. Water system improvements in other parts of the planning area will implement appropriate storm water pollution prevention measures during construction to eliminate sediment transport to nearby surface waters and minimize disturbance to affected surface waters.

### 2.2.4 Floodplains

A review of the Federal Emergency Management Agency (FEMA) flood map service center reveals there is one flood map for the White Sulphur Springs area. The current FEMA floodplain map for the project area is included in Appendix H. The map indicates there is a small portion of the northwestern corner of the city limits within the 100-year floodplain of the North Fork of the Smith River. The area within the unincorporated portions of Meagher County is unmapped and no flood insurance rate maps currently exist.

It is unlikely that water system improvements will take place within the floodplain. Based on existing water system mapping, there are currently no water lines within the floodplain area of the northwestern city limits and no planned water system improvements in this location at this time. The potential for floodplain disturbance will be considered carefully, however, during preliminary design. If any floodplains are impacted by the proposed project, all appropriate permits will be obtained prior to construction of the improvements.

### 2.2.5 Wetlands

Mapped riparian and wetland areas of Montana are provided by the Montana Natural Heritage Program. Wetland data can be found within Appendix I. Mapped wetland areas fall within the planning area. Most of the mapped wetlands are associated with the North Fork of the Smith River in the northwestern corner of the city limits and the upper reaches of Willow Creek near the intake facility. There are also a few isolated small emergent wetlands located throughout the planning area.

The wetlands directly adjacent to the North Fork of the Smith River are classified as palustrine emergent wetland characterized by erect, rooted herbaceous vegetation present during most of the growing season and palustrine scrub-shrub wetland which is dominated by woody vegetation less than 20 feet tall. The wetlands within the planning area adjacent to Willow Creek are riparian

forested and riparian scrub-shrub wetland characterized by woody vegetation that can be greater than 20 feet tall.

Improvements at the intake could likely impact wetlands. There could also likely be a stream/canal crossing if the transmission main is replaced within the rural residential subdivision east of the city, near the existing storage tank. Precautions will be taken during construction to prohibit any sedimentation or other potential adverse impact on the wetlands. A site-specific wetlands inventory will be conducted prior to construction for all stream crossings or low-lying areas. In the event final design proposes any disruption to existing wetlands, all necessary permits and plans for mitigation will be completed prior to construction of any improvements.

### 2.2.6 Cultural Resources

Cultural resources include historic and prehistoric archaeological sites, historic architecture, engineering features and structures, and resources of significance to Native Americans. The Montana State Historic Preservation Office (SHPO) was contacted to determine whether there are significant historical and cultural resources within the project area. A copy of the correspondence with SHPO is included in Appendix B.

SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places. SHPO also provided a list of previously conducted cultural resource inventories within the area.

SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any disturbance taking place. SHPO did express concern over the fact the Willow Creek diversion and intake structures may be over fifty years old. SHPO asked that these structures be recorded prior to any rehabilitation taking place through further site investigation and coordination with SHPO.

With the exception of a potential project at the Willow Creek intake, it is not anticipated that cultural properties will be impacted by other improvements to the water system. SHPO will be contacted immediately however, in the event any cultural materials are discovered during construction.

### 2.2.7 Socio-economic and Environmental Justice Issues

According to the 2015-2019 American Community Survey (ACS) 5-Year estimates, the median household income in the City of White Sulphur Springs is \$41,458 and 14.4 percent of its residents live below the poverty level. The low to moderate income (LMI) percentage for White Sulphur Springs is 50.8 percent. The LMI percent is based on the U.S. Housing and Urban Development (HUD) 2015 low- and moderate-income data. Census and income data is summarized in Appendix J.

There are no socio-economic and environmental justice issues identified as a result of this project. The proposed improvements will not adversely impact the environment, and no demographic group will experience disproportionate effects. The analysis and improvements across the entire water system provide benefits equally among residents by improving public health and safety. Temporary disproportionate effects could be perceived with construction activities depending upon final design. Some residents/business owners may have construction activity affect them differently.

### 2.3 Population Trends

Population analyses provide the basis for all planning efforts and play a significant role in decision making. Projections of future population are used in planning and engineering design to properly size facilities. Historic populations for the City of White Sulphur Springs and Meagher County are summarized in Tables 2-2 and 2-3 respectively. Supporting decennial Census data is included in Appendix J.

Table 2-2 - Historical Population Data - White Sulphur Springs

| Year | Population | Total Period Growth | Annual Growth per<br>Period |
|------|------------|---------------------|-----------------------------|
| 1980 | 1,302      | -                   |                             |
| 1990 | 963        | -26%                | -3.0%                       |
| 2000 | 984        | 2%                  | 0.2%                        |
| 2010 | 939        | -5%                 | -0.5%                       |
| 2020 | 955        | 2%                  | 0.2%                        |

Table 2-3 – Historical Population Data – Meagher County

| Year | Population | Total Period Growth | Annual Growth per<br>Period |
|------|------------|---------------------|-----------------------------|
| 1980 | 2,154      | -                   |                             |
| 1990 | 1,819      | -16%                | -1.7%                       |
| 2000 | 1,932      | 6%                  | 0.6%                        |
| 2010 | 1,891      | -2%                 | -0.2%                       |
| 2020 | 1,927      | 2%                  | 0.2%                        |

The city has experienced a decline in population since 1980 but population over the last thirty years has remained relatively unchanged. The 2020 Census population of White Sulphur Springs is currently 955. The population of Meagher County has exhibited a similar trend to that of the city.

The proposed water system improvements are anticipated to be completed by the end of 2025. A 20-year design life is a typical assumption for major capital improvements. As a result, the design year of 2045 is assumed for this Preliminary Engineering Report (PER). According to the Census, the population of White Sulphur Springs grew from 939 in 2010 to 955 in 2020, resulting in an annual growth rate of 0.2%. Growth scenarios for 0.2%, 1%, and 2% annual growth are presented below in Table 2-4.

Table 2-4 - Population Projections

| Year 0.2% Annual Growth |       | 1% Annual Growth | 2% Annual Growth |
|-------------------------|-------|------------------|------------------|
| 2020                    | 955   | 955              | 955              |
| 2025                    | 965   | 1,004            | 1,054            |
| 2030                    | 974   | 1,055            | 1,164            |
| 2035                    | 984   | 1,109            | 1,285            |
| 2040                    | 994   | 1,165            | 1,419            |
| 2045                    | 1,004 | 1,225            | 1,567            |

Based on the population analysis presented above, an annual growth rate of 1% appears appropriate to estimate future population in White Sulphur Springs over the planning period.

The city and county completed a consolidated city/county growth policy in early 2021. One of the primary purposes of the growth policy is to establish the foundations for where and how growth will occur within the city and county. The growth policy identified two major resource development projects, the Black Butte Copper Mine and Gordon Butte Pumped Hydro Project, that are

expected to occur in the coming years, and which will have an impact on population within the city and county. The Black Butte Copper Mine is estimated to add an additional 225 people to the population of the city while the Gordon Butte project is estimated to add 60 additional residents to Meagher County. Although these development projects have been identified, they are in the early stages of development and many details remain uncertain. Therefore, all projects evaluated within the PER will assume a 2045 design population of 1,225 people (based on 1% annual growth).

### 2.4 Community Engagement

Great West Engineering conducted a public hearing on March 21, 2023, at 5:30 pm at White Sulphur Springs City Hall at 105 West Hampton. The proposed project was explained in detail, including the purpose, proposed area of the project, activities, budget, funding, and financial impacts that may result for local citizens as a result of the project. The environmental assessment was also presented. The public was then given the opportunity to ask questions and express opinions regarding the project.

The notice of the public hearing was published in the Meagher County News on March 9 and March 16, 2023. Copies of the affidavit of publication, presentation handouts, and meeting minutes are included in Appendix K.

### 3.0 EXISTING FACILITIES

This chapter describes each part of the White Sulphur Springs existing water system and identifies deficiencies throughout the system.

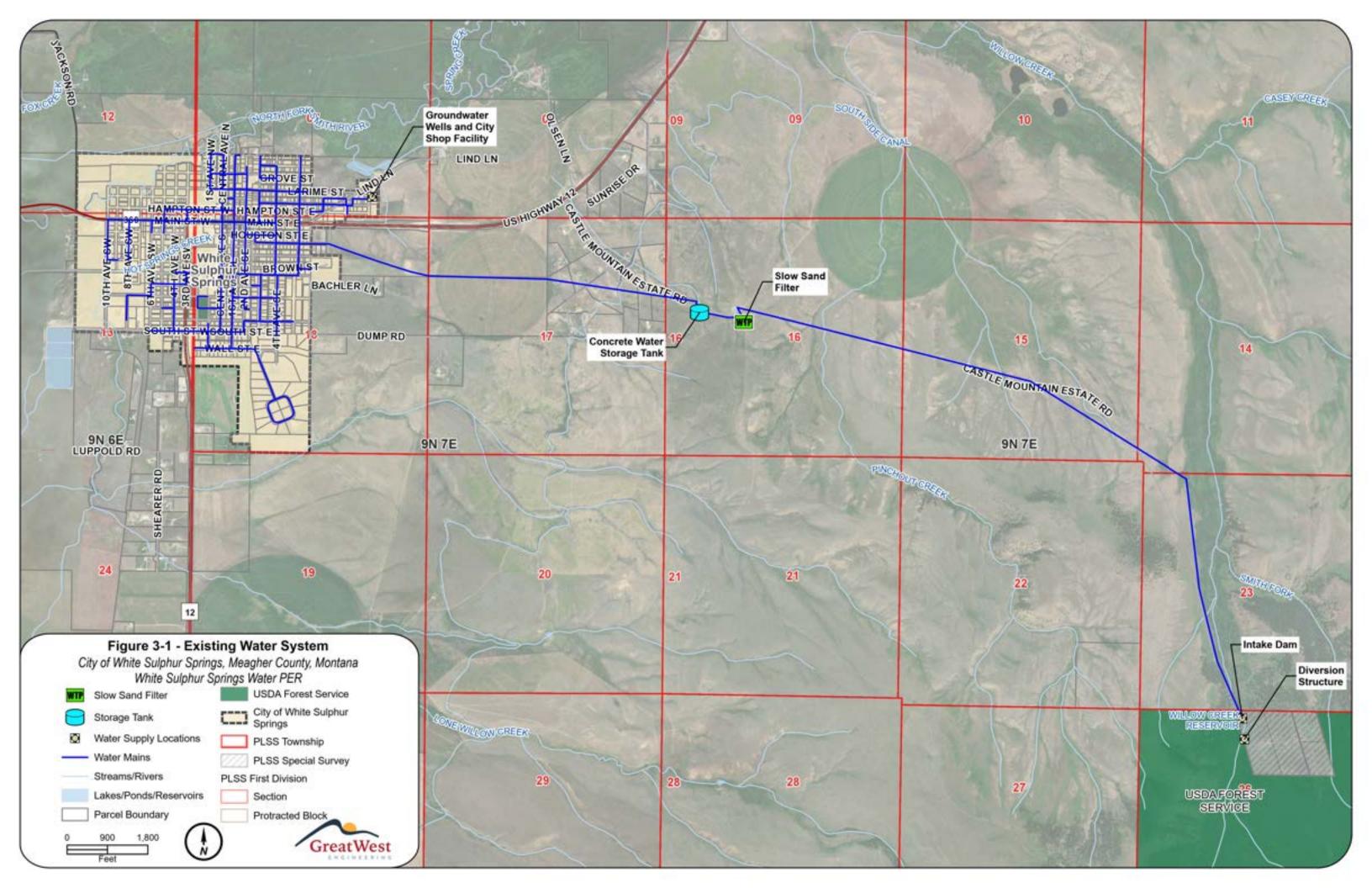

### 3.1 Location Map

Figure 3-1 presents a map of the White Sulphur Springs existing water system, including the intake diversion structure, intake dam, slow sand filter building, storage tank, transmission main, well locations, and distribution system. The Montana Department of Environmental Quality (MDEQ) completed a Sanitary Survey for the White Sulphur Springs water system in November 2022, a copy of which is included in Appendix L. The survey includes photographs of the water system facilities.

White Sulphur Springs has the capability to obtain municipal water supply from two separate supply sources. The first is a surface water source located on the South Fork of Willow Creek approximately five miles southeast of the city center. A diversion structure and dam/intake provide water to 6-inch PVC transmission main that flows via gravity from the intake to a slow sand filter treatment building, approximately three miles northwest of the intake. After treatment, water flows to the storage tank where it is chlorinated before entering the distribution system. The second supply source are two groundwater wells located fairly close together in the northeast part of the city. The wells are pumped directly into the distribution system, feeding the user demands and filling the water storage tank located east of the city. A telemetry system is used to control the tank level and cycling of the well pumps. The storage facility consists of one 560,000-gallon partially buried concrete storage tank. The distribution system consists of main lines varying in size from one to 12 inches.

### 3.2 History

The city water system consists of two groundwater wells, a diversion structure and intake dam on the South Fork of Willow Creek, slow sand filter treatment facility, water storage reservoir, transmission mains, and a distribution system. The water system was originally constructed in the late 1800's and early 1900's using wood stave pipe. The original transmission main from the South Fork of Willow Creek to the city was also likely constructed during this time as Willow Creek water rights date from 1872 to 1898.



Available record drawings document that in 1946, a 450,000-gallon concrete storage tank was constructed in the same general vicinity as today's existing tank. A new 12-inch cast iron/steel transmission main was also constructed from the storage tank to city limits and a new diversion dam and intake was constructed at the Willow Creek Reservoir. Available plans showed the intake as a concrete tower in the reservoir with a single 8-inch diameter pipe exiting the bottom of it. While there is no available record based on reviewed documents and files of any other water system improvements at this time, it is likely that much of the distribution system was upgraded to cast iron or steel within the 1940s and 1950s timeframe.

A major water system improvement project in 1986 replaced water distribution mains in about half the city with new PVC pipe based on available record drawings. Groundwater well No. 1 and its associated chlorine facility were also constructed at this time. It is believed the transmission main from Willow Creek to the storage tank was upgraded to 6-inch PVC during the 1980s as well as 2,600 lineal feet of 12-inch cast iron/steel transmission main replaced with 12-inch PVC along the portion of the transmission main directly east of the city limits. Record drawings for the 1980s transmission main improvements were unable to be located in preparation of this PER.

Although record drawings and documentation are limited, there appears to have been an improvement project at the intake sometime in the 1990s. The 1940s intake tower structure was likely removed at this time and a newly engineered slow sand filter was constructed upstream of the Willow Creek Reservoir dam. The filter system consists of filter sand and graded drain gravel layers underlain with perforated pipes that collect water. The perforated pipes manifold together and then flow to the 6-inch transmission main to the water treatment plant, approximately three miles away.

Groundwater well No. 2 was constructed in 1999 and the sand filter treatment facility was constructed in 2004. The treatment facility is located near the storage tank and consists of a 4-cell sand filter system that allows for a future 2-cell expansion. A design report for the sand filter facility was unable to be located in preparation of this PER.

A catastrophic water main break occurred in 2007 that caused flooding, home evacuations, business closures, major property damage, and a resulting boil order for eight days. The water main break occurred on the corner of Lincoln and 4<sup>th</sup> Streets.

In 2010, the city replaced the middle portion of the 12-inch cast-iron/steel transmission main with a new segment of 12-inch PVC. A water system PER was also prepared in 2010. The

recommended improvements from the PER included replacing the storage tank with a new concrete tank, new chlorination facilities at the tank and at the two wells, and replacement of the water transmission main from the sand filter to a point about a mile east of the city. The recommended PER project was completed in 2012 with the exception of the transmission main replacement. The 2012 improvement project included:

- Removal of the 1946 concrete water tank and construction of a new 560,000-gallon prestressed concrete water tank.
- Construction of a new chlorination facility adjacent to the new tank.
- Upgrades to the chlorination unit for the two wells including the installation of a new chlorine detection unit and alarm system.
- Addition of telemetry controls to link the remote tank/chlorination site to the city shop complex well house together.
- Replacement of the water line on West Main Street from 3rd Ave SW to Central Avenue.

A tornado destroyed much of the sand filter building's roof and walls in 2012. Repairs were made and the sand filter building was put back online in 2013.

A portion of transmission main was replaced in 2020 with new 12-inch PVC along 4<sup>th</sup> Avenue SE and Lincoln Street.

A Capital Improvements Plan (CIP) was completed in 2021 and identified the following priority projects pertaining to the water system:

- Replacement of the water transmission main from the east end of the alfalfa field east to the tank. This is the remaining portion of 1940s cast iron/steel transmission main that has yet to be replaced. It was identified in the 2010 PER as part of the preferred project but was never constructed.
- Replacement of undersized 4-inch water mains in the city.
- Looping of dead-end mains. Approximately 13 dead end mains exist within the city water system.
- Modifications to plumbing in the current well house. The current configuration only allows
  water to be metered from well no 1 which is located inside the well house. Well no. 2 is
  located just outside the well house and is plumbed in without a meter.

The city is currently in the construction phase for a project to install a backup generator for the groundwater well pumping system. The city is also in the process of updating their CIP.

The city has specified numerous issues with the current water system and needed improvements including replacement of the final segment of the leaking transmission main, Willow Creek intake reservoir improvements, concerns of security of the Willow Creek surface water source due to the threat of wildfire, older cast iron mains in the city in need of replacement, treatment plant deficiencies, implementation of a fire hydrant replacement program, and upsizing/looping water distribution mains.

### 3.3 Condition of Existing Facilities

As mentioned in the previous section, the city is in need of water system improvements. The following sub-sections discuss in greater detail the condition and analysis of each component of the city's existing water system and provide the basis for the development of alternatives for improvements.

### **3.3.1** Supply

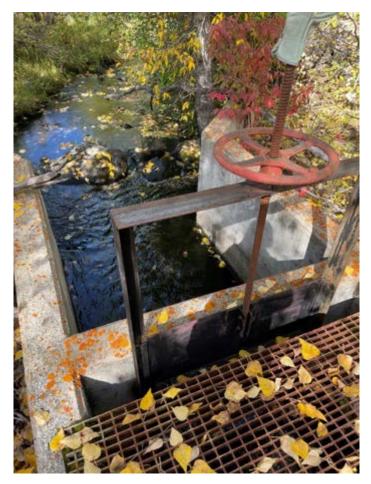
White Sulphur Springs has the capability to obtain municipal water supply from two separate supply sources. The first is a surface water source located on the South Fork of Willow Creek approximately five miles southeast of the city center. A diversion structure and dam/intake provide water to a 6-inch PVC transmission main that flows via gravity from the intake to a slow sand filter treatment building, approximately three miles northwest of the intake. After treatment, water flows to the storage tank where it is chlorinated before entering the distribution system.

The second supply source is two groundwater wells located fairly close together in the northeast part of the city. The wells are pumped directly into the distribution system, feeding the user demands and filling the water storage tank located east of the city. A telemetry system is used to control the tank level and cycling of the well pumps.

Specifics on each water supply source and applicable infrastructure are discussed further below.

### Surface Water Diversion Structure

A diversion structure was constructed in the South Fork of Willow Creek for the purpose of diverting flow to the water system for the city. The structure was constructed in the 1940s and consists of two concrete channels (one for the diverted flow and one for the mainstream flow) and a bar screen and slide gate on the diversion channel. The slide gate is used to isolate the city's water system from Willow Creek. The concrete, bar screen, and slide gate are all in good condition


and functional. There is no visible cracking/scaling, or apparent structural issues present. The bar screen is cleaned out whenever operators are able to access the site.

There is an old culvert across the creek upstream of the diversion structure that appears to be causing some deadfall to collect but does not appear to affect the flow of the stream. The Forest Service has said not to move it based on discussions with the city.

Access to the diversion structure/intake is limited. The road is impassible in the winter months and requires four-wheel drive in the summer months. There have been reports of access problems due to downed trees on forest land as well.



Upstream Side of Diversion Channel, Bar Screen, and Slide Gate



Slide Gate and Section of Downstream Channel

### Surface Water Intake Pond and Dam

The diversion structure supplies water through a natural channel to a pond that is created by a concrete dam in the channel. The dam has a spillway, flushing valve, and wooden catwalk. The flushing valve is used to drain the pond and flush the sediment from the pond. The actuator for the flushing valve is on an orange-colored pedestal that is mounted to the deck of the catwalk and the actuator is located in the middle of the span of the catwalk. To access the actuator, staff must walk across the catwalk. The pond is full, and water is flowing over the spillway.

The 1946 design drawings show an intake tower in the pond on the upstream side of the dam. The tower is constructed of concrete and is a 3' x 3' x 10' high box with a single 8-inch diameter pipe exiting the bottom of it. The intake tower does not appear to be there anymore. Although record drawings and documentation are limited, there appears to have been an improvement project at the intake sometime in the 1990s based on operator knowledge and landowner input. The 1940s intake tower structure was likely removed at this time and a newly engineered slow

sand filter was constructed in the intake pond. The filter system consists of filter sand and graded drain gravel layers underlain with perforated pipes that collect water. The perforated pipes manifold together and then flow to the 6-inch transmission main to the water treatment plant. The city provided schematic drawings of the intake pond sand filter which are provided in Appendix M. A Source Water Delineation and Assessment Report for White Sulphur Springs was completed in 2002. This report states that the slow sand filter requires the use of supplemental pumping to drain and is difficult to clean. As such, filtered water has a higher turbidity than water in the creek before filtration. The report notes that future improvements are planned for the slow sand filter in Willow Creek.

The decking of the catwalk is deteriorated and not capable of supporting operations staff, however, the concrete for the dam and spillway is in good condition. The 1946 design drawings indicate the flushing valve is a slide gate mounted on the upstream face of the dam. The valve is a non-self-contained slide gate valve so the force of opening and closing the gate is transferred through the pedestal directly to the deck. The planks on the deck are subject to the upward force of closing the gate and the repeated closing of the gate has caused the pedestal to lift the supporting planks up off the deck. Therefore, the flushing valve is not functional in its current state.

The intake pond is filled with silt, aquatic plants, and deadfall. It is currently not functioning as a storage reservoir or a settling basin and is nothing more than a wide spot in the channel. The buildup of sediment appears to be affecting the quality of water which flows into the intake collection system to the water treatment plant. The Willow Creek drinking water source is only used as turbidity allows and is currently not in use and has not been used reliably for the past two to three years. The city does not believe the aquatic plants and algae are imparting taste and odor compounds to the water.

Lastly, there is currently no way to monitor raw water quality at the pond as there is no monitoring equipment installed at the pond. This makes it difficult to know when the city can put the treatment plant into service or to address changes in turbidity before they hit the plant.



Upstream Side of Dam showing Catwalk, Orange-Colored Pedestal, and Pond



Downstream Side of Dam showing Spillway, Catwalk, Orange-Colored Pedestal, and Lifted Decking



Intake Pond showing Aquatic Life, Algae, and Deadfall

### Surface Water Transmission Main

The surface water transmission line leaves the intake/dam area and follows Willow Creek for a distance. It eventually veers away from the creek and generally follows the access road on the east/north side of the road. There are intermittent valves and blowoffs which allow for flushing of the line when the city starts using the water source after a period of unuse. There are also a few air release valves along the route.

There are no known issues with the transmission main. The line was last upgraded in 1986 to 6-inch PVC according to information in the 2010 PER and verification by the city.

The surface water transmission main is located on private property. The easement agreement with the landowner indicates the easement for this pipeline is 15 feet on each side of the pipeline. The easement agreement also documents use of the two-track road for access to the pipeline and reservoir. The diversion structure resides about half on Forest Service property and half on private land. The intake dam is also located on private property.



Image showing Ownership and Property Lines from Cadastral

Based on the evaluation of the surface water source infrastructure, the division structure is in good condition and there are no apparent issues. Therefore, this PER will not make any recommendations for improvements to the structural components of the diversion structure. Improvements at the intake pond are needed in order for the city to be able to use the Willow Creek surface water source. Alternatives for intake pond improvements will be presented in Chapter 5 and will include recommendations for replacing the catwalk and valve, monitoring turbidity at the pond, and improving access to the diversion and intake facilities. No improvements are needed to the 6-inch surface water source transmission main at this time.

Any improvements to the intake facility will require coordination with the private landowner to determine what issues should be addressed with a proposed construction project at the intake dam and any concerns with access. Long term, it will be important for the city to stay involved in

discussions with the Forest Service on operation and maintenance and fuels mitigation/deadfall issues so that access to the diversion and intake is maintained and degradation of water quality is minimized.

#### Groundwater

The city uses its two groundwater wells when the Willow Creek source is not in use, and as a supplement to the Willow Creek source as necessary when it is in use. The wellhouse is located in the city maintenance shop yard, at the northeastern edge of the city limits. Well #1 is located within the wellhouse, and well #2 is just outside of the wellhouse. Wells #1 and #2 are only about 20 feet apart.

The wells are equipped with submersible pumps and are controlled by the water levels of the storage tank. Groundwater is disinfected using a gas chlorine injection system. The treated water is pumped directly into the distribution system, feeding user demands and filling the water storage tank. The water level in the tank is communicated to the well site through a radio telemetry and SCADA control system. Well #1 is equipped with a variable frequency drive (VFD), but well #2 is not. If the storage tank is ever offline, the city utilizes well #1 to moderate flow and pressure in the system. The city operates well #2 as its main well and well #1 functions as a backup well when needed.

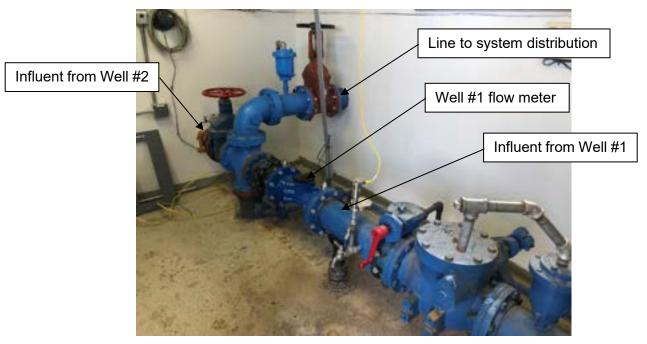
Table 3-1 summarizes available well log data. Full well log reports are included in Appendix F.

Well **Static** Test Current Well Total **GWIC ID Pumping** Completion Water Pumping Name Depth (ft.) Date Level (ft.) Rate (gpm)(1) Rate (gpm)(2) Well #1 260672 1986 200 19 200 350(3) Well #2 172711 1999 201 22 1,000 534

Table 3-1 - White Sulphur Springs Public Water Supply Wells

There are no significant deficiencies with the groundwater supply system. There is a deficiency within the wellhouse related to metering, however. The meter in the well house is only capable of recording the flow from well #1 because of where it is placed. There isn't an ideal spot to install another meter that would be capable of recording accurate flow measurements for both wells. Because of the meter placement deficiency, the operator records the pump run time hours each

<sup>(1)</sup>Based on original well logs.


<sup>(2)</sup>Based on operator information.

<sup>(3)</sup>Well #1 flow rate can be increased to 500 gpm if needed with the VFD.

day and estimates usage based on the run time and estimated pump flow rate determined from the pump curve.



Existing Well Pump House showing Well #2 Location outside of Pump House



Existing Well Pump House Plumbing

#### Water Demand

Knowing current water demand is necessary to calculate future water needs throughout the planning period. Water use can be evaluated two ways:

- 1. Water use based on source data. This is the amount of water that comes directly from the groundwater source or the surface water source.
- 2. Water use based on metered data. This is the amount of water that is used at each house or service connection.

The calculation of average daily demand is dependent on the specific community and the information available for the community. The water operator maintains daily pump run time data from each of the wells. The daily groundwater source water use logs and spreadsheets are provided in Appendix N. The groundwater source pump run time hours were used to estimate source water use by calculating the number of hours the pumps run each day and multiplying the pump run time hours by the well pump flow rates (500 gpm for well #2 and 350 gpm for well #1). The end result is an estimate of gallons per day pumped at the groundwater source each day. This data was compiled for the time period from February 2019 through September 2022, and was summarized by month as shown below in Table 3-2.

The Willow Creek surface water source was used minimally over this time period. Well #1 was also used minimally over this time period. Months with no data represent months when the Willow Creek source was used for any time during that month or for where there are data gaps in the groundwater pumped usage records. Due to the minimal time the surface water source was used, the source water usage summary is only based on groundwater source data. The average day use based on source meter data is 242,537 gallons per day (gpd) or 254 gallons per capita per day (gpcd).

Water meters are installed on each service in the city and a similar water use analysis can be conducted with the use of water meter data. Table 3-3 summarizes monthly meter usage and resulting per capita per day water use for the time period 2019 through 2022. Meter usage report spreadsheets are provided in Appendix N. The average day use based on water meter data is 97,095 gpd or 102 gallons gpcd. This is a very low usage rate as compared to other Montana communities. Based on information from the city, the watering of the city parks is not included in the metered usage numbers. There are also a number of meters that are currently not being read because they need to be replaced. Because of these unmetered sources, the actual average

metered usage for White Sulphur Springs is likely on the order of 150 to 160 gpcd, as is comparable to other Montana communities of similar size.

Table 3-2 - Water Use Based on Groundwater Source Data

|           |            | Gallons    | Average    | Average    |                    |                                                 |
|-----------|------------|------------|------------|------------|--------------------|-------------------------------------------------|
| Month     | 2019       | 2020       | 2021       | 2022       | Gallons per<br>Day | Gallons per<br>Capita per<br>Day <sup>(1)</sup> |
| January   | -          | -          | -          | 5,616,000  | 181,161            | 190                                             |
| February  | 6,264,000  | -          | 5,265,000  | -          | 205,875            | 216                                             |
| March     | 6,936,000  | -          | 6,930,000  | -          | 223,645            | 234                                             |
| April     | 6,309,000  | -          | 6,780,000  | 5,409,000  | 205,533            | 215                                             |
| May       | 6,168,000  | 5,805,000  | 7,404,000  | 6,123,000  | 205,645            | 215                                             |
| June      | 8,838,000  | 8,658,000  | 13,173,000 | 8,172,000  | 323,675            | 339                                             |
| July      | 10,353,000 | 10,764,000 | 15,531,000 | 12,491,100 | 396,283            | 415                                             |
| August    | 11,133,000 | 12,588,000 | 10,950,000 | 11,493,300 | 372,293            | 390                                             |
| September | -          | 7,719,000  | -          | 7,974,900  | 261,565            | 274                                             |
| October   | -          | 5,142,000  | -          | -          | 165,871            | 174                                             |
| November  | -          | -          | 5,751,000  | -          | 191,700            | 201                                             |
| December  | -          | -          | 5,493,000  | -          | 177,194            | 186                                             |
| Average   | 8,000,143  | 8,446,000  | 8,586,333  | 8,182,757  | 242,537            | 254                                             |

<sup>(1)</sup>Based on 955 people.

Table 3-3 - Water Use Based on Metered Use

|           |           | Gallons p  | Average    | Average   |                    |                                                 |
|-----------|-----------|------------|------------|-----------|--------------------|-------------------------------------------------|
| Month     | 2019      | 2020       | 2021       | 2022      | Gallons per<br>Day | Gallons per<br>Capita per<br>Day <sup>(1)</sup> |
| January   | 1,656,202 | 1,707,245  | 1,603,355  | 1,745,297 | 54,130             | 57                                              |
| February  | 1,656,927 | 11,608,699 | 1,762,933  | 1,854,237 | 62,787             | 66                                              |
| March     | 1,461,245 | 1,375,673  | 1,241,167  | 1,855,994 | 47,855             | 50                                              |
| April     | 1,521,017 | 1,074,361  | 1,755,072  | 1,749,503 | 50,833             | 53                                              |
| May       | 1,695,792 | 1,469,660  | 1,885,036  | 1,829,005 | 55,480             | 58                                              |
| June      | 3,611,797 | 3,406,335  | 4,083,788  | 2,749,575 | 115,429            | 121                                             |
| July      | 3,878,626 | 4,146,258  | 8,359,875  | 4,614,712 | 169,351            | 177                                             |
| August    | 5,566,485 | 7,934,684  | 7,540,549  | 7,571,978 | 230,756            | 242                                             |
| September | 3,703,791 | 5,191,111  | 4,398,336  | 6,164,668 | 162,149            | 170                                             |
| October   | 2,123,403 | 2,521,775  | 2,998,389  | 5,723,696 | 107,801            | 113                                             |
| November  | 1,728,004 | 1,847,439  | 9,589,683  | 1,398,060 | 55,261             | 58                                              |
| December  | 1,949,028 | 1,616,164  | 11,785,844 | 1,392,380 | 53,307             | 56                                              |
| Average   | 2,546,026 | 3,658,284  | 4,750,336  | 3,220,759 | 97,095             | 102                                             |

<sup>(1)</sup>Based on 955 people.

Highlighted cells indicate higher than normal usage reflecting potential meter reading errors or outliers. These month's data were excluded from the average calculations.

#### **Unaccounted for Water**

Table 3-4 details the estimated loss of water in the system by comparing the average monthly source demand data (Table 3-2) to the average monthly meter data (Table 3-3). The comparison indicates that over 145,000 gpd or approximately 60% of the water pumped into the system is lost or unaccounted for. It should be noted that utilizing pump run time and assumed flow for the source use is only an estimate as pumping rates would actually fluctuate throughout the day based on system hydraulics. Having accurate meters at the source would allow for a more precise estimation of system leakage. Additionally, the metered usage is likely low due to unmetered sources which results in an over estimation of water loss. If more typical metered usage values are used, the percentage of water loss would be estimated to be 40 to 50% on average. Nevertheless, the data available suggests that White Sulphur Springs is losing a substantial amount of water.

Table 3-4 - Estimated Water Loss

| Month     | Source<br>Average<br>Gallons per<br>Day | Meter Average<br>Gallons per<br>Day | Unaccounted<br>for Gallons per<br>Day | Percent Water<br>Loss |
|-----------|-----------------------------------------|-------------------------------------|---------------------------------------|-----------------------|
| January   | 181,161                                 | 54,130                              | 127,031                               | 70%                   |
| February  | 205,875                                 | 62,787                              | 143,088                               | 70%                   |
| March     | 223,645                                 | 47,855                              | 175,790                               | 79%                   |
| April     | 205,533                                 | 50,833                              | 154,700                               | 75%                   |
| May       | 205,645                                 | 55,480                              | 150,165                               | 73%                   |
| June      | 323,675                                 | 115,429                             | 208,246                               | 64%                   |
| July      | 396,283                                 | 169,351                             | 226,932                               | 57%                   |
| August    | 372,293                                 | 230,756                             | 141,537                               | 38%                   |
| September | 261,565                                 | 162,149                             | 99,416                                | 38%                   |
| October   | 165,871                                 | 107,801                             | 58,070                                | 35%                   |
| November  | 191,700                                 | 55,261                              | 136,439                               | 71%                   |
| December  | 177,194                                 | 53,307                              | 123,886                               | 70%                   |
| Average   | 242,537                                 | 97,095                              | 145,442                               | 60%                   |

Water loss in excess of 10 to 15% is considered excessive. Typically, water lost or unaccounted for in a system is the result of leaks, unmetered uses, inaccurate meters, and/or flushing of fire hydrants. The amount of leakage in a system varies but a correlation generally exists between system age and amount of leakage. New systems may have as little as 5% leakage while older systems can have much higher percentages. Approximately 30% of the White Sulphur Springs water system is old cast iron, steel, or ductile iron pipe that could have strong potential for leakage.

Leakage can also occur throughout the system at service connections. There is likely a large portion of unaccounted for water in White Sulphur Springs that could be recovered through increased metering and/or waterline repairs.

### **Projected Water Demand**

With a projected population and existing water demand analysis, projected water demands can be made. The projections will be utilized to determine the adequacy of the system's source of supply, storage availability, and distribution system sizing and proposed improvements. The future demands will also establish the design criteria for future improvements related to all aspects of the water system.

Projected water demands are presented in Tables 3-5 and 3-6. Table 3-5 water use projections are based on the future population determined from a 1% growth rate in conjunction with the current source average day use rate of 254 gpcd. Because this method uses the current amount of water pumped into the system as its baseline and it has been shown that the system has a substantial amount of unaccounted for water, it is logical to assume the overall system demand will decrease if leakage can be reduced. Table 3-6 presents projected water demands based on a reduced per capita usage rate of 150 gpcd for reference in order to demonstrate the difference in demand if leakage can be reduced to a more acceptable tolerance. Design alternatives presented in this PER will however utilize the projected system demands presented in Table 3-5 which assume the current source demand.

The projections also present maximum day demand in addition to average day demand. The definition of maximum day demand is the highest volume of water consumed on any day in a year. The maximum day source demand for a month with complete data over the 2019-2022 period was 702,000 gallons per day occurring on July 17, 2021. The peaking factor is then the highest daily use divided by the average daily use. The resulting peak day to average day factor for White Sulphur Springs is 2.89. According to the American Water Works Association (AWWA), typical peaking coefficients for the U.S. range from 1.5 to 3.5. The projections for White Sulphur Springs utilize a slightly more conservative value of 3.0 as the peaking factor.

Table 3-5 - Projected Water System Demands (based on current source use)

| v    | Estimated          | Average Da           | ay Demand | Maximum Day Demand   |       |
|------|--------------------|----------------------|-----------|----------------------|-------|
| Year | Service Population | (gpd) <sup>(1)</sup> | (gpm)     | (gpd) <sup>(2)</sup> | (gpm) |
| 2020 | 955                | 242,537              | 168       | 727,610              | 505   |
| 2025 | 1,004              | 254,908              | 177       | 764,725              | 531   |
| 2030 | 1,055              | 267,911              | 186       | 803,734              | 558   |
| 2035 | 1,109              | 281,578              | 196       | 844,733              | 587   |
| 2040 | 1,165              | 295,941              | 206       | 887,823              | 617   |
| 2045 | 1,225              | 311,037              | 216       | 933,110              | 648   |

<sup>(1)</sup>Based on 254 gpcd.

Table 3-6 - Projected Water System Demands (with assumed reduced leakage)

| .,,  | Estimated                |                      | ay Demand | Maximum Day Demand   |       |
|------|--------------------------|----------------------|-----------|----------------------|-------|
| Year | ar Service<br>Population | (gpd) <sup>(1)</sup> | (gpm)     | (gpd) <sup>(2)</sup> | (gpm) |
| 2020 | 955                      | 143,250              | 99        | 429,750              | 298   |
| 2025 | 1,004                    | 150,557              | 105       | 451,672              | 314   |
| 2030 | 1,055                    | 158,237              | 110       | 474,711              | 330   |
| 2035 | 1,109                    | 166,309              | 115       | 498,926              | 346   |
| 2040 | 1,165                    | 174,792              | 121       | 524,377              | 364   |
| 2045 | 1,225                    | 183,708              | 128       | 551,125              | 383   |

<sup>(1)</sup>Based on 150 gpcd.

## Water Rights

Appendix O includes documentation of water rights for the White Sulphur Springs groundwater and surface water sources. Table 3-7 summarizes data for the water rights general abstracts on file with the DNRC. It appears there is one water right for the groundwater wells with a maximum allowable flow rate of 500 gpm. Three water rights exist for the Willow Creek surface water source with flowrates of 112, 637, and 148 gallons per minute, respectively. It is unclear from the general abstracts whether the surface water source rights can be added together. The general abstracts also did not make any reference to an irrigation season or water rights being limited during an irrigation season.

The 2045 projected average day use for White Sulphur Springs is 311,037 gallons per day as shown in Table 3-5. This equates to 348 acre-feet per year, which is below the maximum allowed volume for the 1985 groundwater water right and is also below the maximum allowed volume for the combined surface water rights (181 + 476 + 194 = 851 acre-feet per year). It appears the

<sup>(2)</sup>Based on a max. day to average day factor of 3.0

<sup>(2)</sup>Based on a max. day to average day factor of 3.0

existing municipal water rights are likely adequate for the projected water demands. The groundwater right, however, has a maximum flow rate of 500 gpm and the existing maximum day demand is 505 gpm. If the groundwater source remains the only source of supply to the city as it is in the current condition, the maximum daily demand is in excess of the allowable flow rate of 500 gpm for both existing and future demands.

Table 3-7 - Water Rights Summary

| DNRC Water<br>Right No. | Type of<br>Water Right | Priority<br>Date | Source Type   | Maximum<br>Flow Rate<br>(gpm) | Maximum<br>Volume<br>(ac-ft/yr.) | Maximum<br>Volume<br>(MG/yr.) | Diversion<br>Means |
|-------------------------|------------------------|------------------|---------------|-------------------------------|----------------------------------|-------------------------------|--------------------|
| 41J 61342-00            | Provisional<br>Permit  | 1985             | Groundwater   | 500                           | 806.5                            | 263                           | Wells              |
| 41J 193193-00           | Statement of Claim     | 1872             | Surface Water | 112                           | 181                              | 59                            | Headgate           |
| 41J 193194-00           | Statement of<br>Claim  | 1878             | Surface Water | 637                           | 476                              | 155                           | Headgate           |
| 41J 193195-00           | Statement of Claim     | 1898             | Surface Water | 148                           | 194                              | 63                            | Headgate           |

### Water Quantity

The city utilizes two wells plus a surface water source for its water supply. In the past few years, the surface water source has not been reliably used due to turbidity issues which will be discussed later on in this report. The surface water source is the preferred source of water for the city because operation is by gravity and the energy requirements are minimal.

Looking at the groundwater system separately, well #2 can produce at least 500 gpm which is consistent with the water right. Well #1 currently produces 350 gpm but can be increased to a maximum of 500 gpm with the VFD. Per DEQ, groundwater systems must be able to provide the maximum daily demand with the highest capacity pump out of service. The 2045 projected maximum day demand is 648 gpm. Well #1 is the lowest producing well and is not sufficient to meet the projected maximum day demand of 648 gpm. Also, water rights appear to limit the flow from the wells to 500 gpm which may be the maximum allowable rate that can be taken from the wells at any time. Therefore, the groundwater supply alone is not sufficient to meet the demands of the system. The fact the groundwater system does not meet DEQ requirements for water supply alone further strengthens the need for improvements to increase the reliability of the surface water system.

When the surface water system is online, it can reliably treat approximately 112 gpm at the slow sand filter treatment facility. The treatment system and associated deficiencies will be discussed further in Section 3.3.2 with additional details on capacity. Recommended treatment system improvements will not be expected to substantially change the capacity of the plant, which can be expected to remain at the current 112 gpm or potentially increase slightly to a maximum of 150 gpm. Therefore, the sand filter facility requires assistance from the groundwater system in order to satisfy both average and maximum day requirements.

When considering the total capacity of a surface water system which requires treatment, the firm capacity of a water treatment plant (WTP) is defined as what the system can treat with one unit out of service. The unit could be one pump, one basin, etc. In the case of the slow sand filter treatment system, it is defined as the capacity of the treatment plant with one of the treatment cells out of service. Therefore, the firm capacity of the WTP is 84 gpm under normal operating conditions. It may be possible to increase that firm capacity for short periods of time, i.e., increase the flow to each cell while one of the cells is out of service, however, that cannot be determined without further evaluation and possible changes to the existing sand filters.

Additionally, for the WTP and surface water source to be considered for the total capacity of the water system, the WTP must be able to function at any given time. Currently that is not the case as there are limitations for when the Willow Creek source can be used based on raw water quality and the ability of the WTP to treat the water adequately.

To summarize the discussion on water quantity, the city requires both water sources in order to meet demands. The groundwater source capacity is 500 gpm and with the surface water plant capacity expanded to its maximum of 150 gpm, the city will be right at its projected 2045 maximum day demand of around 650 gpm. If leakage can be reduced through distribution system improvements, the issue with water supply capacity will be less significant.

### Water Quality

Montana regulations require all community public water systems to monitor microbiological, chemical, and radiological quality. Appendix P includes water quality reports and data for the White Sulphur Springs water system, including consumer confidence reports for the past three years.

Microbiological quality in the distribution system is addressed through the Total Coliform Rule (TCR), which monitors fecal pathogens through control of total coliform bacteria, including fecal coliforms and Escherichia coli (E. coli). The city is required to sample for coliform a minimum of twice per month. Coliform/microbial sample results were queried for the past ten years. Results for all samples within this time period indicate the absence of coliform and E. coli with the exception of two routine samples in 2018 that were coliform positive and one routine sample in 2023 that was coliform positive. Repeat samples showed the absence of coliform and no violations resulted from these instances.

The city also monitors for nitrate-nitrite at the wells on a yearly basis and at the surface water treatment plant on a quarterly basis. Inspection of the past ten years of sample results indicates nitrate-nitrite levels have remained relatively constant with concentrations generally on the order of 0.91 mg/L at the wells and 0.04 mg/L or non-detectable levels at the treatment plant. The maximum contaminant level (MCL) for nitrate-nitrite is 10 mg/L.

The water system also monitors for asbestos, lead, copper, and disinfection byproducts in the distribution system and arsenic, volatile organic, synthetic organic, and radiological contaminants at the wells and treatment plant. Inorganic contaminants are also monitored for the wells. Monitoring for these contaminants occurs on an annual, three-year, or nine-year basis depending on contaminant. According to DEQ records, all contaminants are below the MCL and in most cases concentrations are non-detectable indicated by no result reported. White Sulphur Springs has had some reporting and monitoring violations over the years. There were also some occasional issues with maintaining disinfection residual as well as some occasional turbidity violations during the 2004 – 2014 timeframe.

Turbidity continues to be problematic for operation of the surface water treatment plant. The operators typically turn off the treatment facility during periods of high turbidity and rely on well water. However as previously mentioned, the non-functioning flushing valve at the intake facility has prevented the city from using the surface water source at all over the past few years. Turbidity as it relates to the surface water treatment plant will be discussed further in Section 3.3.2. Section 3.3.2 will also address the water quality parameters associated with surface water treatment plants and related treatment technique requirements.

#### Source Water Protection

A Source Water Delineation and Assessment Report (SWDAR) was completed in 2002 for the White Sulphur Springs Public Water System and is included in Appendix Q. The SWDAR purpose is to identify potential contaminants to the drinking water sources and provide information on how to mitigate those threats of contamination through a source water projection plan.

Source water sensitivity criteria was used to determine how sensitive each water source is to contamination threats. The White Sulphur Springs groundwater wells were determined to have low sensitivity to contaminants since the wells are completed in deep fractured siltstone and appear to be confined. Water obtained via the slow sand filter/infiltration gallery intake system in Willow Creek was determined to have high sensitivity to potential contaminant sources since the source is derived from surface water. The groundwater source and surface water source are blended in the storage tank so the overall sensitivity to contaminants sources is moderate.

Per the SWDAR, contamination threats to the groundwater wells include sewer main line breaks, accidental surface spills from highway transportation accidents, septic system effluent or agricultural chemicals leaching into the groundwater, and potential threats from storm water injection wells. The greatest threats to the surface water source are the Ringling Mine which is a past producing mine located upgradient of the Willow Creek intake, extreme rain events, and wildfire events.

A Source Water Projection Plan was prepared in 2015 that expanded on the 2002 SWDAR. The 2015 report is also included in Appendix Q. The 2015 report provided recommendations on how to protect the source water, such as replacing sewer lines when necessary and creating spill response and emergency plans. The Forest Service Castle Mountains Restoration project was identified and emphasized the significance of cooperation between the city and the forest on planning for and implementing techniques for reduction of wildfire hazards. The source water protection plan also proposed coordination with the forest service on road maintenance and firefighting response plans in an effort to project the Willow Creek watershed and surface water drinking water source.

#### 3.3.2 Treatment

Water treatment facilities consist of the slow sand filtration facility located near the storage tank as well as two gas chlorination systems that provide disinfection.

### Slow Sand Filter Facility

The slow sand filtration facility treats the water diverted from Willow Creek. Slow sand filtration is a process involving passage of raw water through a bed of sand at low velocity that results in particulate removal by physical and biological mechanisms. The facility was constructed in 2004, is in excellent condition, and includes four filter compartments. Two additional compartments are planned for future expansion. The filters in all four compartments are used when the treatment plant is in service.

Raw water enters the building in ductile iron pipe where the flow is split if desired and a perforated PVC header distributes the water across one or two sand filter chambers that interconnect with another two chambers allowing for isolation of chambers if needed. The sand filters contain two layers of gravel and two layers of sand. WTP construction plans were reviewed as part of this PER, but a design report was unable to be found. Consequently, information on the gradation of the filter sand was unable to be determined for incorporation into this PER. Sand filter construction plans are provided in Appendix R. Finished water is then collected off the bottom of the sand filters via the underdrain system and four collection pipes, two per side where water then enters a concrete surge tank. From the surge tank, water flows to the chlorination building and 560,000-gallon storage tank, located approximately 1,000 feet to the west of the WTP.



Slow Sand Filters

The sand filter system is entirely gravity based. There are no pumps between the intake and WTP and no pumps between the WTP and storage tank. The sand filter system is therefore desired over the groundwater system and its operation is maximized under allowable turbidity requirements. The WTP is capable of treating around 120 to 140 gpm when the raw water NTU is 0.6 or below. The system can treat water with an NTU of up to 1, however, it is not as efficient.

Turbidity is measured through a raw water turbidimeter and separate effluent turbidimeters for each individual sand filter. There is currently not a combined effluent turbidimeter. All analyzers are continuous when the plant is running, but the information must be read onsite. There is no SCADA connection to allow for remote monitoring. The plant is also equipped with a raw water flow meter as well as a finished water flow meter. With raw water turbidity only monitored at the WTP and not at the intake, there is no way to monitor the raw water turbidity when the plant is not in use. This makes it difficult to know when the city can put the plant into service or to address changes in turbidity before they hit the plant.

The city currently uses the following cleaning procedure for the sand filters. After spring runoff and just prior to starting up the plant, the operators rake and occasionally remove a small layer of sand. Sand is replaced as necessary. After raking or removing sand, the plant is started and is run for a bit to build up the "schmutzdecke", or biological layer of microorganisms, prior to sending water to the tank and distribution system. When capacity of the plant decreases to 100 gpm, the plant is shut down, drained, and the top layer of sand is raked without removing any.

The city submits reports to DEQ with a variety of data related to the treatment process in order to comply with the surface water treatment rule. The surface water treatment rule protects against microbial contaminants found in surface water which are *Cryptosporidium*, *Giardia*, and viruses. The reports to DEQ provide documentation that the required contact time for the disinfectant system is achieved every day the plant is in operation and also documents turbidity performance. Turbidity must be less than or equal to 1.0 NTU in at least 95% of the measurements taken each month and the disinfection inactivation ratio for contact time must be greater than or equal to 1. These reports were reviewed for the past few years and data on the raw and finished water turbidities, finished water pH, and peak hourly flows are summarized in Table 3-8. The WTP was only in operation for the time frames specified since 2020. The available data shows White Sulphur Springs is meeting the requirements for disinfection and finished water turbidity. Full surface water DEQ reports for these months are included in Appendix S.

Table 3-8 - Slow Sand Filter WTP Data

| Time Frame                  | Category | Raw Water<br>Turbidity<br>(NTU) | Finished<br>Water<br>Turbidity<br>(NTU) | Finished<br>Water pH | Peak Hourly<br>Flow (gpm) <sup>(1)</sup> | Disinfection<br>Inactivation<br>Ratio (IR) |
|-----------------------------|----------|---------------------------------|-----------------------------------------|----------------------|------------------------------------------|--------------------------------------------|
|                             | Min.     | 0.41                            | 0.28                                    | 6.42                 | 114                                      | 1.2                                        |
| March 2020                  | Ave.     | 0.97                            | 0.35                                    | 6.81                 | 115                                      | 3.0                                        |
|                             | Max.     | 1.32                            | 0.58                                    | 7.04                 | 115                                      | 6.4                                        |
| 40.1                        | Min.     | 0.86                            | 0.33                                    | 6.79                 | 102                                      | 1.5                                        |
| 12 days in April<br>2020    | Ave.     | 0.92                            | 0.47                                    | 6.94                 | 113                                      | 2.0                                        |
| 2020                        | Max.     | 1.01                            | 0.87                                    | 7.33                 | 116                                      | 3.2                                        |
|                             | Min.     | 0.51                            | 0.31                                    | 7.01                 | 77                                       | 1.2                                        |
| 21 days in<br>February 2022 | Ave.     | 0.53                            | 0.37                                    | 7.15                 | 109                                      | 2.0                                        |
| 1 ebidary 2022              | Max.     | 0.54                            | 0.43                                    | 7.28                 | 114                                      | 7.7                                        |
|                             | Min.     | 0.54                            | 0.19                                    | 6.88                 | 113                                      | 1.6                                        |
| March 2022                  | Ave.     | 0.55                            | 0.39                                    | 7.16                 | 119                                      | 2.0                                        |
|                             | Max.     | 0.59                            | 0.98                                    | 7.64                 | 130                                      | 2.6                                        |

<sup>(1)</sup>Operating time is 24 hours/day

To further evaluate the performance of the WTP, a comparison was made between the city's slow sand filters and design criteria for slow sand filters as documented in Montana DEQ regulations and industry standards. The results of this comparison are summarized in Table 3-9.

Compared to the regulations and industry standards, the city's filters are operated on the low end of the filtration rate. Unknowns are the effective size and uniformity coefficient for the city's filter sand. Of significance is the fact the city's filters are unable to treat raw water that has a turbidity greater than 1 NTU. Based on the design standards review, slow sand filters should be able to treat water with a turbidities on the order of 10 to 20 NTU. Therefore, the city's slow sand filters are not performing at the level that they are known to operate at. The cause of the degradation in performance could possibly be attributed to the presence of colloidal clays and algae in the raw water, the wrong size of filter sand, an ineffective cleaning procedure, or a combination of any of these factors.

Table 3-9 - Comparison of Requirements and Guidelines for Slow Sand Filters

|                                          |                                                                                                                                                                                                                                                                                                                                                               | Reference                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Criterion                                | Montana DEQ-1, 2022                                                                                                                                                                                                                                                                                                                                           | Integrated Design of Water<br>Treatment Facilities, Susumu<br>Kawamura, 1991                                                                                                                                                                                                                                                                                     | White Sulphur Springs Slow<br>Sand Filters                                                                                                                                   |  |
| Raw Water Quality<br>Concerns            | Colloidal clay, algae                                                                                                                                                                                                                                                                                                                                         | Filters are easily clogged by excess algae                                                                                                                                                                                                                                                                                                                       | City does not typically see algal blooms at the pond or algae in the raw water.                                                                                              |  |
| Maximum Turbidity<br>(NTU)               | Maximum of 10 NTU                                                                                                                                                                                                                                                                                                                                             | Slow sand filters can tolerate raw water with turbidities greater than 15 NTU as long as turbidity spikes are less than 50 NTU and last no more than 2-3 days.                                                                                                                                                                                                   | Can treat water with turbidity of up to 1 NTU, however 0.6 NTU coming into the WTP is acceptable, but anything higher than that does not allow for the WTP to function well. |  |
| Filtration Rate<br>(gpm/sf)              | 0.03 - 0.10                                                                                                                                                                                                                                                                                                                                                   | 0.04 - 0.08                                                                                                                                                                                                                                                                                                                                                      | 0.04 @ 112 gpm design flow and four filter compartments in service                                                                                                           |  |
| Filter Sand Depth (ft.)                  | > 2.5                                                                                                                                                                                                                                                                                                                                                         | 3 - 5                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                            |  |
| Filter Sand Effective<br>Size (ES) (mm)  | 0.15 < ES < 0.30                                                                                                                                                                                                                                                                                                                                              | 0.15 < ES < 0.35                                                                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                      |  |
| Filter Sand<br>Uniformity<br>Coefficient | < 2.5                                                                                                                                                                                                                                                                                                                                                         | < 3, preferably near 2                                                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                      |  |
| Cleaning Process                         | The sand must be rebedded when scraping has reduced the bed depth to no less than 19 inches. Where sand is to be reused in order to provide biological seeding and shortening of the ripening process, rebedding must utilize a "throw over" technique whereby new sand is placed on the support gravel and existing sand is replaced on top of the new sand. | Minimum filter bed depth after multiple scrapings is 20 – 28 inches. To resand, 1) 12 – 20 inches of the old sand is moved to one side of the filter. The depth of the remaining old bed should be approximately 8 inches. 2) Place new sand on top of the old sand. 3) Cover the new sand with the old sand that was moved to one side of the filter in step 1. | Filters are raked and resanded approximately once a year.                                                                                                                    |  |

The city's current practice of raking the sand may not be effective at removing the colloidal debris from the filter. Sand filter cleaning is important for the treatment performance of the filter. The goal of the cleaning process is to remove the colloidal debris material from the filter bed but also maintain an active biological population that is important for the treatment process. Industry literature specifies a method for cleaning that involves scraping the sand to a specified depth, placing a layer of new or cleaned sand, and then placing some of the previously scraped sand back on top. The Montana DEQ guidelines refer to this method as the "throw over" technique which is meant to seed the replacement sand with microorganisms.

Another cleaning process that has shown to be effective and less labor intensive than scraping is a practice called harrowing. In the 1950's, operators at the West Hartford, Connecticut, slow sand filtration facility developed a unique method of cleaning slow sand filters to reduce the time and expense for cleaning. In this method, a tractor with a mounted spring-tooth harrow operates in the bed while water about 6 inches deep is flowing across the sand surface. The harrow breaks up the top of the filter surface and the water carries away the debris. The method removes the accumulated colloidal debris while maintaining an active biological material in the top several inches of the sand. The ability to maintain a high biological population enables the harrowed filter to be quickly placed back into service without a deterioration in treatment performance. The entire filter sand bed is removed and thoroughly cleaned once every 8 – 10 years. Harrowing creates wastewater as the bed is being cleaned. The wastewater needs to be removed from the filter to keep the colloidal debris from going back into the bed.

Alternatives for treatment system improvements will be presented in Chapter 5 and will include recommendations for further investigation into the treatment plant performance, potential replacement of the filter sand, implementation of new cleaning procedure such as scraping or harrowing, installation of a new combined filter effluent turbidimeter, and installation of two new slow sand filters if desired results cannot be achieved by the steps outlined above. A pre-treatment facility for turbidity is not recommended at this time.

#### **Chlorination Facilities**

The city's water supply is chlorinated with two gaseous chlorination systems. A new chlorination facility was built as part of the 2012 water storage tank construction project and is located adjacent to the tank. The chlorination building is a 16' x 21' masonry structure and houses mechanical and electrical equipment, instrumentation and controls, a gas chlorination system, a chlorine gas detector, and chlorine analyzer.

The second chlorination facility is located in the well house at the city shop complex. The wells share a common header pipe with continuous disinfection provided for both wells. The 2012 project also consisted of upgrades to the well house chlorination facility including the installation of a new chlorine detection unit and alarm system.

The city has not experienced any operational or performance problems with the chlorination systems and routinely meets federal and state standards for quality. The 2022 sanitary survey

recommended the system have a second portable chlorine analyzer for treatment and distribution operators.

### 3.3.3 Storage

Storage facilities in White Sulphur Springs consist of one 560,000-gallon partially buried prestressed concrete tank located approximately 1.5 miles east of the city limits near the slow sand filter WTP. The storage tank was constructed in 2012 and is in excellent condition. The tank is 80 feet in diameter and has a height of 15 feet. The water elevation in the tank provides pressure to the distribution system and water from the storage tank feeds the system by gravity.

Water storage can generally be thought of as satisfying three needs, including operational storage, emergency storage, and fire suppression storage. Operational storage supplements water supply during peak periods. Whenever peak hourly demands exceed available flows from the supply, the difference must be provided with flows from storage. Emergency storage is not based on any formula, but rather on a judgement regarding the perceived vulnerability of the community's water supply. If several sources are available with auxiliary power, the need for emergency storage is minimal. White Sulphur Springs does not currently have backup power for the groundwater wells, but a backup generator is expected to be installed for the wells in spring of 2024. If backup power is provided at the wells, the need for emergency storage can be minimized. Fire suppression storage is dependent upon the community's firefighting capabilities, recommendations from the local fire authority, and Uniform Fire Codes. Typical recommended fire flow values are 2,500 gpm over a two-hour period for commercial facilities and 1,000 gpm over a two-hour period for residential facilities.

DEQ requires "the minimal allowable storage must be equal to the average daily demand for a 24-hr period plus fire flow demand where fire protection is provided". Based on this methodology, storage requirements for White Sulphur Springs are summarized in Table 3-10. Storage requirements are based on commercial fire flow requirements since they are the greater of the two. Based on this method current storage volume is adequate but an additional 51,000 gallons of storage is needed to meet future demands in White Sulphur Springs, assuming demands stay elevated due to system leakage. If system leakage can be reduced to a more acceptable level, storage volume is likely adequate throughout the planning period. The city has the option to complete water distribution system improvements first, which may reduce leakage and overall water system demand and storage requirements.

Table 3-10 - Storage Requirements

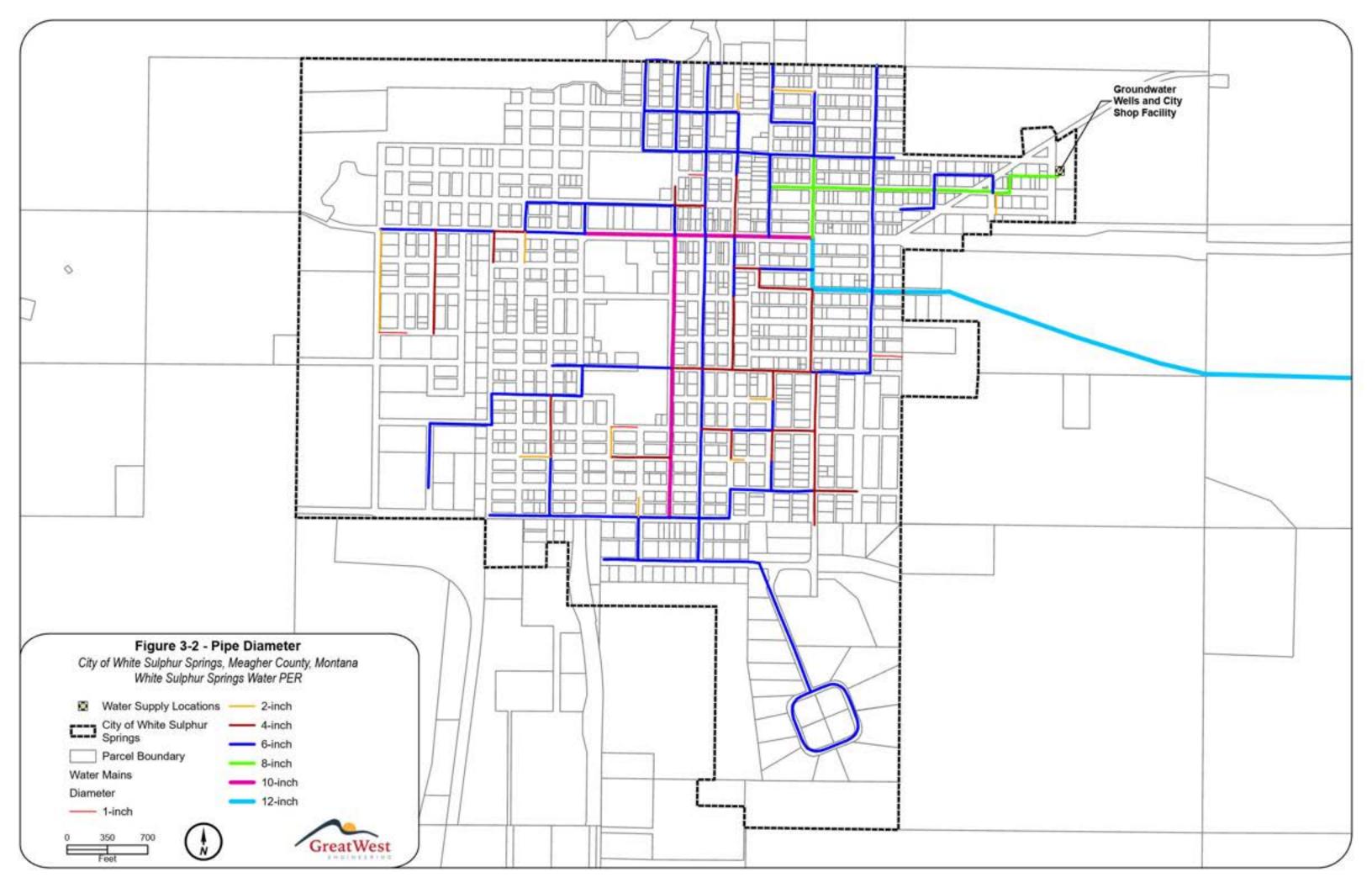
| Storage Need                                              | Year 2020 Demand<br>(gallons) | Year 2045 Demand<br>(gallons) | Year 2045 Demand<br>w/ Reduced<br>Leakage<br>Assumption<br>(gallons) |  |  |  |
|-----------------------------------------------------------|-------------------------------|-------------------------------|----------------------------------------------------------------------|--|--|--|
| Operational (average daily demand)                        | 243,000                       | 311,000                       | 184,000                                                              |  |  |  |
| Emergency                                                 | 0                             | 0                             | 0                                                                    |  |  |  |
| Fire Suppression (2,500 gpm for 2 hours)                  | 300,000                       | 300,000                       | 300,000                                                              |  |  |  |
| Total Required                                            | 543,000                       | 611,000                       | 484,000                                                              |  |  |  |
| Storage Surplus (+) or Deficit (-) <sup>(1)</sup>         | +17,000                       | -51,000                       | +76,000                                                              |  |  |  |
| (1)Based on existing storage capacity of 560,000 gallons. |                               |                               |                                                                      |  |  |  |

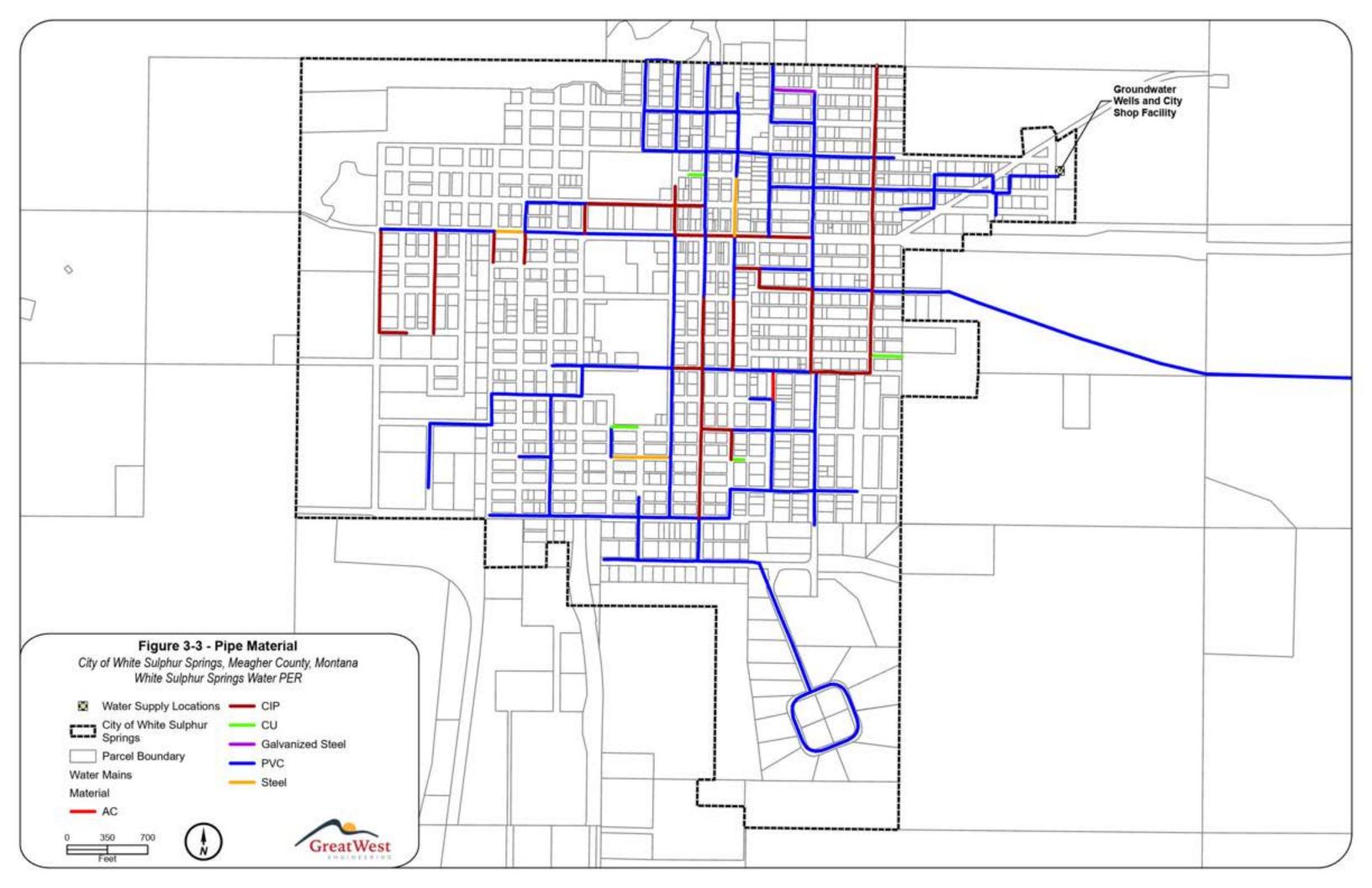
This PER will not make any recommendations for improvements to water storage and storage alternatives will not be evaluated at this time. The existing tank was recently constructed in 2012, is in excellent condition, and buried concrete tanks can have a design life on the order of 100 years. Although the projected year 2045 demand shows a slight storage deficiency, this can likely be recovered as distribution system improvements are made and leakage is reduced.

### 3.3.4 Pumping Stations

The water system does not include any pumping stations except for the groundwater submersible well pumps at each well. The well pumps were previously discussed in Section 3.3.1.

### 3.3.5 Distribution System


The existing water transmission and distribution system generally consists of asbestos cement, cast iron, PVC, and steel ranging in size from 1-inch to 12-inch with associated fittings, gate valves, and fire hydrants. The original system dates back to the late 1800s but the mains have been replaced over the years. Cast iron and steel mains likely date back to the 1940s/1950s and PVC has been installed since the 1980's. The existing water transmission and distribution system mapping was assembled using the maps from the 2010 PER and 1986 improvement plans as guides. Table 3-11 summarizes pipe diameter and material within the water system. Pipe diameter and pipe material are also displayed graphically in Figures 3-2 and 3-3.


**Table 3-11 – Distribution System Summary** 

| Pipe Type and Diameter | Length (ft.) |  |  |  |  |  |
|------------------------|--------------|--|--|--|--|--|
| Asbestos Cement        |              |  |  |  |  |  |
| 4-inch                 | 246          |  |  |  |  |  |
| Subtotal               | 246          |  |  |  |  |  |
| Cast Iron              |              |  |  |  |  |  |
| 1-inch                 | 238          |  |  |  |  |  |
| 2-inch                 | 1,171        |  |  |  |  |  |
| 4-inch                 | 4,572        |  |  |  |  |  |
| 6-inch                 | 6,412        |  |  |  |  |  |
| 10-inch                | 1,194        |  |  |  |  |  |
| Subtotal               | 13,587       |  |  |  |  |  |
| PVC                    |              |  |  |  |  |  |
| 2-inch                 | 1,264        |  |  |  |  |  |
| 4-inch                 | 3,803        |  |  |  |  |  |
| 6-inch <sup>(1)</sup>  | 27,156       |  |  |  |  |  |
| 8-inch                 | 4,368        |  |  |  |  |  |
| 10-inch                | 3,231        |  |  |  |  |  |
| 12-inch                | 6,908        |  |  |  |  |  |
| Subtotal               | 46,730       |  |  |  |  |  |
| Steel                  |              |  |  |  |  |  |
| 4-inch                 | 1,306        |  |  |  |  |  |
| 12-inch                | 3,367        |  |  |  |  |  |
| Subtotal               | 4,673        |  |  |  |  |  |
| Total                  | 65,236       |  |  |  |  |  |

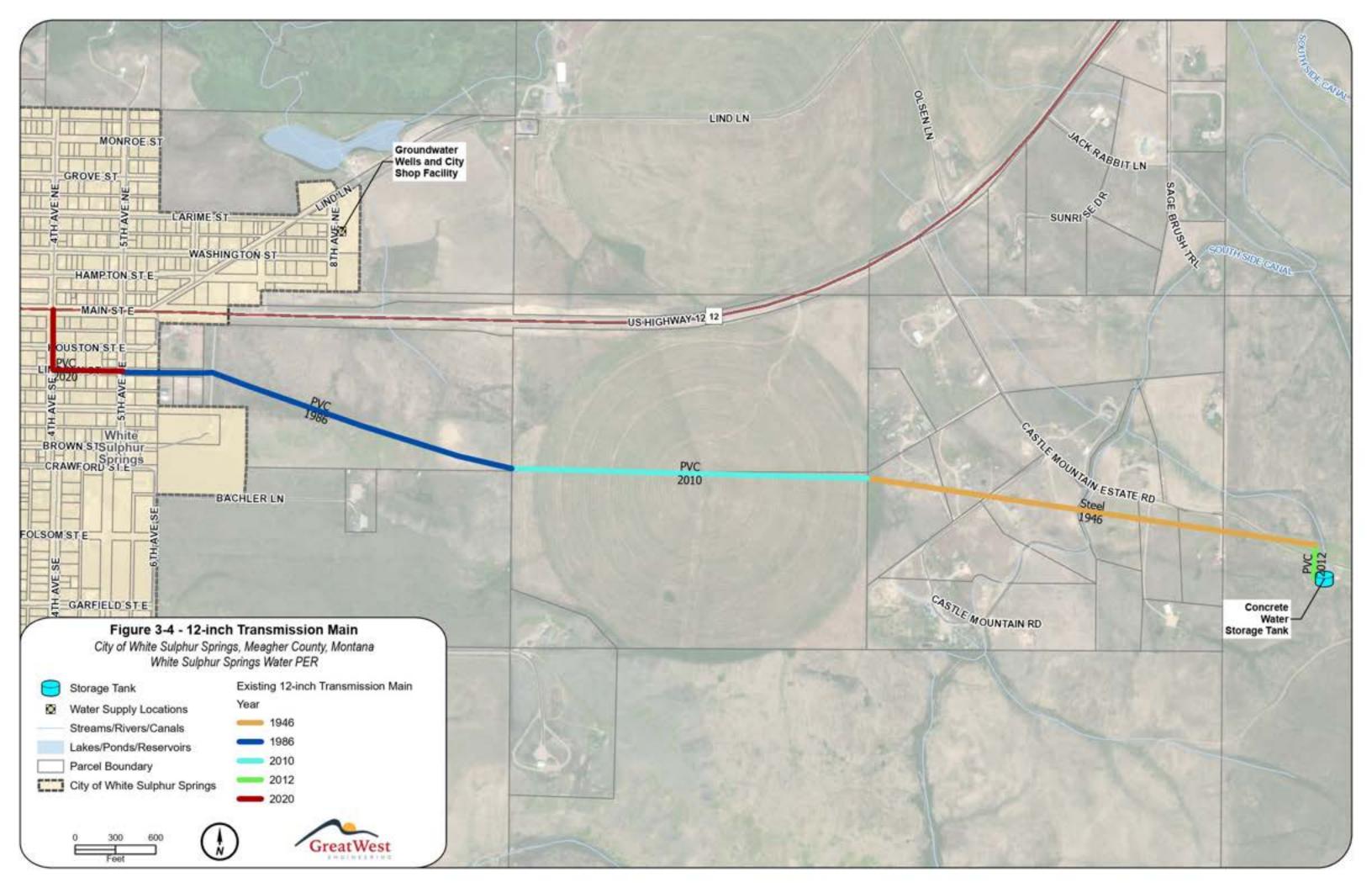
<sup>(1)</sup>Does not include 6-inch transmission main from intake to treatment plant.

The White Sulphur Springs water system includes significant amounts of cast iron and steel pipe which have exceeded, or will soon exceed, their useful life. Asbestos cement, cast iron, and steel mains make up approximately 30% of the distribution system piping. These pipes are prone to break, are likely restricting flow, and are in some cases undersized. The system also contains water mains with diameters 4-inches or less in size. 6-inch is the minimum pipe diameter allowed per DEQ standards and for provision of adequate fire flows. The PER will make recommendations for replacement of all cast iron, asbestos cement, and steel pipes in addition to pipe that is less than 6 inches in diameter.





The 12-inch transmission line from the storage tank to the city limits has evolved over the years and sections have been replaced. This line was originally constructed in the 1940s as steel. A portion was replaced in 1986 with PVC and another portion replaced by city crews in 2010 with PVC. There is a remaining portion of the main that is still 1946 steel and is believed to be the biggest source of leakage in the system. The line has shown to be actively leaking with the leakage surfacing in the field.


The city wishes to replace the 1946 steel line with new PVC (HDPE could also be considered) and re-align the main along Castle Mountain Road and along property lines in the adjoining subdivision. Easement negotiations will be required for this realignment. Figure 3-4 depicts the existing transmission segments and understanding of current alignment, material types, and years of construction.

### Distribution System Modeling

A complete water model of the White Sulphur Springs water system was built in 2010 as part of the 2010 water system PER. The 2010 water model was used as a starting point and updated to evaluate current system hydraulics. The hydraulic model was constructed using the WaterCAD computer modeling package by Bentley systems. The computer model is used to identify specific hydraulic problem areas and to determine the most effective modifications to improve the system. The WaterCAD program uses an iterative procedure, similar to the Hardy Cross method, to solve standard loop equations to arrive at solutions for flow through the pipe network and determine resulting pressures at the system nodes (pipe junctions) using the relationship between flow and headloss defined by the Hazen-Williams equation. The Hazen-Williams equation uses a coefficient "C", which is based on the roughness of the pipe interior. Standard values can be assumed for different types of materials based on years of pipe service.

The water model was previously calibrated as part of the 2010 effort through field hydrant flow testing and comparison of data to model results. The C factors used in the model are:

- Asbestos Cement: 120
- Cast Iron (6-inch and less): 45
- Cast Iron (10-inch): 80
- PVC: 145
- Steel (4-inch): 80
- Steel (12-inch): 100



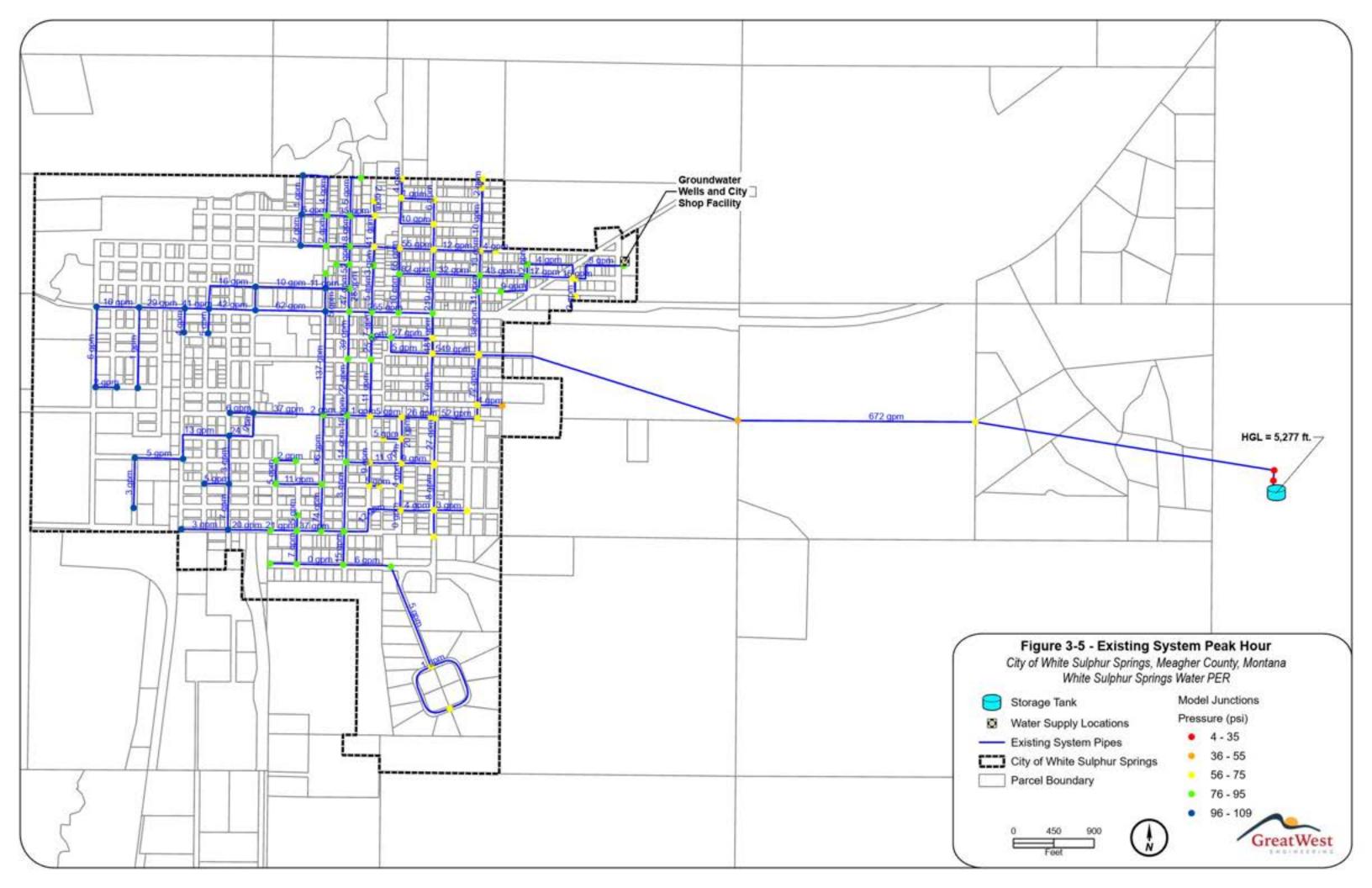
Several scenarios were developed to define the hydraulic response of the system under multiple conditions of consumptive use. Among the scenarios modeled were average daily flow, maximum daily flow, and peak hourly flow at both current and projected daily demands. In addition, the fire flow availability throughout the water system was evaluated by performing a steady state fire flow analysis. The analysis determined the maximum flow that can be obtained from a given location while maintaining a minimum residual pressure of 20 psi throughout the distribution system. Copies of select computer model output reports are included in Appendix T.

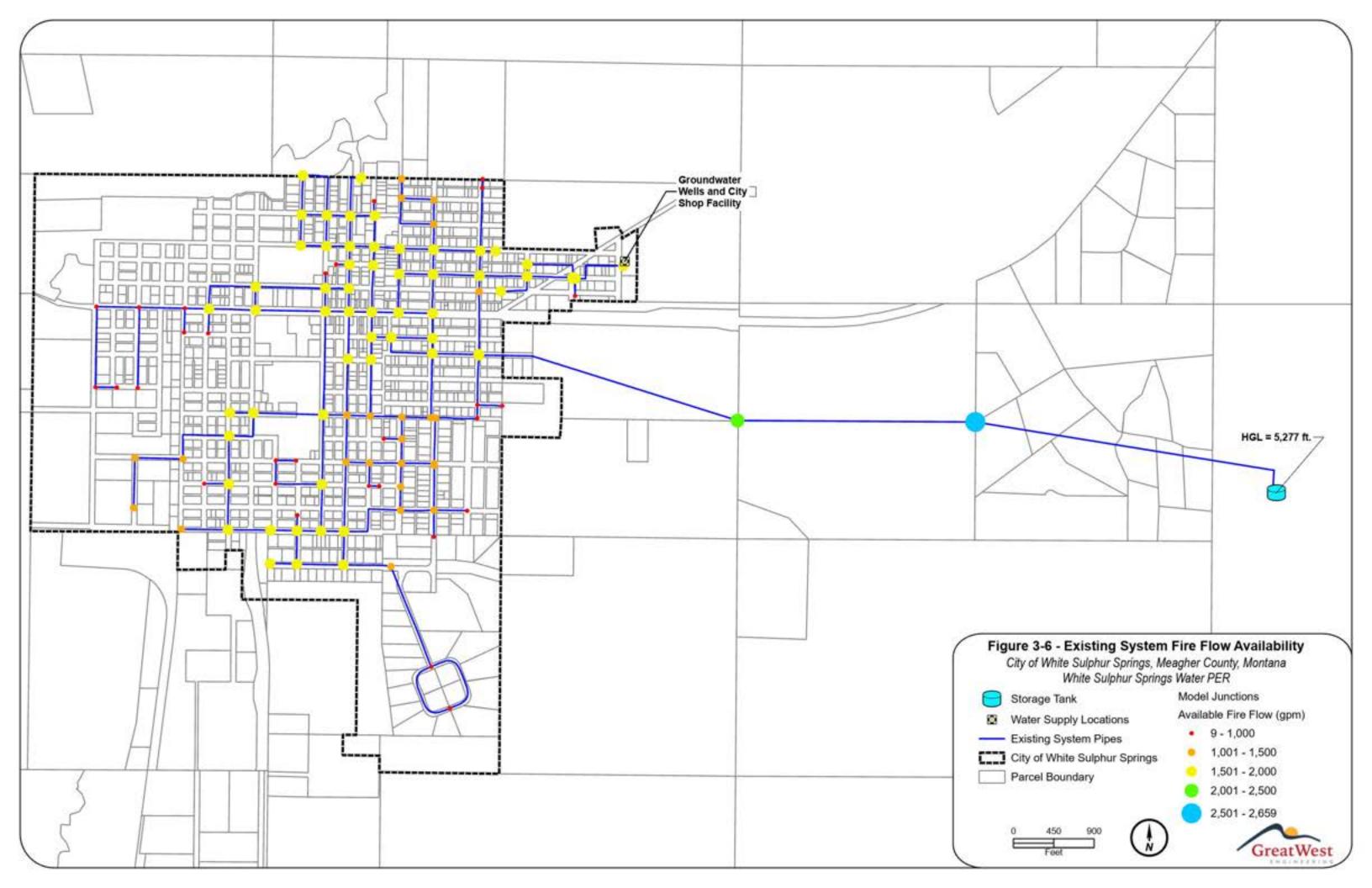
Per DEQ requirements, pressure must remain at 35 psi or above at all service locations in the system under domestic demand conditions. Normal domestic demand is any condition other than a fire flow situation. A peak hour to average day factor of 4 was used to calculate peak hour demands, which would be a high demand condition experienced in the system and therefore would result in some of the lowest pressures expected. Figure 3-5 depicts existing system peak hour pressures as calculated by the hydraulic water model with total flows allocated throughout the system to equal an existing system peak hour flow of 672 gpm. Pressure is shown at each model node and is symbolized by color. This scenario assumes the tank is approximately two thirds full and the well pumps are off. Normal domestic operating water system pressures generally range from 40 to 90 psi. Overall, the White Sulphur Springs distribution system experiences high pressures due to the elevation of the storage tank relative to the mean elevation of the city. The existing system peak hour pressures in the White Sulphur Springs water system range from 52 to 109 psi. Future 2045 peak hour pressures range from 47 to 105 psi, showing a slight drop in pressure of about five psi. Pressures throughout the city well exceed 35 psi and there are no low-pressure concerns. Individual homes are equipped with pressure reducing valves to reduce pressure as needed for high pressure locations.

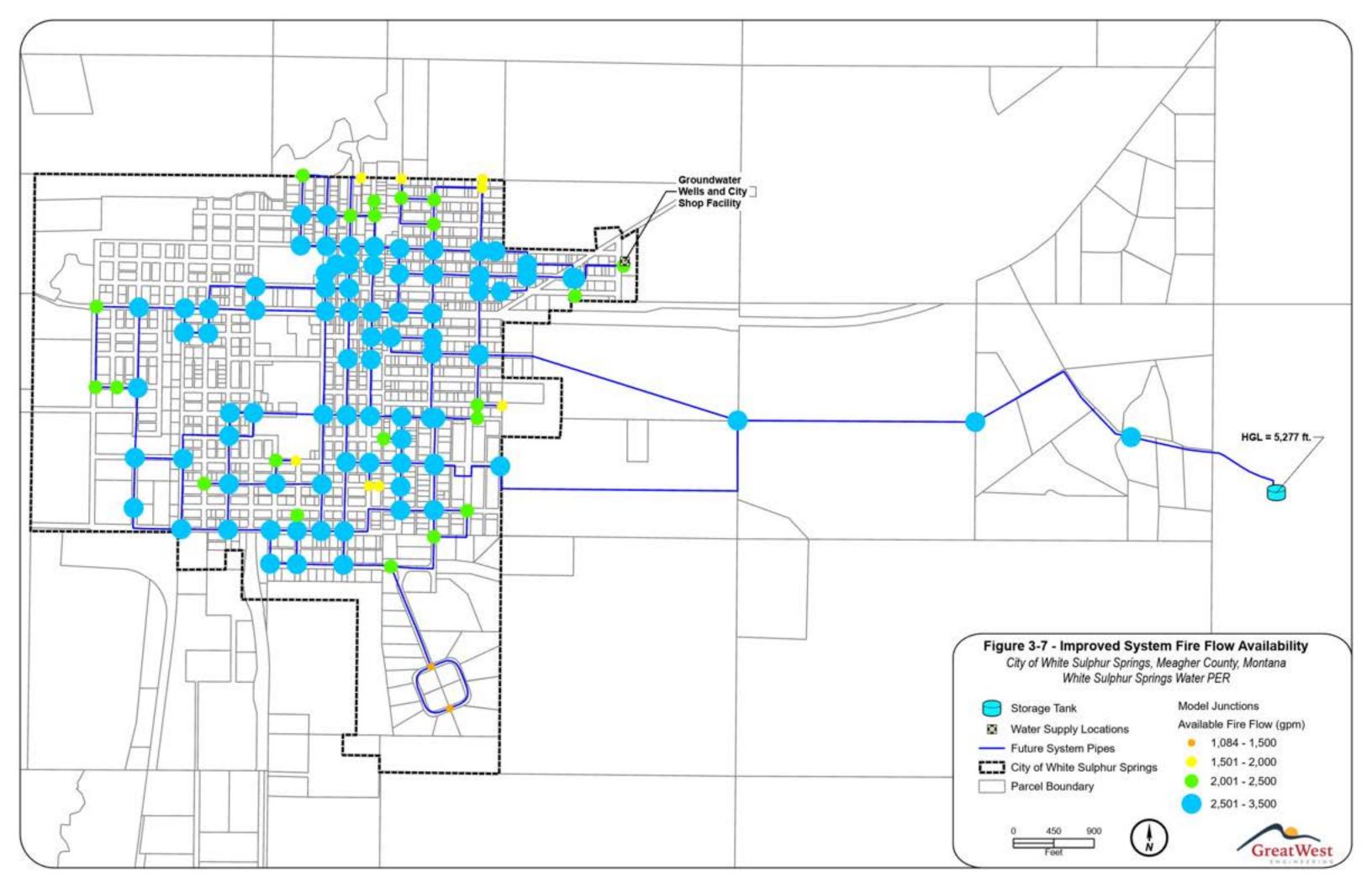
DEQ requirements also state the water system must be able to provide adequate fire flow while keeping all pressure in the system at or above 20 psi. Fire flow availability is calculated during domestic maximum day demand conditions. Figure 3-6 displays existing system fire flow availability. This scenario assumes the tank is approximately two thirds full, and the well pumps are on, providing a maximum flow of 500 gpm. As depicted in Figure 3-6, several areas of the city have fire flows of less than 1,000 gpm which is mostly the result of dead end and small diameter (<6-inch) mains. Additionally, the commercial areas of the city are not able to provide the recommended 2,500 gpm.

Fire flow availability will greatly improve as 4-inch mains are replaced along with old cast-iron and steel mains. The 2010 PER also identified several loops that can be added to the system to eliminate dead end mains and also reduce stagnation of water in the system. Figure 3-7 depicts fire flow availability with all 4-inch and smaller mains increased to 6-inch, all cast-iron and steel pipe replaced with PVC with an improved C factor of 145, and 13 6-inch water main loops added to the system. The improved system also represents an additional 12-inch water main loop that is being constructed in the water system during the summer of 2023. The 12-inch water main loop is being added to serve a new hospital but will also provide significant benefits to the system in terms of hydraulics and redundancy. The improved system results reflect the year 2045 maximum day demand of 383 gpm which assumes reduced leakage throughout the system. As shown in Figure 3-7, the improved system results in most of the system being able to provide in excess of 2,500 gpm of fire flow.

### Gate Valves and Hydrants


An inspection of all gate valves and fire hydrants in the system was outside the scope of this analysis. Circular DEQ 1 suggests valve spacing at not more than 500-foot intervals in commercial districts and not more than one block or 800-foot intervals in other areas.


The location and spacing of fire hydrants should be recommended by the fire protection agency. They should typically be located at each street intersection as well as at intermediate points between intersections.


Some of the hydrants encountered while performing hydrant tests during the 2010 PER effort showed signs of needing repair, maintenance, or replacement. The city intends to initiate a fire hydrant replacement program over the next several years to replace all of the old hydrants which are currently incapable of providing adequate fire flow.

### Water Meters

The city uses the Black Mountain Utility Billing Software to meter water usage. The billing system has proven to be effective, and city personnel are satisfied with its performance. Meters are read by driving through city streets at a slow pace and a radio signal is transmitted to a data collector in the truck as the operator passes by a service. The data is then downloaded to a computer in the city clerk's office, and invoices are generated. Meter records were used in computing overall water usage and in estimating unaccountable water as discussed previously in this report.







## 3.4 Operational and Management Practices and Capabilities

The White Sulphur Springs water system employs operators who are tasked with maintaining the water infrastructure. The Mayor oversees the day-to-day operations of the city, and the Council directs policies, procedures, budgeting, and assessments.

The most recent DEQ Sanitary Survey, completed in 2023, states "the operators demonstrated extensive knowledge of the system and cooperated with the inspection. Maintenance and management of the existing equipment is proactively accomplished, and the operators conduct daily inspections of the tank, sources, and distribution system. This PWS and its operators are following DEQ's operator certification requirements." The most recent sanitary survey can be found in Appendix L.

While the staff perform an exemplary job of operating and maintaining the water system with the staff and budget available, there are significant components of the system which need repair and replacement. Annual operation and maintenance procedures are not able to address the repairs needed at the intake facility, the large amount of cast iron and steel pipe remaining in the system, or the water treatment plant deficiencies and investigations needed to improve performance. Many of the issues facing the city can be largely attributed to the age of the system.

# 3.5 Financial Status of any Existing Facilities

The main source of revenue for the water system is the collection of water sales in the form of water rates. The revenue for the water system in White Sulphur Springs is represented in three different fund categories. Metered water sales are funds collected from assessing water users a base rate plus a usage fee that corresponds with metered usage. Bond principal assessments represent funds collected from residents to cover the city's loans for water system construction projects. Finally, unmetered water sales are funds collected from residents as set aside to cover future needs or emergencies.

Table 3-12 summarizes the water system revenue for the past four years. On average, the water system revenue from the collection of water rates is approximately \$392,000 per year. Additional revenue from the water system also comes through intergovernmental revenue, miscellaneous revenue, investment earnings, installation charges, and permits. These additional revenues are generally relatively minor and can vary substantially from year to year. Detailed revenue reports are included in Appendix U.

Table 3-12 - Water System Revenue Summary

| Description                           | FY 2019   | FY 2020   | FY 2021   | FY 2022   |
|---------------------------------------|-----------|-----------|-----------|-----------|
| Metered Water Sales                   | \$180,853 | \$163,837 | \$186,952 | \$209,709 |
| Bond Principal Assessments            | \$171,535 | \$170,622 | \$171,066 | \$171,822 |
| Unmetered Water Sales                 | \$34,875  | \$34,993  | \$36,138  | \$36,164  |
| Total Revenue from Rate Charges       | \$387,263 | \$369,452 | \$394,156 | \$417,694 |
| Intergovernmental Revenue             | \$1,505   | \$891     | \$2,483   | \$121,550 |
| Miscellaneous (meter, or turn on/off) | \$11,195  | \$9,342   | \$3,834   | \$9,342   |
| Investment Earnings                   | \$8,003   | \$5,268   | \$1,331   | \$1,658   |
| Water Installation Charges            | \$4,500   | \$2,216   | \$5,462   | \$3,581   |
| Water Permits                         | \$0       | \$80      | \$0       | \$0       |
| Miscellaneous Revenues                | -\$31     | \$0       | \$0       | \$0       |
| Total Other Revenue                   | \$25,171  | \$17,797  | \$13,109  | \$136,131 |
| Total Revenue                         | \$412,434 | \$387,249 | \$407,266 | \$553,825 |

Table 3-13 summarizes the water system expenses for the past four years. Personnel salaries make up the largest component of operation and maintenance expenses with power costs coming in second. The average cost of power to run the city's well pumps is approximately \$47,000 per year which equates to 21% of total operation and maintenance expenses. On average, the water system operation and maintenance expenses are approximately \$250,000 per year. Year 2020 appeared to have been a less than normal year in terms of O&M. Additional expenses apply to depreciation, debt service, and engineering. These expenses are broken out separately from general operation and maintenance expenses and vary from year to year. Detailed expense reports are included in Appendix U.

The city is currently paying on four SRF drinking water loans to cover costs for water projects that date back to 2012. The current balance of the revenue bonds to be repaid is \$1,026,000 (\$619,000 + \$58,000 + \$118,000 + \$231,000) The combined average annual payment for the four bonds is approximately \$119,000. These bonds will reach maturity in 2033, 2034, 2035, and 2042. The loan balance sheets, and loan coverage calculation are included in Appendix U.

Table 3-14 summarizes the net revenue for the water system by subtracting the operation and maintenance and debt service expenses from the water sales revenue.

Table 3-13 - Water System Expense Summary

| Description                      | FY 2019   | FY 2020   | FY 2021   | FY 2022   |
|----------------------------------|-----------|-----------|-----------|-----------|
| Salaries                         | \$69,070  | \$49,124  | \$109,255 | \$52,645  |
| Power                            | \$53,941  | \$46,069  | \$42,267  | \$44,614  |
| Repair Parts                     | \$26,941  | \$21,576  | \$64,731  | \$26,576  |
| Repair and Maintenance Supplies  | \$53,603  | \$1,710   | \$12,342  | \$17,900  |
| Repair and Maintenance Services  | \$14,720  | \$8,193   | \$19,441  | \$28,330  |
| Employer Contributions           | \$8,420   | \$9,351   | \$10,773  | \$8,011   |
| Office Supplies and Materials    | \$5,272   | \$6,007   | \$6,548   | \$5,721   |
| Payroll                          | \$18,120  | \$0       | \$0       | \$0       |
| Machinery and Equipment          | \$0       | \$0       | \$0       | \$16,577  |
| Communication and Transportation | \$4,044   | \$3,770   | \$2,897   | \$3,355   |
| Water Testing                    | \$1,803   | \$3,297   | \$1,074   | \$1,080   |
| Travel                           | \$1,222   | \$2,208   | \$659     | \$1,664   |
| Consumer Fee                     | \$1,200   | \$1,200   | \$1,200   | \$1,200   |
| Other O&M Expense(1)             | \$3,003   | -\$1,656  | \$2,997   | \$1,870   |
| Total O&M Expense                | \$261,358 | \$150,850 | \$274,183 | \$209,543 |
| Depreciation                     | \$91,920  | \$92,276  | \$93,673  | \$0       |
| Debt Service                     | \$34,585  | \$32,585  | \$30,510  | \$108,622 |
| Engineering                      | \$34,293  | \$549     | \$1,365   | \$122,503 |
| Total Other Expense              | \$160,799 | \$125,410 | \$125,548 | \$231,126 |
| Total Expense                    | \$422,157 | \$276,260 | \$399,732 | \$440,669 |

<sup>(1)</sup>Includes a summation of several minor items which are generally each less than \$1,000.

Table 3-14 - Net Revenue Summary

| Description                     | FY 2019   | FY 2020   | FY 2021   | FY 2022   |
|---------------------------------|-----------|-----------|-----------|-----------|
| Total Revenue from Rate Charges | \$387,263 | \$369,452 | \$394,156 | \$417,694 |
| Total O&M Expense               | \$261,358 | \$150,850 | \$274,183 | \$209,543 |
| Debt Service                    | \$34,585  | \$32,585  | \$30,510  | \$108,622 |
| Net Revenue                     | \$91,320  | \$186,017 | \$89,463  | \$99,528  |

White Sulphur Springs currently implements the water rate schedule as summarized in Table 3-15. Water rate and user category information is provided in Appendix V. Per the rate structure, users are charged a flat fee of \$42.87 (base fee + pipe fee + tank fee) plus an additional usage fee based on the amount of gallons used each month. This rate structure has been in place since 2018. The city does not currently use a rate structure based on water meter size.

Table 3-15 - Existing Water Rate Structure

| Usage per Month<br>(Gallons) | Base Fee | Pipe Fee | Tank Fee | Usage Fee | Total Fee |
|------------------------------|----------|----------|----------|-----------|-----------|
| 1,000                        | \$16.00  | \$5.00   | \$21.87  | \$1.80    | \$44.67   |
| 1,500                        | \$16.00  | \$5.00   | \$21.87  | \$2.70    | \$45.57   |
| 2,000                        | \$16.00  | \$5.00   | \$21.87  | \$3.60    | \$46.47   |
| 2,500                        | \$16.00  | \$5.00   | \$21.87  | \$4.50    | \$47.37   |
| 3,000                        | \$16.00  | \$5.00   | \$21.87  | \$5.40    | \$48.27   |
| 4,000                        | \$16.00  | \$5.00   | \$21.87  | \$7.20    | \$50.07   |
| 5,000                        | \$16.00  | \$5.00   | \$21.87  | \$9.00    | \$51.87   |
| 6,000                        | \$16.00  | \$5.00   | \$21.87  | \$10.80   | \$53.67   |
| 7,000                        | \$16.00  | \$5.00   | \$21.87  | \$12.60   | \$55.47   |
| 8,000                        | \$16.00  | \$5.00   | \$21.87  | \$14.40   | \$57.27   |
| 9,000                        | \$16.00  | \$5.00   | \$21.87  | \$16.20   | \$59.07   |
| 10,000                       | \$16.00  | \$5.00   | \$21.87  | \$18.00   | \$60.87   |
| 20,000                       | \$16.00  | \$5.00   | \$21.87  | \$36.00   | \$78.87   |
| 30,000                       | \$16.00  | \$5.00   | \$21.87  | \$54.00   | \$96.87   |
| 40,000                       | \$16.00  | \$5.00   | \$21.87  | \$72.00   | \$114.87  |
| 50,000                       | \$16.00  | \$5.00   | \$21.87  | \$90.00   | \$132.87  |
| 60,000                       | \$16.00  | \$5.00   | \$21.87  | \$108.00  | \$150.87  |
| 70,000                       | \$16.00  | \$5.00   | \$21.87  | \$126.00  | \$168.87  |
| 80,000                       | \$16.00  | \$5.00   | \$21.87  | \$144.00  | \$186.87  |
| 90,000                       | \$16.00  | \$5.00   | \$21.87  | \$162.00  | \$204.87  |
| 100,000                      | \$16.00  | \$5.00   | \$21.87  | \$180.00  | \$222.87  |

In order to gain insight into how costs are distributed among users, an analysis was conducted on a March 2023 billing report provided by the city. This report is included in Appendix V. The report breaks out monthly water charges by meter size and the analysis is summarized in Table 3-16. The city currently has 623 active accounts with a resulting average charge per account of \$47.94.

Because of the large variation in demand that can occur between commercial users, many communities classify customers on the basis of meter size rather than classes such as residential, commercial, industrial, etc. The premise behind this method is the smallest meter size is used as the base level of service with an established base rate, and equivalent ratios are applied to the larger meters to calculate resulting water rates by multiplying the equivalent ratio by the base rate. If this methodology is applied to the White Sulphur Springs billing data using the average charge per meter for the ¾-inch meter as the base rate, the resulting equivalent ratios and equivalent dwelling units (EDUs) are shown in Table 3-16. The resulting equivalent ratios for 2-inch meters

and larger are generally only slightly above 1, indicating the larger metered users are not being charged much more than a standard residential connection.

Table 3-16 - Charges Based on Meter Size

| Meter Size | No. of Meters | Total Charges<br>(March 2023<br>Billing) | Average Charge per Meter | Equivalent<br>Ratios | EDUs   |
|------------|---------------|------------------------------------------|--------------------------|----------------------|--------|
| 3/4"       | 596           | \$27,648.98                              | \$46.39                  | 1.00                 | 596.00 |
| 1"         | 9             | \$786.82                                 | \$87.42                  | 1.88                 | 16.96  |
| 1-1/2"     | 3             | \$442.69                                 | \$147.56                 | 3.18                 | 9.54   |
| 2"         | 13            | \$891.09                                 | \$68.55                  | 1.48                 | 19.21  |
| 3"         | 1             | \$42.87                                  | \$42.87                  | 0.92                 | 0.92   |
| 4"         | 1             | \$56.35                                  | \$56.35                  | 1.21                 | 1.21   |
| Total      | 623           | \$29,869                                 | \$47.94                  |                      | 644    |

There are many different methodologies for computing equivalent ratios for larger meters. An EDU calculation is presented in Table 3-17 which utilizes the White Sulphur Spring meter numbers with an area-based equivalent EDU method. Equivalent EDUs are calculated based on the cross-sectional area of the pipe diameter for each service line size, assuming a ¾-inch pipe diameter is the base value. This method results in relatively high ratios for meters 2-inch and larger and may not always be an appropriate method, depending on the community and the type of commercial account associated with the larger meter.

Table 3-17 – EDU Calculation based on Meter Size (Area Method)

| Meter Size | No. of Meters | Area (in²) | Equivalent EDUs | EDUs   |
|------------|---------------|------------|-----------------|--------|
| 3/4"       | 596           | 0.44       | 1.00            | 596.00 |
| 1"         | 9             | 0.79       | 1.78            | 16.00  |
| 1-1/2"     | 3             | 1.77       | 4.00            | 12.00  |
| 2"         | 13            | 3.14       | 7.11            | 92.44  |
| 3"         | 1             | 7.07       | 16.00           | 16.00  |
| 4"         | 1             | 12.57      | 28.44           | 28.44  |
| Total      | 623           |            |                 | 761    |

White Sulphur Springs may want to re-evaluate its current rate structure and look at ways to allocate a larger portion of the water rate charges to the larger commercial users. The city could implement a rate study to determine a rate methodology appropriate for the community.

# 3.6 Water/Energy/Waste Audits

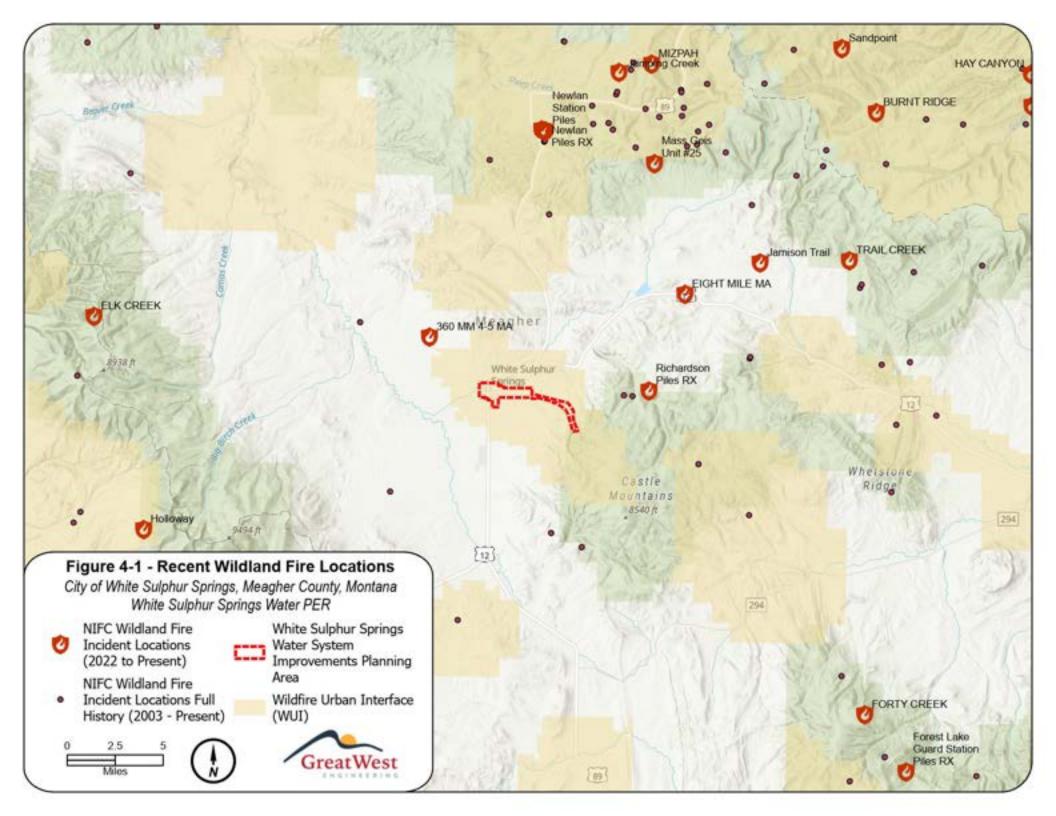
No water, energy, or waste audits have been conducted for White Sulphur Spring's water system.

# 4.0 NEED FOR PROJECT

The city is in need of water system improvements to proactively maintain the reliability of its water sources, plan for emergencies, maintain existing infrastructure, improve fire flows, reduce leakage, and support the overall goal for provision of safe and reliable drinking water to the City of White Sulphur Springs.

# 4.1 Health, Sanitation and Security

The greatest immediate water system health, sanitation, and security concern is the age and condition of approximately 4,000 feet of 1940s era 12-inch steel water transmission main originating near the water storage tank. Chapter 3 assesses system leakage, and it is roughly estimated that the system loses approximately 40 to 50% of the water pumped into the system. The transmission main is believed to be the biggest source of leakage in the system and operators report the line has shown to be actively leaking with the leakage surfacing in the field. Leakage is also probable in the older parts of the distribution system within the city limits. The city's projected 2045 water demands are just at the capacity limit of the system. If leakage is not reduced in the system, the city may be faced with water quantity issues in the future.


Aside from water loss, leaking pipes also increase the threat of backflow contamination. Main breaks result in a loss of pressure, which increases the potential for backflow and contamination of the water system. The transmission main is also a critical piece of infrastructure for water delivery to the system and for filling the storage tank. A break along the transmission main would disconnect the storage tank from the system and the city would have to rely solely on delivery of water from the pumped groundwater wells. The system could potentially struggle to meet peak demands and there would be no available source of stored water in the event of a fire.

Water main breaks can be catastrophic as demonstrated during the 2007 water main break near the intersection of Lincoln and 4th Streets. The break occurred on a section of 12-inch old steel water main and ended up causing flooding, home evacuations, business closures, major property damage, and a resulting boil order for eight days. The age and degrading condition of the cast iron and steel water pipes creates a higher risk of failure and contamination, which is a health and safety risk to the system's users as well as an economic risk as the city continues to repair lines that will likely continue to break in new locations until fully replaced.

There are a number of additional concerns with the current state of the water system in White Sulphur Springs in terms of security. Although the city has multiple sources of water, the surface water source is currently unusable due to deficiencies at the intake dam, coupled with the inefficiencies at the treatment plant and the inability to treat water with turbidity greater than 1 NTU. Not having a reliable surface water source puts the entire water system dependency on the groundwater system which is limited to a maximum flow rate of 500 gpm. The existing maximum daily demand is 505 gpm which is just slightly above the existing capacity of the wells. If improvements are not made to the intake facility and surface water treatment plant, or leakage is not reduced, the city will likely face water quantity issues in the future.

Planning for emergencies has become increasingly important in recent years when considering factors related to climate change such as drought, extreme weather events, wildfires, and flooding, placing even greater importance on having a secure supply of water or multiple sources of water. According to the National Integrated Drought Information System (NIDIS), Meagher County experienced exceptional drought, the most severe drought impact designation category, in 2004 and again in 2022. Exceptional drought is categorized by widespread pasture and crop loss, widespread fires, and extremely high fire risk. Meagher County also experienced prolonged periods of extreme drought generally from 2002 to 2005, and again from 2021 to 2022.

The National Interagency Fire Center (NIFC) provides downloadable geospatial data products as part of their Wildland Fire Data Program. This data is displayed in Figure 4-1. There were 22 recorded wildland fire incidents within 30 miles of the White Sulphur Springs planning area in 2022 and 2023. White Sulphur Springs is also located in the Wildfire Urban Interface (WUI). The WUI is a line, area, or zone [MCA 76-13-102(16)] where structures and other human development meet or intermingle with undeveloped wildland or vegetative fuels. A WUI exists anywhere that structures are located close to natural vegetation and where a fire can spread from vegetation to structures or vice versa. The most extreme situation with respect to fuel conditions and values at risk occurs in rural areas where numerous high-value individual homes and subdivisions are located in the WUI near or within the wildland boundary. A significant loss of life could occur to residents, firefighters, and others in the wildfire area that do not evacuate. Areas rated as WUI are encouraged to comply with special design standards, including water supply. A fire-fighting water source and access to that source must exist and be maintained as defensible space.



Wildfire risk is also elevated near White Sulphur Springs due to increased deadfall in the Willow Creek watershed from the effects of recent beetle kill. The threat of wildland fires near White Sulphur Springs is significant, making a secure source of water supply a necessity for the community.

Additional safety and security concerns are present within the White Sulphur Springs water distribution system due to undersized and dead-end water mains. Approximately 20 percent of the distribution system is four-inch diameter or less. Undersized lines limit flows that could be critical in an emergency fire situation, creating a safety hazard for the residents of White Sulphur Springs.

# 4.2 Aging Infrastructure

One of the most immediate public health and safety needs in the Whtie Sulphur Springs water system is associated with an aging water transmission and distribution system. Approximately 4,000 feet of transmission main is over 70 years old, has exceeded its service life, and has shown evidence of high leakage through water surfacing in the field where the main is buried. There is also a significant amount of old cast iron pipe in the distribution system that is likely contributing to system leakage and increases the threat of water main breaks.

The other most significant deficiency associated with an aging system is the Willow Creek intake dam wooden catwalk and inoperable flushing valve. The decking of the catwalk is deteriorated and not capable of supporting operations staff and a slide gate flushing valve mounted on the upstream face of the dam is not functional in its current state. As a result of the inability to use the flushing valve, the intake pond is filled with silt, aquatic plants, and deadfall. It is currently not functioning as a storage reservoir or a settling basin and is nothing more than a wide spot in the channel. The buildup of sediment appears to be affecting the quality of water which flows into the intake collection system to the water treatment plant. The Willow Creek drinking water source is only used as turbidity allows, is currently not in use, and has not been used reliably for the past two to three years. It is crucial for this water source to be maintained and sufficiently delivered to customers for domestic and fire flow uses. The city does not have enough capacity from the groundwater wells alone to meet current and future maximum day demands. Use of the surface water source is entirely by gravity so it must also be maintained to save energy and costs related to groundwater pumping.

# 4.3 Reasonable Growth

Growth and projected population estimates are discussed in detail in Section 2.3. The City of White Sulphur Springs has experienced a decline in population since 1980 but the population over the last thirty years has remained relatively unchanged. An annual population increase of 1% has been assumed for the 20-year planning period (year 2045) to allow for additional growth in the community. This growth is anticipated to occur throughout the city, as no areas of concentrated growth are identified. This correlates to a design year population of 1,225 or an increase of 336 water users over the current 2020 number of 955 users. This growth rate does not cause drastic increases to the water demand in the system; however, it will require that the city find ways to reduce system leakage and rehabilitate its surface source of supply if the population does continue to increase.

The City Council is committed to this project. Project planning is not dependent on population growth or support by new customers, but a reasonable growth rate is used for planning and design purposes.

# 5.0 ALTERNATIVES CONSIDERED

# 5.1 Alternative Screening

Various alternatives exist to address the deficiencies that have been identified in the city's water system. Some alternatives are not viable because of technical feasibility, regulatory compliance, or capital and operation and maintenance costs. In the case of White Sulphur Springs' water system, alternatives for supply, treatment, and distribution system improvements have been considered. No alternatives were considered that have been determined to be technically infeasible or nonviable solutions to the problems at hand. This section contains a description of the alternatives that were considered in planning for the various solutions to meet the identified needs of the water system. All alternatives were then conceptually designed and evaluated to determine the estimated probable capital and operation and maintenance costs.

# 5.2 Supply Alternatives

White Sulphur Springs is fortunate to have both high-quality surface and groundwater sources of supply for drinking water. The surface water source is the preferred source of water for the city because operation is by gravity and the energy requirements are minimal. However, either source on its own is not sufficient to meet the existing or projected demands of the system.

There are deficiencies at the Willow Creek intake which currently make the surface water supply unusable. A wooden catwalk that spans the intake dam is deteriorated and unable to support operations staff which require use of the catwalk to operate a flushing valve mounted on the upstream face of the dam. Structural deficiencies make the flushing valve inoperable in its current state. As a result, the intake pond is filled with silt, aquatic plants, and deadfall which contributes to high turbidity of the water delivered to the treatment plant. Other deficiencies are likely present with the slow sand filter system at the intake and further investigations are needed. Access to the diversion structure and intake is limited and there is currently no way to monitor raw water quality at the pond which makes it difficult to know when the city can put the treatment plant into service.

A deficiency with the groundwater wells exists with the meter placement and only one well can currently be metered. The operator currently estimates water use by recording pump run times each day which is not accurate due to fluctuation of the pump flow rates throughout the day based on system hydraulics.

### **5.2.1** Alt. S-1: No Action

The no action alternative involves the continued use of the groundwater wells as the source of water supply for the city without any use of the surface water system. This alternative will not be considered further due to the fact that it does not meet the requirements of DEQ-1 regarding source capacity. Per DEQ, groundwater systems must be able to provide the maximum daily demand with the highest capacity pump out of service. The 2045 projected maximum day demand is 648 gpm and neither well can provide more than 500 gpm. The groundwater supply alone is not sufficient to meet the demands of the system. Because the system also experiences significant leakage within the distribution system and leakage is factored into the overall demand calculations, the city may wish to select a no action supply alternative for now and complete distribution system improvements first.

# **5.2.2** Alt. S-2: Intake Pond Improvements

This alternative includes draining and dredging the intake pond (Willow Creek Reservoir) to remove built up sediment, deadfall, and aquatic plants. When the filter sand of the engineered sand filter is exposed, core samples will be taken of the filter sand to determine the condition of the sand. If the core samples reveal the filter sand is significantly plugged, the filter sand will need to be removed and replaced. If the filter sand is removed, the alternative will also involve inspection and evaluation of the condition of the filter fabric and graded drain gravel layer. The existing wooden catwalk will be demolished as part of this alternative and replaced with a new aluminum frame catwalk with grating and handrails. The existing non-self-contained flushing valve will also be replaced with a new self-contained flushing valve. The intake pond improvements alternative also includes purchase of a side-by-side all-terrain vehicle for improved access to the intake facility by city personnel, an allowance for some minor access road improvements, and installation of a battery/solar powered raw water turbidimeter at the pond.

Alternative S-2 is rehabilitation of an existing supply source with existing water rights. Alternative S-2 is not expected to change the amount of water used from Willow Creek Reservoir and is not expected to have water right implications.

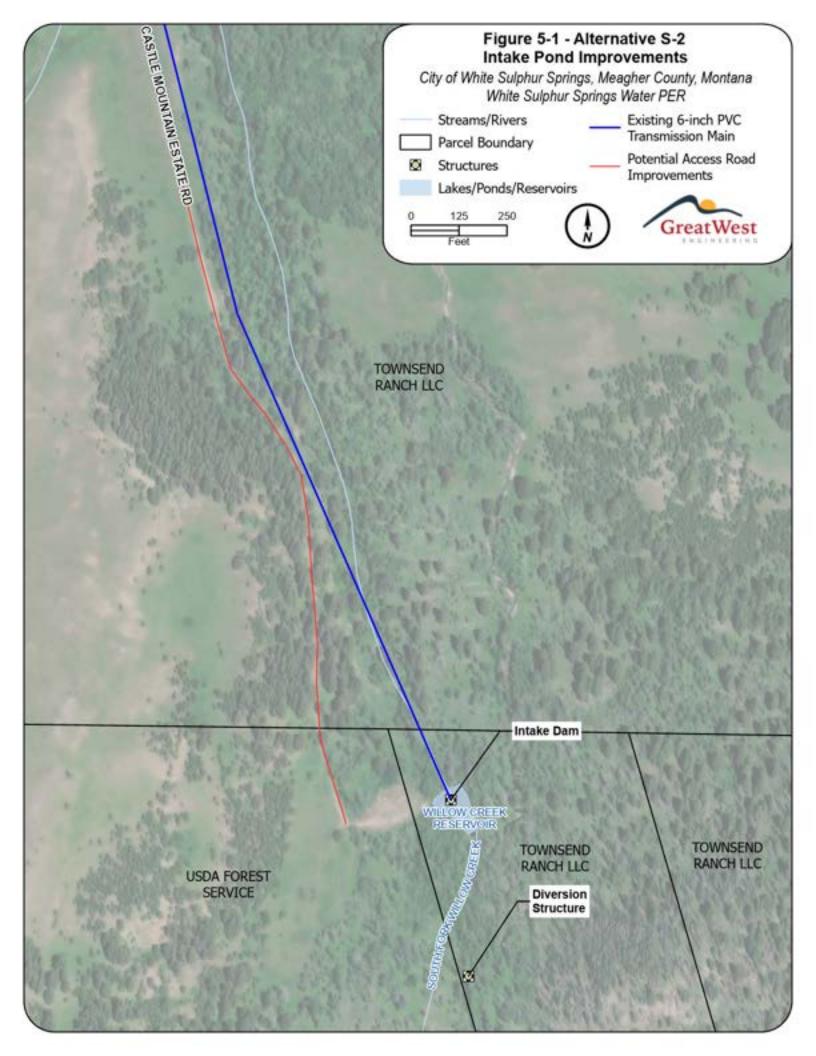
### Design Criteria

All water system improvements will comply with those requirements set forth in Circular DEQ 1. All design criteria presented in Circular DEQ 1 is applicable to each alternative considered, but

specifically the intake reservoir, structures, and filter system will meet the requirements stated in Chapter 3 – Source Development and Chapter 4 – Treatment. All proposed improvements will receive MDEQ approval prior to commencement of construction activity.

### Map

Figure 5-1 shows the location of the existing intake reservoir that will be rehabilitated in Alternative S-2. Schematic drawings of the existing intake pond engineered sand filter are provided in Appendix M.


## **Environmental Impacts**

There are several project components associated with Alternative S-2 that will require actions in order to assure no adverse environmental impacts from construction of the project. There is an existing native Westslope Cutthroat Trout population upstream of the diversion structure on Willow Creek. Improvements to the intake facilities on Willow Creek will involve close consultation with FWP and other agencies to ensure conservation of the Westslope Cutthroat Trout population and other affected biological species. Additionally, proposed improvements will take place within surface waters and could also likely impact wetlands. The project will require appropriate approvals from FWP, DEQ, U.S. Army Corps of Engineers and other agencies as necessary to assure no adverse impacts to surface water quality or wetlands as a result of construction activities. Finally, a project at the intake will also require consultation with SHPO since the intake structures are likely over fifty years old. The structures will likely require the proper historical documentation procedures to be followed prior to any construction work taking place.

### Land Requirements

The Helena-Lewis and Clark National Forest surrounds the Willow Creek intake, although the intake facilities are located on private land. If intake improvements are made, temporary disturbance will occur within privately owned land and adjacent Forest Service land. Landowner input and coordination will be important during design, so any project does not adversely affect land use and function of the landowner's property or adversely affect public lands.

There will be no additional land required as part of the project and the City of White Sulphur Springs currently has access agreements and easements in place with Townsend Ranch, LLC for access to and maintenance of Willow Creek Reservoir.



### **Potential Construction Problems**

Alternative S-2 could pose potential construction problems related to remote site work, limited access, and project unknowns. The project site is located within forested land that requires access via approximately three miles of rough gravel access road, of which the last mile is particularly rough terrain. Additionally, it is difficult to estimate the subsurface conditions in the reservoir without draining it. Higher budgetary and contingency money has been estimated to address these situations.

# Sustainability Considerations

Alternative S-2 will replace aging and deteriorated water system infrastructure which is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits. Additionally, preserving the existing surface water source ensures the city will provide an adequate capacity of water to handle the demands of the system.

### Water and Energy Efficiency

If the city is able to put the Willow Creek Reservoir surface water source back on-line which operates entirely by gravity, there will be less required use of the pumped groundwater source. Therefore, the project will reduce energy consumption.

### Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no impervious areas created as a result of the project. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

### Cost Estimates

Table 5-1 presents an estimated opinion of probable cost for Alternative S-2 which includes costs for construction, engineering, and administration. The cost estimate assumes removal and replacement of filter sand. The cost estimate will be adjusted accordingly pending evaluation of the filter sand.

Table 5-1 – Alternative S-2 Opinion of Probable Cost

| #  | Bid Item                                         | Quantity | Units | Unit Price <sup>(1)</sup> | Total     |
|----|--------------------------------------------------|----------|-------|---------------------------|-----------|
| 1  | Remove deadfall and aquatic plants from pond     | 1        | LS    | \$10,000.00               | \$10,000  |
| 2  | Dredge pond                                      | 1        | LS    | \$25,000.00               | \$25,000  |
| 3  | Remove top 2 inches of filter sand               | 1        | LS    | \$15,000.00               | \$15,000  |
| 4  | Core filter sand                                 | 1        | LS    | \$2,500.00                | \$2,500   |
| 5  | Remove replace/filter sand                       | 1        | LS    | \$50,000.00               | \$50,000  |
| 6  | Evaluate condition of filter fabric/gravel layer | 1        | LS    | \$5,000.00                | \$5,000   |
| 7  | Demolish catwalk and flushing valve              | 1        | LS    | \$5,000.00                | \$5,000   |
| 8  | Install new alum. frame catwalk with grating     | 84       | LF    | \$300.00                  | \$25,200  |
| 9  | Install new self-contained flushing valve        | 1        | EA    | \$40,000.00               | \$40,000  |
| 10 | Misc. concrete work                              | 1        | LS    | \$10,000.00               | \$10,000  |
| 11 | Access road improvements allowance               | 1        | LS    | \$5,000.00                | \$5,000   |
| 12 | Remote site work                                 | 1        | LS    | \$10,000.00               | \$10,000  |
| 13 | Turbidimeter                                     | 1        | LS    | \$25,000                  | \$25,000  |
| 14 | Side-by-Side with tracks                         | 1        | EA    | \$30,000.00               | \$30,000  |
|    | Direct Construction Subtotal                     |          |       |                           | \$258,000 |
|    | Mobilization                                     |          | 10%   |                           | \$26,000  |
|    | Construction Subtotal                            |          |       |                           | \$284,000 |
|    | 2024 Construction Cost <sup>(2)</sup>            |          | 8.0%  |                           | \$307,000 |
|    | Contingency                                      |          | 30%   |                           | \$92,000  |
|    | Permitting                                       |          |       |                           | \$50,000  |
|    | Engineering Design                               |          | 10%   |                           | \$40,000  |
|    | Engineering Construction                         |          | 10%   |                           | \$40,000  |
|    | Grant Admin, Legal, & Administrative             |          | 3%    |                           | \$12,000  |
|    | TOTAL <sup>(3)</sup>                             |          |       |                           | \$541,000 |

<sup>(1)</sup>Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

Annual O&M costs are anticipated to increase as a result of Alternative S-2. Increased O&M will be required to maintain the side-by-side vehicle and with improved access, personnel will be able to access the site more frequently for site visits and flushing. Table 5-2 presents a summary of estimated annual operation and maintenance costs.

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

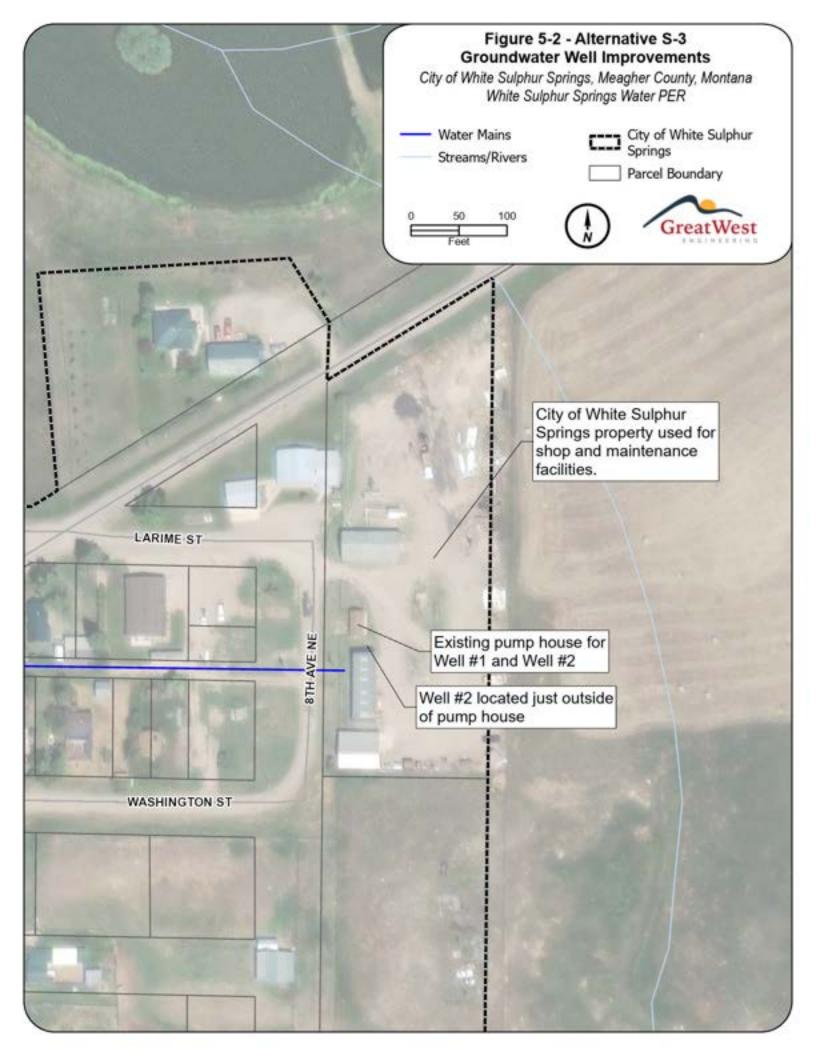
<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

Table 5-2 - Alternative S-2 Opinion of Probable O&M Costs

| # | O&M Item                                           | Quantity | Units | Unit Price | Total    |
|---|----------------------------------------------------|----------|-------|------------|----------|
| 1 | Once a week site visit                             | 208      | HRS   | \$35.00    | \$7,280  |
| 2 | Annual flushing, removal of deadfall, and clearing | 80       | HRS   | \$35.00    | \$2,800  |
| 3 | Weekly turbidimeter maintenance                    | 52       | HRS   | \$35.00    | \$1,820  |
| 4 | Side-by-side maintenance                           | 24       | HRS   | \$35.00    | \$840    |
|   | TOTAL                                              |          |       |            | \$12,700 |

## 5.2.3 Alt. S-3: Groundwater Well Improvements

This alternative includes source meter improvements for the groundwater wells located at the city shop facility at the northeastern edge of the city limits so that each well can be metered individually. Alternative S-3 includes constructing a manhole with a new flow meter on the well #2 influent piping just outside of the existing pump house. This alternative would involve some piping and appurtenance modifications on the well #2 influent line, placement of the new manhole and flow meter, and any necessary electrical or chlorination system modifications. The meter placement will depend on maintaining adequate lengths of pipe upstream for accurate meter readings.


Alternative S-3 is rehabilitation of an existing supply source with existing water rights. Alternative S-3 is not expected to change the amount of water used from the groundwater supply and is not expected to have water right implications. The maximum allowable flowrate from the groundwater system according to water rights is 500 gpm.

### Design Criteria

All water system improvements will comply with those requirements set forth in Circular DEQ 1. All design criteria presented in Circular DEQ 1 are applicable to each alternative considered, but specifically the well improvements will meet the requirements stated in Chapter 3 – Source Development. All proposed improvements will receive MDEQ approval prior to commencement of construction activity.

### Map

Figure 5-2 shows the location of the existing wells that will be improved in Alternative S-3.



## **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The generation of residuals and waste is expected to be minimal, and containment and disposal would be the responsibility of the contractor.

# Land Requirements

This alternative will upgrade existing well sites and does not require additional land. The existing wells currently reside on the City of White Sulphur Springs property.

### **Potential Construction Problems**

Alternative S-3 could pose potential construction problems due to limited space surrounding well #2 and project unknowns associated with a retrofit project. Higher budgetary and contingency money has been estimated to address this situation.

# Sustainability Considerations

Alternative S-3 aids in creating a resilient utility and provides social, economic, and environmental benefits. The meter improvements will allow the city to measure water consumption more accurately and will result in better management of the system and understanding of water loss.

# Water and Energy Efficiency

Energy costs are not anticipated to notably increase or decrease with the groundwater well improvements. The meter improvements will allow the city to better manage its supply and account for water loss which is a critical step towards increasing water use efficiency.

### Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no or minimal impervious areas created as a result of the project. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

### Cost Estimates

Table 5-3 presents an estimated opinion of probable cost for Alternative S-3 which includes costs for construction, engineering, and administration. Overall, operation and maintenance costs are not anticipated to increase. This alternative assumes no change to operation and maintenance costs.

Table 5-3 – Alternative S-3 Opinion of Probable Cost

| # | Bid Item                                   | Quantity | Units    | Unit Price <sup>(1)</sup> | Total     |  |
|---|--------------------------------------------|----------|----------|---------------------------|-----------|--|
| 1 | Well #2 Influent Piping/Appurtenance Mods. | 1        | LS       | \$35,000.00               | \$35,000  |  |
| 2 | Electrical Modifications                   | 1        | LS       | \$5,000.00                | \$5,000   |  |
| 3 | Chlorination System Modifications          | 1        | LS       | \$5,000.00                | \$5,000   |  |
| 4 | Manhole                                    | 1        | LS       | \$10,000.00               | \$10,000  |  |
| 5 | Flow Meter                                 | 1        | LS       | \$10,000.00               | \$10,000  |  |
|   | Direct Construction Subtotal               |          |          |                           |           |  |
|   | Mobilization                               |          | \$7,000  |                           |           |  |
|   | Construction Subtotal                      |          |          |                           |           |  |
|   | 2024 Construction Cost <sup>(2)</sup>      |          | 8.0%     |                           | \$78,000  |  |
|   | Contingency                                |          | 30%      |                           | \$23,000  |  |
|   | Engineering Design                         |          | \$10,000 |                           |           |  |
|   | Engineering Construction                   |          | \$10,000 |                           |           |  |
|   | Grant Admin, Legal, & Administrative       |          | 3%       |                           | \$3,000   |  |
|   | TOTAL <sup>(3)</sup>                       |          |          |                           | \$124,000 |  |

<sup>(1)</sup> Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

# 5.3 Treatment Alternatives

Water treatment facilities consist of the slow sand filtration facility located near the storage tank as well as two gas chlorination systems that provide disinfection. The slow sand filtration facility treats the water diverted from Willow Creek and consists of four filter compartments. The facility was constructed in 2004 and is in excellent condition, however, turbidity continues to be problematic for operation of the slow sand filtration facility. The WTP is capable of treating around 120 to 140 gpm when the raw water NTU is 0.6 or below. The system can treat water with an NTU of up to 1, however, it is not as efficient. The operators typically turn off the treatment facility during periods of high turbidity and rely on well water. Turbidity is measured through a raw water

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

turbidimeter and separate effluent turbidimeters for each individual sand filter. There is currently not a combined effluent turbidimeter.

The city's slow sand filters are not performing at the level that they are known to operate at and should be able to treat water with turbidites on the order of 10 to 20 NTU. The cause of the degradation in performance could possibly be attributed to the presence of colloidal clays and algae in the raw water, the wrong size of filter sand, an ineffective cleaning procedure, or a combination of any of these factors.

### 5.3.1 Alt. T-1: No Action

The no action alternative involves the continued use of the slow sand filter without any improvements to the filters or the current operational or cleaning procedures. The plant would continue to only be used when raw water turbidity is less than 1 NTU. The slow sand filter facility would be turned off and all drinking water would be provided from the groundwater wells during periods of high turbidity. The sand filter facility is currently completely inoperable due to the non-functioning flushing valve at the intake facility which has prevented the city from using the surface water source at all over the past few years.

This alternative will not be considered further due to the fact that it does not meet the requirements of DEQ-1 regarding source capacity. The groundwater supply alone is not sufficient to meet the peak demands of the system, however, the city may wish to select a no action treatment alternative for now and complete distribution system improvements first in order to reduce leakage and overall demand on the system.

### 5.3.2 Alt. T-2: Reduce Algae and Turbidity Loads on WTP

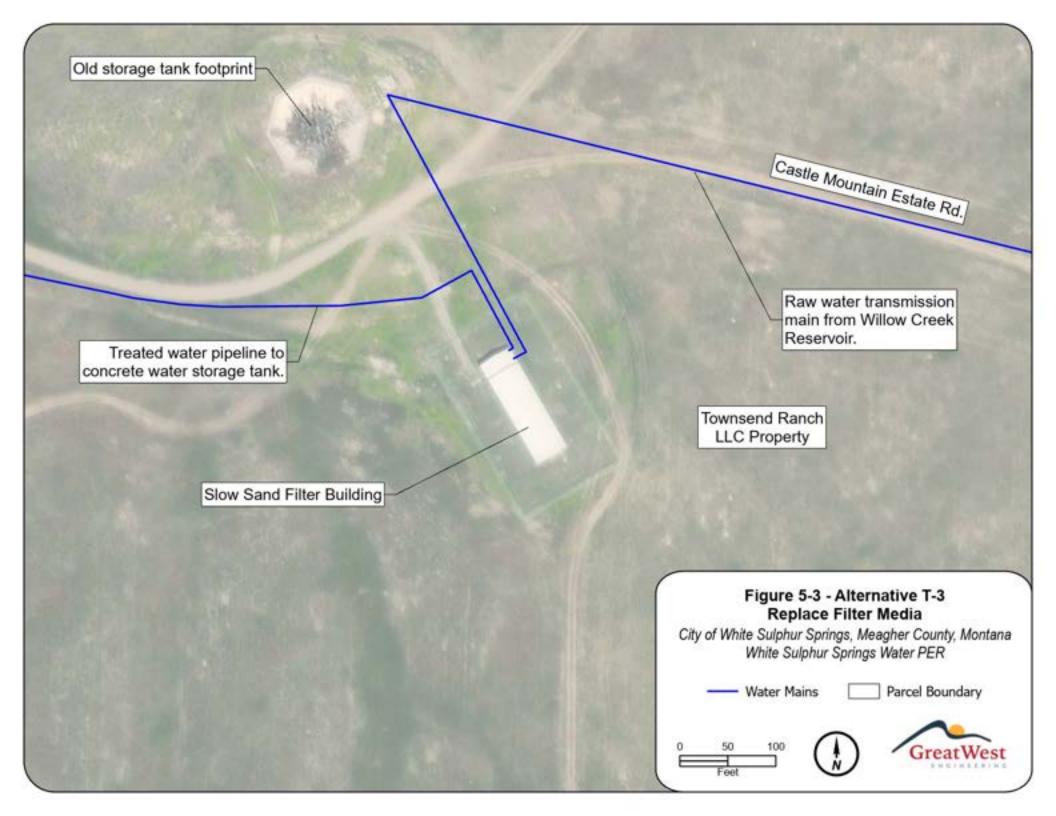
This alternative is identical to Alternative S-2 (Intake Pond Improvements) previously presented in Section 5.2.2. Alternative S-2/T-2 is a crucial first step in any improvements to the slow sand filter facility. Draining and dredging the intake pond in conjunction with the valve improvements will re-establish the functionality of the intake pond to that of a settling basin to reduce turbidity and sediment and allow the city to put the slow sand filter facility back into operation. Once this alternative has been completed and the slow sand filter facility is again operable, the city may choose to initiate further treatment alternatives as further described within this section if performance of the slow sand filter facility does not improve with intake improvements alone. The

estimated capital cost of Alternative S-2/T-2 is \$541,000 with an annual anticipated increase in O&M of \$20,000. Refer to Section 5.2.2 for additional specifics related to this alternative.

## 5.3.3 Alt. T-3: Replace Filter Media

Information on the gradation of the filter sand is currently unknown based on review of available information. This alternative would first involve core sampling of the existing filter media and subsequent sieve analysis of the media. If results of the sieve analysis indicate the filter sand is sized correctly, this alternative would be complete, and it would be recommended the city proceed with further treatment alternatives to implement a new filter cleaning procedure. If the sieve analysis reveals the sand is sized incorrectly, the filter sand will need to be replaced. Alternative T-3 includes removal of the existing filter sand within the four compartments of the slow sand filter facility, purchase of new filter media, and installation of new filter media.

# Design Criteria


All water system improvements will comply with those requirements set forth in Circular DEQ 1.All design criteria presented in Circular DEQ 1 is applicable to each alternative considered, but specifically the slow sand filter treatment system will meet the requirements stated in Chapter 4 – Treatment. All proposed improvements will receive MDEQ approval prior to commencement of construction activity.

### Map

Figure 5-3 shows the location of the existing slow sand filter facility. Alternative T-3 will take place within the existing slow sand filter building. Sand filter original construction plans are provided in Appendix R for additional details on compartment dimensions.

## **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The generation of residuals and waste is expected to be minimal, and containment and disposal would be the responsibility of the contractor. The media replacement construction project will take place within the sand filter building or within the fenced area around the building.



## Land Requirements

The sand filter building is located on private land owned by Townsend Ranch, LLC. There will be no additional land required as part of the project and the City of White Sulphur Springs currently has access agreements and easements in place with Townsend Ranch, LLC for access to and maintenance of the slow sand filter facility. The landowner will be informed during design so any project does not adversely affect land use and function of the landowner's property.

#### Potential Construction Problems

This is a technically feasible alternative and no unique construction problems are anticipated.

### Sustainability Considerations

Alternative T-3 will replace filter media to improve drinking water treatment system performance which is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits. Additionally, preserving the existing surface water source and treatment system ensures the city will provide an adequate capacity of water to handle the demands of the system.

## Water and Energy Efficiency

If the city is able to optimize treatment performance with new filter media and treat water with a higher turbidity, the surface water source will be able to be used more reliably and more often. Since the surface water source and treatment system operates entirely by gravity, there will be less required use of the pumped groundwater source. Therefore, the project will reduce energy consumption.

#### Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no impervious areas created as a result of the project. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

# Cost Estimates

Table 5-4 presents an estimated opinion of probable cost for Alternative T-3 which includes costs for construction, engineering, and administration. Overall, operation and maintenance costs are not anticipated to increase. This alternative assumes no change to operation and maintenance costs.

Table 5-4 – Alternative T-3 Opinion of Probable Cost

| # | Bid Item                                     | Quantity | Units | Unit Price <sup>(1)</sup> | Total     |  |
|---|----------------------------------------------|----------|-------|---------------------------|-----------|--|
| 1 | Core filter media and perform sieve analysis | 4        | EA    | \$2,000.00                | \$8,000   |  |
| 2 | Remove media                                 | 316      | CY    | \$10.00                   | \$3,160   |  |
| 3 | Purchase filter media                        | 316      | CY    | \$1,500.00                | \$474,000 |  |
| 4 | Install filter media                         | 316      | CY    | \$20.00                   | \$6,320   |  |
|   | Direct Construction Subtotal                 |          |       |                           |           |  |
|   | Mobilization 10%                             |          |       |                           |           |  |
|   | Construction Subtotal                        |          |       |                           |           |  |
|   | 2024 Construction Cost <sup>(2)</sup> 8.0%   |          |       |                           |           |  |
|   | Contingency                                  |          | 20%   |                           | \$117,000 |  |
|   | Engineering Design 10%                       |          |       |                           | \$70,000  |  |
|   | Engineering Construction                     |          | 10%   |                           | \$70,000  |  |
|   | Grant Admin, Legal, & Administrative         |          | 3%    |                           | \$21,000  |  |
|   | TOTAL <sup>(3)</sup>                         |          |       |                           | \$861,000 |  |

<sup>(1)</sup>Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

### 5.3.4 Alt. T-4a: Implement Scraping/Throw Over Cleaning Technique

This alternative involves implementation of a new sand filter cleaning technique and discontinuance of the city's current raking technique. The goal of the cleaning process is to remove the colloidal debris material from the filter bed but also maintain an active biological population that is important for the treatment process. Industry literature specifies a method for cleaning that involves scraping the sand to a specified depth, placing a layer of new or cleaned sand, and then placing some of the previously scraped sand back on top. The Montana DEQ guidelines refer to this method as the "throw over" technique which is meant to seed the replacement sand with microorganisms.

Alternative T-4a is not a construction project but rather the costs associated with purchase of the equipment necessary to implement the scraping cleaning method including a quad all-terrain

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

vehicle, plow blade for quad to move sand back and forth across the filters, and lift to move the quad in and out of the filters.

## Design Criteria

All water system improvements will comply with those requirements set forth in Circular DEQ 1.All design criteria presented in Circular DEQ 1 is applicable to each alternative considered, but specifically the slow sand filter treatment system and cleaning procedure will meet the requirements stated in Chapter 4 – Treatment.

### Map

Figure 5-3 (previously) shows the location of the existing slow sand filter facility. The Alternative T-4a cleaning technique will take place within the existing slow sand filter building. Sand filter original construction plans are provided in Appendix R for additional details on compartment dimensions.

# **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The scraping/throw-over technique will be implemented by city operations staff and will take place within the sand filter building or within the fenced area around the building.

### Land Requirements

The sand filter building is located on private land owned by Townsend Ranch, LLC. There will be no additional land required as part of the project and the City of White Sulphur Springs currently has access agreements and easements in place with Townsend Ranch, LLC for access to and maintenance of the slow sand filter facility.

### **Potential Construction Problems**

This is a technically feasible alternative, and no unique problems are anticipated.

# Sustainability Considerations

Alternative T-4a will implement a filter cleaning procedure to improve drinking water treatment system performance which is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits. Additionally, preserving the existing surface water source and treatment system ensures the city will provide an adequate capacity of water to handle the demands of the system.

## Water and Energy Efficiency

If the city is able to optimize treatment performance with implementation of a new filter cleaning method and treat water with a higher turbidity, the surface water source will be able to be used more reliably and more often. Since the surface water source and treatment system operates entirely by gravity, there will be less required use of the pumped groundwater source. Therefore, the project will reduce energy consumption.

#### Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no impervious areas created as a result of the project. Operators will take precautions so assure the filter cleaning procedure does not cause erosion of soils or transport of sediment offsite as a result of maintenance activities.

### **Cost Estimates**

Table 5-5 presents an estimated opinion of probable cost for Alternative T-4a which includes costs to purchase equipment for implementation of the scraping/throw-over sand filter cleaning method. Overall, operation and maintenance costs are not anticipated to notably change. There will be some additional labor required in order to implement the throw over technique for re-sanding but also some labor savings by discontinuation of the raking method as the new scraping method will utilize mechanical techniques versus hand raking. There will also be some small labor increases associated with maintenance of the quad all-terrain vehicle. This alternative assumes no change to operation and maintenance costs.

Table 5-5 – Alternative T-4a Opinion of Probable Cost

| # | Equipment Item                          | Quantity | Units | Unit Price <sup>(1)</sup> | Total    |
|---|-----------------------------------------|----------|-------|---------------------------|----------|
| 1 | Quad all-terrain vehicle                | 1        | EA    | \$8,000                   | \$8,000  |
| 2 | Plow blade for quad                     | 1        | EA    | \$2,000                   | \$2,000  |
| 3 | Lift to move quad in and out of filters | 1        | EA    | \$5,000                   | \$5,000  |
|   | Equipment Subtotal                      |          |       |                           | \$15,000 |
|   | 2024 Equipment Cost <sup>(2)</sup>      |          | 8.0%  |                           | \$16,000 |
|   | TOTAL <sup>(3)</sup>                    |          |       |                           | \$16,000 |

<sup>(1)</sup> Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

## 5.3.5 Alt. T-4b: Implement Harrowing Cleaning Technique

This alternative involves implementation of a new sand filter cleaning technique and discontinuance of the city's current raking technique. This alternative involves implementation of the harrowing cleaning technique which has shown to be effective and less labor intensive than scraping. In this method, a tractor with a mounted spring-tooth harrow operates in the filter beds while water about 6 inches deep is flowing across the sand surface. The harrow breaks up the top of the filter surface and the water carries away the debris. The method removes the accumulated colloidal debris while maintaining an active biological material in the top several inches of the sand. The ability to maintain a high biological population enables the harrowed filter to be quickly placed back into service without a deterioration in treatment performance. The entire filter sand bed is removed and thoroughly cleaned once every 8 – 10 years. Harrowing creates wastewater as the bed is being cleaned. The wastewater needs to be removed from the filter to keep the colloidal debris from going back into the bed.

Alternative T-4b includes the costs associated with purchase of the equipment necessary to implement the harrowing cleaning method including a quad all-terrain vehicle, harrow, and lift to move the quad in and out of the filters. Alternative T-4b also includes a construction component in order to install wash water collection troughs, piping, and a waste wash water drying lagoon at the site.

### Design Criteria

All water system improvements will comply with those requirements set forth in Circular DEQ 1.All design criteria presented in Circular DEQ 1 is applicable to each alternative considered, but

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

specifically the slow sand filter treatment system and cleaning procedure will meet the requirements stated in Chapter 4 – Treatment. Design, construction, and maintenance of the wash water waste drying lagoon will comply with those requirements set forth in Circular DEQ-2. All proposed improvements will receive MDEQ approval prior to commencement of construction activity.

### Map

Figure 5-3 (previously) shows the location of the existing slow sand filter facility. The Alternative T-4b cleaning technique will take place within the existing slow sand filter building. Sand filter original construction plans are provided in Appendix R for additional details on compartment dimensions. The wash water waste lagoon will be constructed within the fenced area outside of the filter building.

## **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The harrowing technique will be implemented by city operations staff and will take place within the sand filter building or within the fenced area around the building. The wash water drying lagoon will be a total retention lagoon that will periodically require sludge removal. All necessary permits will be obtained for operation of the lagoon.

### Land Requirements

The sand filter building is located on private land owned by Townsend Ranch, LLC. There will be no additional land required as part of the project and the City of White Sulphur Springs currently has access agreements and easements in place with Townsend Ranch, LLC for access to and maintenance of the slow sand filter facility.

### **Potential Construction Problems**

This is a technically feasible alternative, and no unique construction problems are anticipated.

# Sustainability Considerations

Alternative T-4b will implement a filter cleaning procedure to improve drinking water treatment system performance which is a sustainable utility management practice that aids in creating a

resilient utility and provides social, economic, and environmental benefits. Additionally, preserving the existing surface water source and treatment system ensures the city will provide an adequate capacity of water to handle the demands of the system.

# Water and Energy Efficiency

If the city is able to optimize treatment performance with implementation of a new filter cleaning method and treat water with a higher turbidity, the surface water source will be able to be used more reliably and more often. Since the surface water source and treatment system operates entirely by gravity, there will be less required use of the pumped groundwater source. Therefore, the project will reduce energy consumption.

### Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no impervious areas created as a result of the project. Operators will take precautions to assure the filter cleaning procedure does not cause erosion of soils or transport of sediment offsite as a result of maintenance activities. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

### **Cost Estimates**

Table 5-6 presents an estimated opinion of probable cost for Alternative T-4b which includes costs to purchase equipment for implementation of the harrowing sand filter cleaning method and construction costs associated with construction of the wash water waste lagoon. Filter harrowing in general, is much less labor-intensive and time-consuming than filter scraping and re-sanding and there could likely be some labor savings by discontinuation of the raking method as the new harrowing method will utilize mechanical techniques versus hand raking. There will also be some small labor increases associated with maintenance of the quad all-terrain vehicle. This alternative assumes no change to operation and maintenance costs.

Table 5-6 - Alternative T-4b Opinion of Probable Cost

| # | Equipment or Bid Item                               | Quantity                | Units | Unit Price <sup>(1)</sup> | Total     |  |
|---|-----------------------------------------------------|-------------------------|-------|---------------------------|-----------|--|
| 1 | Waste wash water troughs                            | 4                       | EA    | \$10,000                  | \$40,000  |  |
| 2 | Piping and valving                                  | 4                       | EA    | \$5,000                   | \$20,000  |  |
| 3 | Waste wash water lagoon                             | 1                       | LS    | \$15,000                  | \$15,000  |  |
| 4 | Quad all-terrain vehicle                            | 1                       | EA    | \$8,000                   | \$8,000   |  |
| 5 | Harrow                                              | 1                       | EA    | \$1,200                   | \$1,200   |  |
| 6 | Lift to move quad and harrow in and out of filters  | 1                       | EA    | \$5,000                   | \$5,000   |  |
|   | Direct Construction and Equipment Subtotal          |                         |       |                           |           |  |
|   | Mobilization (Construction Only)                    | (Construction Only) 10% |       |                           |           |  |
|   | Construction and Equipment Subtotal                 |                         |       |                           |           |  |
|   | 2024 Construction and Equipment Cost <sup>(2)</sup> |                         | 8.0%  | 8.0%                      |           |  |
|   | Contingency (Construction Only)                     |                         | 20%   | \$18,000                  |           |  |
|   | Permitting                                          |                         |       |                           | \$5,000   |  |
|   | Engineering Design                                  | 10%                     |       |                           | \$11,000  |  |
|   | Engineering Construction                            | 10%                     |       |                           | \$11,000  |  |
|   | Grant Admin, Legal, & Administrative 3%             |                         |       |                           |           |  |
|   | TOTAL <sup>(3)</sup>                                |                         |       |                           | \$153,000 |  |

<sup>(1)</sup> Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

### 5.3.6 Alt. T-5: Install Combined Filter Effluent Turbidimeter

Turbidity values are critical to determining compliance with surface water treatment rules so maintaining accurate turbidimeters is very important. DEQ surface water regulations require that turbidity be measured for the combined filter effluent as well as the individual filter effluent. The combined filter effluent refers to a sample that combines the effluent water from all filters in operation at the time the sample is collected. Typical sampling locations include the combined filter effluent piping prior to water reaching the clearwell, or water sampled from the water treatment plant clearwell. Individual filter effluent refers to the effluent water from individual filters, measured at a point prior to mixing with effluent from other filters or other sources.

The most representative location to measure the combined effluent turbidity of the filtered water is in the pipe where the individual filter effluents are first combined, measured as close to the final filter(s) effluent as possible, prior to storage. Effluent turbidity from the slow sand filters in White Sulphur Springs is currently measured via separate effluent turbidimeters for each individual sand filter and there is currently not a combined effluent turbidimeter. This alternative involves installation of a new combined effluent turbidimeter and associated appurtenances at the slow

<sup>(2)</sup> The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

sand filter treatment building in order to increase the accuracy of the combined effluent turbidity measurement.

## Design Criteria

All water system improvements will comply with those requirements set forth in Circular DEQ 1.All design criteria presented in Circular DEQ 1 is applicable to each alternative considered, but specifically the slow sand filter combined effluent turbidimeter will meet the requirements stated in Chapter 4 – Treatment. All proposed improvements will receive MDEQ approval prior to commencement of construction activity.

### Map

Figure 5-3 (previously) shows the location of the existing slow sand filter facility. Alternative T-5 will take place within the existing slow sand filter building.

## **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The generation of residuals and waste is expected to be minimal, and containment and disposal would be the responsibility of the contractor. The turbidimeter installation will take place within the sand filter building.

### Land Requirements

The sand filter building is located on private land owned by Townsend Ranch, LLC. There will be no additional land required as part of the project and the City of White Sulphur Springs currently has access agreements and easements in place with Townsend Ranch, LLC for access to and maintenance of the slow sand filter facility. The turbidimeter installation will not adversely affect land use and function of the landowner's property.

### **Potential Construction Problems**

This is a technically feasible alternative and no unique construction problems are anticipated.

# Sustainability Considerations

Alternative T-5 will install turbidity monitoring equipment to more accurately measure effluent turbidity which is a critical component for compliance with surface water treatment rules. Improved monitoring is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits.

# Water and Energy Efficiency

The turbidimeter will require some additional power consumption.

### Green Infrastructure

The project will not have an impact on post-construction stormwater management as there will be no impervious areas created as a result of the project. The turbidimeter installation will not cause erosion of soils or transport of sediment offsite as a result of construction activities.

### Cost Estimates

Table 5-7 presents an estimated opinion of probable cost for Alternative T-5 which includes costs for construction, engineering, and administration. Overall, operation and maintenance costs are not anticipated to increase. This alternative assumes no change to operation and maintenance costs.

Table 5-7 - Alternative T-5 Opinion of Probable Cost

| # | Bid Item                              | Quantity | Units | Unit Price <sup>(1)</sup> | Total    |
|---|---------------------------------------|----------|-------|---------------------------|----------|
| 1 | Power cable                           | 100      | LF    | \$8.00                    | \$800    |
| 2 | Control cable                         | 100      | LF    | \$10.00                   | \$1,000  |
| 3 | Turbidimeter                          | 1        | EA    | \$10,000.00               | \$10,000 |
| 4 | Feed pump                             | 1        | EA    | \$2,000.00                | \$2,000  |
| 5 | Piping                                | 100      | LF    | \$10.00                   | \$1,000  |
| 6 | Data logger                           | 1        | EA    | \$5,000.00                | \$5,000  |
|   | Direct Construction Subtotal          |          |       |                           |          |
|   | Mobilization                          |          | 10%   |                           |          |
|   | Construction Subtotal                 |          |       |                           |          |
|   | 2024 Construction Cost <sup>(2)</sup> |          | 8.0%  |                           | \$24,000 |
|   | Contingency                           |          | 20%   |                           | \$5,000  |
|   | Engineering Design                    |          | 10%   |                           | \$3,000  |
|   | Engineering Construction              |          | 10%   |                           |          |
|   | Grant Admin, Legal, & Administrative  |          | 3%    |                           | \$1,000  |
|   | TOTAL <sup>(3)</sup>                  |          |       |                           | \$36,000 |

<sup>(1)</sup> Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

### 5.3.7 Alt. T-6: Install Two New Slow Sand Filters

This alternative involves installation of the two additional planned future sand filters as shown in the 2004 construction design plans provided in Appendix R. Alternative T-6 would increase the capacity of the slow sand filters and should only be implemented if Alternatives T-2 through T-4 do not produce the desired treatment performance results.

### Design Criteria

All water system improvements will comply with those requirements set forth in Circular DEQ 1.All design criteria presented in Circular DEQ 1 is applicable to each alternative considered, but specifically the slow sand filter treatment system will meet the requirements stated in Chapter 4 – Treatment. All proposed improvements will receive MDEQ approval prior to commencement of construction activity.

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup> The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

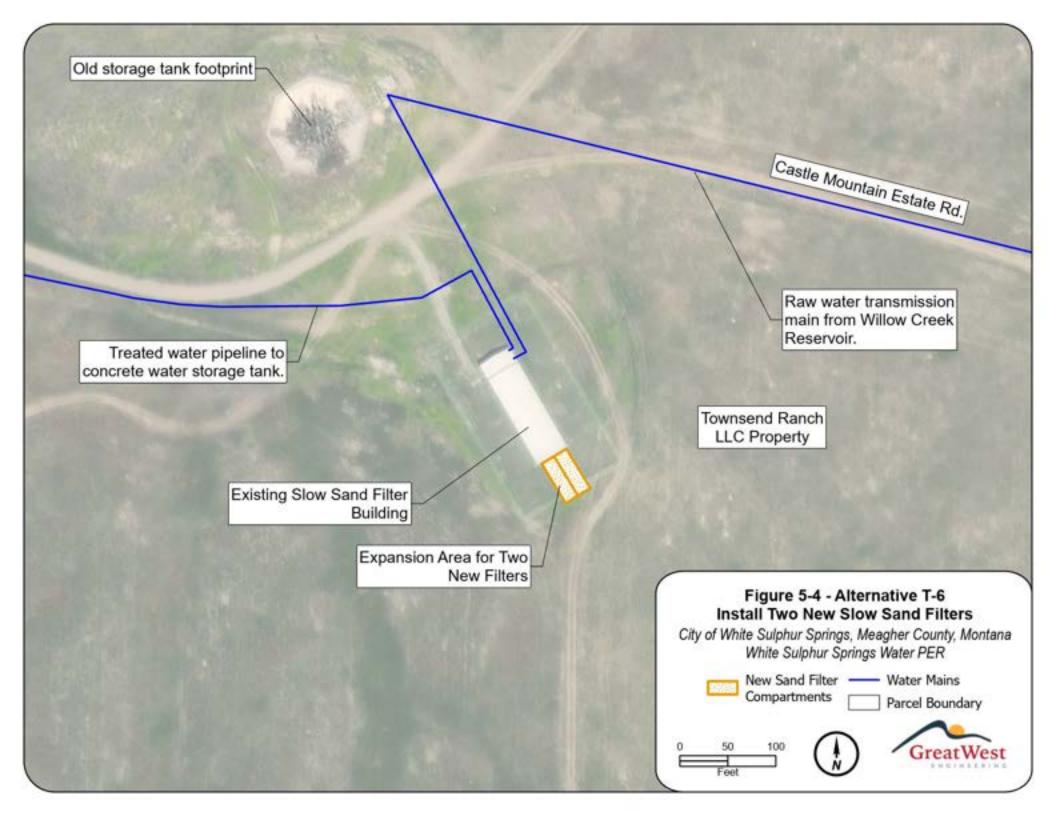
### Map

Figure 5-4 shows the location of the existing slow sand filter facility and proposed expansion area for the two new filters. Sand filter original construction plans are provided in Appendix R for additional details on compartment dimensions.

### **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The generation of residuals and waste is expected to be minimal, and containment and disposal would be the responsibility of the contractor. The filter construction project will take place at the south end of the existing sand filter building and generally within the fenced area around the building.

# Land Requirements


The sand filter building is located on private land owned by Townsend Ranch, LLC. The City of White Sulphur Springs currently has access agreements and easements in place with Townsend Ranch, LLC for access to and maintenance of the slow sand filter facility. There may be some additional land required and required easement negotiations as part of the project in order to have adequate room for the filter expansion. The landowner will be informed during design, so any project does not adversely affect land use and function of the landowner's property.

### **Potential Construction Problems**

This is a technically feasible alternative and no unique construction problems are anticipated.

### Sustainability Considerations

Alternative T-6 will increase the capacity of the sand filter system to improve drinking water treatment system performance which is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits. Additionally, preserving the existing surface water source and treatment system ensures the city will provide an adequate capacity of water to handle the demands of the system.



# Water and Energy Efficiency

If the city is able to optimize treatment performance with additional filters and treat water with a higher turbidity, the surface water source will be able to be used more reliably and more often. Since the surface water source and treatment system operates entirely by gravity, there will be less required use of the pumped groundwater source. Therefore, the project will reduce energy consumption.

#### Green Infrastructure

The project will create some impervious area as a result of the building expansion to house the additional filters. Stormwater management will be addressed during design to ensure there are no adverse impacts to adjoining properties. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

#### Cost Estimates

Table 5-8 presents an estimated opinion of probable cost for Alternative T-6 which includes costs for construction, engineering, and administration. Annual O&M costs are anticipated to increase as a result of Alternative T-6 due to increased labor for maintenance of the additional filters. Table 5-9 presents a summary of estimated annual operation and maintenance costs.

Table 5-8 - Alternative T-6 Opinion of Probable Cost

| #  | Bid Item                              | Quantity | Units | Unit Price(1) | Total       |
|----|---------------------------------------|----------|-------|---------------|-------------|
| 1  | Excavation                            | 1,500    | CY    | \$15.00       | \$22,500    |
| 2  | Backfill                              | 500      | CY    | \$10.00       | \$5,000     |
| 3  | Concrete Walls                        | 150      | CY    | \$1,200.00    | \$180,000   |
| 4  | Slab on Grade                         | 80       | CY    | \$900.00      | \$72,000    |
| 5  | Filter Media                          | 158      | CY    | 1,500.00      | \$237,000   |
| 6  | Install filter media                  | 158      | CY    | 20.00         | \$3,160     |
| 7  | Piping & Valving                      | 1        | LS    | \$120,000.00  | \$120,000   |
| 8  | Filter Underdrain Piping              | 1        | LS    | \$40,000.00   | \$40,000    |
| 9  | Gravel & Torpedo Sand                 | 100      | CY    | \$500.00      | \$50,000    |
| 10 | Walkway                               | 48       | LF    | \$200.00      | \$9,600     |
| 11 | Enclosure                             | 1,600    | SF    | \$200.00      | \$320,000   |
| 12 | Turbidimeters                         | 2        | EA    | \$10,000.00   | \$20,000    |
| 13 | Structural Fill                       | 100      | CY    | \$15.00       | \$1,500     |
|    | Direct Construction Subtotal          |          |       |               | \$1,081,000 |
|    | Mobilization                          |          | 10%   |               | \$108,000   |
|    | Construction Subtotal                 |          |       |               | \$1,189,900 |
|    | 2024 Construction Cost <sup>(2)</sup> |          | 8.0%  |               | \$1,284,000 |
|    | Contingency                           |          | 20%   |               | \$257,000   |
|    | Geotechnical Investigation            |          |       |               | \$10,000    |
|    | Engineering Design                    |          | 10%   |               | \$154,000   |
|    | Engineering Construction              |          | 10%   |               | \$154,000   |
|    | Grant Admin, Legal, & Administrative  |          | 3%    |               | \$46,000    |
|    | TOTAL <sup>(3)</sup>                  |          |       |               | \$1,905,000 |

<sup>(1)</sup> Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

Table 5-9 - Alternative T-6 Opinion of Probable O&M Costs

| # | O&M Item                           | Quantity | Units | Unit Price | Total   |
|---|------------------------------------|----------|-------|------------|---------|
| 1 | Additional scraping and re-sanding | 160      | HRS   | \$35.00    | \$5,600 |
|   | TOTAL                              |          |       |            | \$5,600 |

# 5.4 Storage Alternatives

No storage alternatives are presented. The existing storage tank was recently constructed in 2012 and is in excellent condition. Buried concrete tanks can have a design life on the order of 100 years. Although the projected year 2045 demand shows a slight storage deficiency, this can likely be recovered as distribution system improvements are made and leakage is reduced.

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup> The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

# 5.5 Pumping Station Alternatives

No pumping station alternatives are considered in this analysis. White Sulphur Springs does not operate any pumping stations in its water system.

# 5.6 Distribution System Alternatives

The White Sulphur Springs water distribution system includes significant amounts of cast iron and steel pipe which have exceeded, or will soon exceed, their useful life. Asbestos cement, cast iron, and steel mains make up approximately 30% of the distribution system piping. These pipes are prone to break, are likely restricting flow, and are in some cases undersized. The system also contains water mains with diameters 4-inches or less in size. All remaining cast iron, asbestos cement, and steel pipes in addition to pipe that is less than 6 inches in diameter should eventually be replaced. Fire flow availability will greatly improve as 4-inch mains are replaced along with old cast-iron and steel mains. The distribution system could also benefit from elimination of several dead-end mains in order to reduce stagnant water and improve the system's fire flow availability.

Another critical concern within the system is the deteriorated condition of a section of 1940's era steel transmission main that is believed to be the biggest source of leakage in the system. The line has shown to be actively leaking with the leakage surfacing in the field. The city wishes to replace the 1946 steel line and re-align the main along Castle Mountain Road and along property lines in the adjoining subdivision.

The city's immediate goal is to eliminate the excessive leakage occurring from the 1940's era streel transmission main through the replacement of this pipe. A lower priority is to replace the remaining old cast iron, steel, and undersized mains within the distribution system. Finally, there are areas of the system which would benefit from line looping to improve water flow that can be addressed as phases of pipe replacement are completed.

Completing all of the distribution system upgrades as part of a single project will be cost prohibitive, however, through planning of a phased project to maximize grant and low interest loan funding, the city will be able to make very significant improvements.

#### **5.6.1** Alt. D-1: No Action

The No Action alternative was considered and determined not to be a viable alternative despite the fact the city is not under any type of administrative order requiring it to replace the transmission or distribution piping. The age of the transmission main and much of the distribution system coupled with the risks associated with backflow/contamination potential from water main breaks make the possibility of no action an unacceptable path forward for the city. Without improvements, the transmission/distribution system will continue to require more and more operation and maintenance attention and provide inadequate fire protection. Replacing undersized and leaking mains will reduce leakage and in turn, reduce pumping costs, as well as reduce the risks of contamination associated with leaking mains and main repairs. The need for water line replacement is evident and supported through the analysis completed and the no action alternative will not be considered further.

## 5.6.2 Alt. D-2: Replace 12-inch Transmission Main

This alternative includes construction of approximately 4,000 lineal feet of new 12-inch PVC water transmission main from the water storage tank to the existing water main connection near the Townsend Ranch property line. The project will abandon the existing 1940's era steel transmission main which is known to be leaking excessively. The new PVC transmission main will deviate from the original 1940s alignment and will follow the Castle Mountain Road alignment as well as existing property lines in the adjoining subdivision. Easement negotiations will be required for this realignment with the goal to benefit property owners by re-aligning the water line along property lines versus the current alignment which traverses through the properties and potentially limits the owner's use of their properties. There will be no water services off of the new transmission main as the subdivision has its own drinking water source and is outside of the city limits. The project will include a pipeline bore underneath the South Side Canal.

## Design Criteria

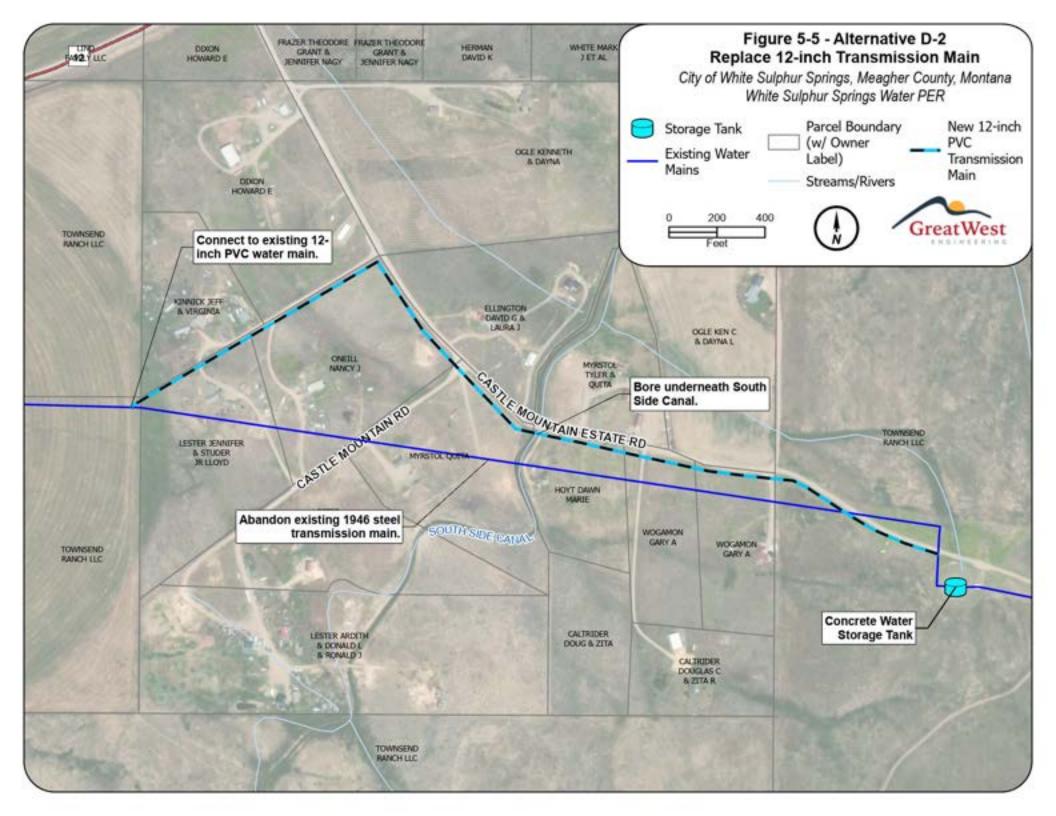
All water system improvements will comply with those requirements set forth in Circular DEQ 1. All design criteria presented in Circular DEQ 1 are applicable to each alternative considered, but specifically the transmission main project will meet the requirements in Chapter 8 – Transmission Mains, Distribution Systems, Piping & Appurtenances. All proposed improvements will receive MDEQ approval prior to commencement of any construction activity.

#### Map

Figure 5-5 presents a map of the proposed transmission main replacement in Alternative D-2.

## **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The generation of residuals and waste is expected to be minimal, and containment and disposal would be the responsibility of the contractor.


The project will involve a bore underneath the South Side Canal. Precautions will be taken during construction to prohibit any sedimentation or other potential adverse impact on the surface water or associated wetlands. The project will require permitting from the Army Corps of Engineers for the crossing and other agencies as necessary to assure no adverse impacts to surface water quality or wetlands as a result of construction activities. No disturbance to the canal bed or banks is expected through use of this boring technique.

## Land Requirements

The proposed transmission main will be installed within the County road right-of-way of Castle Mountain Estate Road and may require permitting from the County and/or subdivision homeowner's association for placement of the pipeline within the right-of-way. Additionally, a portion of the transmission main will traverse private land and easement negotiations will be required for final placement of the water main. The project intends to place the new water line along existing property lines. Landowner input and coordination will also be important during design, so any project does not adversely affect land use and function of the landowner's property during construction.

#### **Potential Construction Problems**

There are no known construction problems or other conditions which may affect construction for this alternative. It will be important for the contractor to coordinate with local residents during construction.



## Sustainability Considerations

Alternative D-2 will replace a key component of water system infrastructure and is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits. The current risk of contamination associated with the leaking and failing transmission main will be reduced with the implementation of this alternative.

## Water and Energy Efficiency

Replacing the leaking transmission main will reduce pumping costs and eliminate unnecessary demand on the system, resulting in energy and water conservation.

#### Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no impervious areas created as a result of the project and surface conditions will be restored upon completion of construction activities. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

#### Cost Estimates

Table 5-10 presents an estimated opinion of probable cost for Alternative D-2 which includes costs for construction, engineering, and administration. Overall, operation and maintenance costs are not expected to increase and in fact may decrease because of improvements. This report assumes no change to operation and maintenance costs.

Table 5-10 - Alternative D-2 Opinion of Probable Cost

| # | Bid Item                              | Quantity | Units | Unit Price <sup>(1)</sup> | Total       |
|---|---------------------------------------|----------|-------|---------------------------|-------------|
| 1 | 12-inch PVC Water Main                | 4,000    | LF    | \$125.00                  | \$500,000   |
| 2 | 12-inch Gate Valve                    | 5        | EA    | \$8,000.00                | \$40,000    |
| 3 | 12-inch Fittings                      | 5        | EA    | \$4,500.00                | \$22,500    |
| 4 | HDPE Bore for Canal Crossing          | 150      | LF    | \$250.00                  | \$37,500    |
| 5 | Gravel Surface Restoration            | 4,000    | LF    | \$25.00                   | \$100,000   |
| 6 | Seed and Fertilize                    | 1        | LS    | \$8,000.00                | \$8,000     |
|   | Direct Construction Subtotal          |          |       |                           | \$708,000   |
|   | Mobilization                          |          | 10%   |                           | \$71,000    |
|   | Traffic Control                       |          | 1%    |                           | \$7,000     |
|   | Construction Subtotal                 |          |       |                           | \$786,000   |
|   | 2024 Construction Cost <sup>(2)</sup> |          | 8.0%  |                           | \$849,000   |
|   | Contingency                           |          | 20%   |                           | \$170,000   |
|   | Permitting                            |          |       |                           | \$5,000     |
|   | Land Acquisition                      |          |       |                           | \$2,500     |
|   | Geotechnical Investigation            |          |       |                           | \$10,000    |
|   | Engineering Design                    |          | 10%   |                           | \$102,000   |
|   | Engineering Construction              |          | 10%   |                           | \$102,000   |
|   | Grant Admin, Legal, & Administrative  |          |       |                           | \$85,000    |
|   | TOTAL <sup>(3)</sup>                  |          |       |                           | \$1,325,500 |

<sup>(1)</sup>Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

#### 5.6.3 Alt. D-3: Water Main Distribution Replacements

This alternative would replace all the remaining cast-iron, steel, and asbestos cement pipe in the system as well as replace all undersized pipe (less than 6-inches) with new PVC. Replacement is needed to eliminate pipe that has exceeded its useful life, reduce system leakage, improve fire flows, and reduce the threat of water line breaks. The total cost of performing all the distribution replacements at once would be cost prohibitive from an economic point of view, therefore, should this be the preferred alternative, a phased approach to pipe replacement will be necessary.

#### Design Criteria

All water system improvements will comply with those requirements set forth in Circular DEQ 1. All design criteria presented in Circular DEQ 1 are applicable to each alternative considered, but specifically the transmission main project will meet the requirements in Chapter 8 – Transmission

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

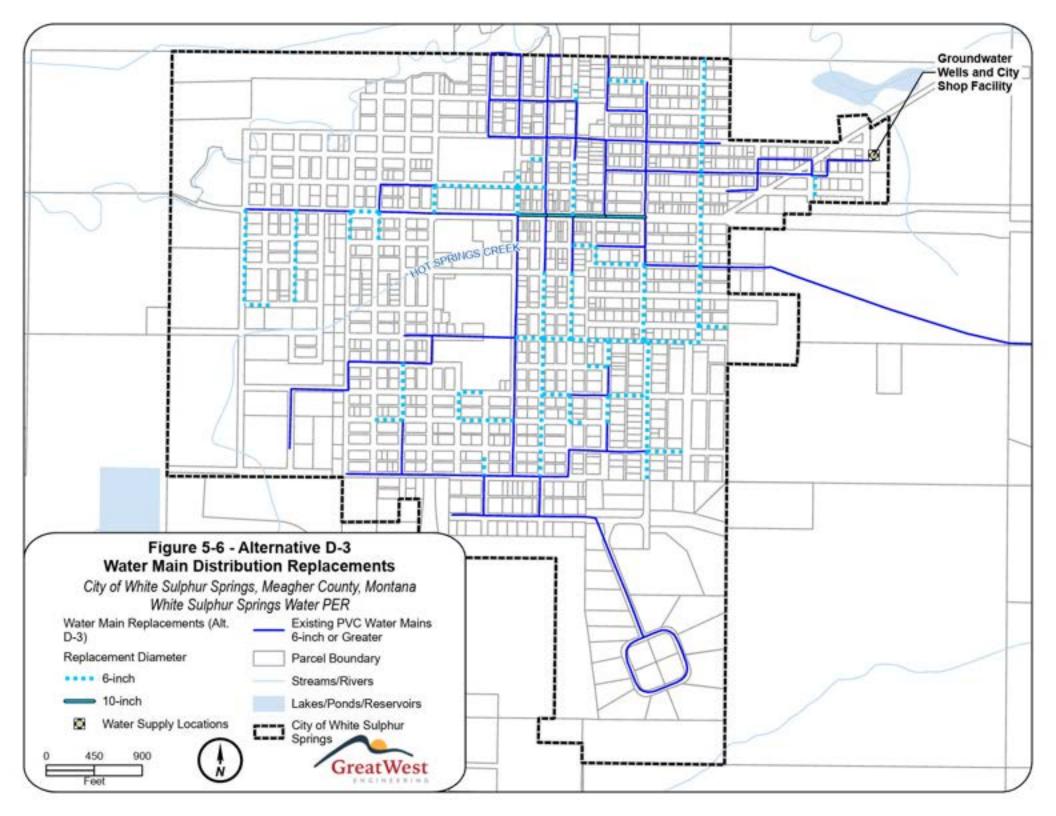
Mains, Distribution Systems, Piping & Appurtenances. All proposed improvements will receive MDEQ approval prior to commencement of any construction activity.

#### Map

Figure 5-6 presents a map of the proposed water main distribution replacements that are part of Alternative D-3. It is assumed that all pipe identified for replacement will be replaced with the same diameter pipe as existing. In the case of undersized pipe (less than 6-inches), replacement pipe is assumed to be 6-inch PVC. Pipe size will be re-evaluated during final design and adjusted if necessary.

#### **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The generation of residuals and waste is expected to be minimal, and containment and disposal would be the responsibility of the contractor. Existing water mains will be replaced within existing rights-of-way that have been previously disturbed.


This alternative involves water main replacement within right-of-way on Main Street which is a highway route owned by the Montana Department of Transportation (MDT). Construction within MDT right-of-way will require permitting that will be completed during preliminary design of the project.

#### Land Requirements

The water system improvements will occur in existing rights-of-way and no land acquisition is expected. Permitting will likely be required for water main replacements within MDT right-of-way.

#### **Potential Construction Problems**

There are no known construction problems or other conditions which may affect construction for this alternative. It will be important the contractor coordinates with local businesses and residents during construction. Traffic control will be required, and temporary water service will be provided where existing mains must be taken out of service during installation of the new mains.



## Sustainability Considerations

Maintaining water system infrastructure is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits. The current risks of contamination associated with leaking and failing distribution mains and limited fire flow due to undersized mains will be reduced with the implementation of this alternative.

## Water and Energy Efficiency

Replacing the cast iron, asbestos cement, and steel distribution mains may result in energy and water conservation by eliminating leaks in the aging distribution system. Reducing leakage will reduce pumping costs and eliminate unnecessary demand on the system, resulting in energy and water conservation.

#### Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no impervious areas created as a result of the project and surface conditions will be restored upon completion of construction activities. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

#### Cost Estimates

Table 5-11 presents an estimated opinion of probable cost for Alternative D-3 which includes costs for construction, engineering, and administration. Overall, operation and maintenance costs are not expected to increase and in fact may decrease because of improvements. This report assumes no change to operation and maintenance costs.

Table 5-11 - Alternative D-3 Opinion of Probable Cost

| #  | Bid Item                                     | Quantity | Units | Unit Price(1) | Total       |
|----|----------------------------------------------|----------|-------|---------------|-------------|
| 1  | Connect to Existing Water                    | 45       | EA    | \$2,900.00    | \$130,500   |
| 2  | Exploratory Excavation                       | 160      | HR    | \$300.00      | \$48,000    |
| 3  | 6-inch PVC Water Main                        | 20,100   | LF    | \$110.00      | \$2,211,000 |
| 4  | 6-inch Gate Valve w/ Valve Box               | 65       | EA    | \$2,300.00    | \$149,500   |
| 5  | 6-inch Fittings                              | 150      | EA    | \$940.00      | \$141,000   |
| 6  | 10-inch PVC Water Main                       | 1,200    | LF    | \$190.00      | \$228,000   |
| 7  | 10-inch Gate Valve                           | 4        | EA    | \$6,000.00    | \$24,000    |
| 8  | 10-inch Fittings                             | 9        | EA    | \$2,500.00    | \$22,500    |
| 9  | 6-inch Fire Hydrant with Gate Valve          | 30       | EA    | \$8,700.00    | \$261,000   |
| 10 | Water Service Connection, Curb Box and Valve | 190      | EA    | \$1,200.00    | \$228,000   |
| 11 | Temporary Water Service                      | 1        | LS    | \$140,000.00  | \$140,000   |
| 12 | 3/4-inch PE Water Service                    | 5,900    | LF    | \$50.00       | \$295,000   |
| 13 | Flowable Fill                                | 1,010    | CY    | \$170.00      | \$171,700   |
| 14 | Type A Surface Restoration (Asphalt)         | 23,000   | SY    | \$75.00       | \$1,150,000 |
| 15 | Type B Surface Restoration (Aggregate)       | 500      | SY    | \$20.00       | \$10,000    |
|    | Direct Construction Subtotal                 |          |       |               | \$5,210,000 |
|    | Mobilization                                 |          | 10%   |               | \$521,000   |
|    | Traffic Control                              |          | 1%    |               | \$52,000    |
|    | Construction Subtotal                        |          |       |               | \$5,783,000 |
|    | 2024 Construction Cost <sup>(2)</sup>        |          | 8.0%  |               | \$6,246,000 |
|    | Contingency                                  |          | 20%   |               | \$1,249,000 |
|    | Permitting                                   |          |       |               | \$40,000    |
|    | Geotechnical Investigation                   |          |       |               | \$100,000   |
|    | Engineering Design                           |          | 10%   |               | \$750,000   |
|    | Engineering Construction                     |          | 10%   |               | \$750,000   |
|    | Grant Admin, Legal, & Administrative         |          | 3%    |               | \$225,000   |
|    | TOTAL <sup>(3)</sup>                         |          |       |               | \$9,360,000 |

<sup>(1)</sup> Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

## 5.6.4 Alt. D-4: Water Main Looping

This alternative would install sections of 6-inch PVC throughout the city in an effort to eliminate existing dead-end water mains. The added water mains will create loops in the system which will both improve system hydraulics and reduce the potential for stagnant water that can occur in dead-end mains. Reducing stagnant water is beneficial to the system by improving water quality and potentially reducing flushing maintenance requirements. Additionally, fire flow availability will greatly improve with the addition of the loops as demonstrated in Figures 3-6 and 3-7.

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

#### Design Criteria

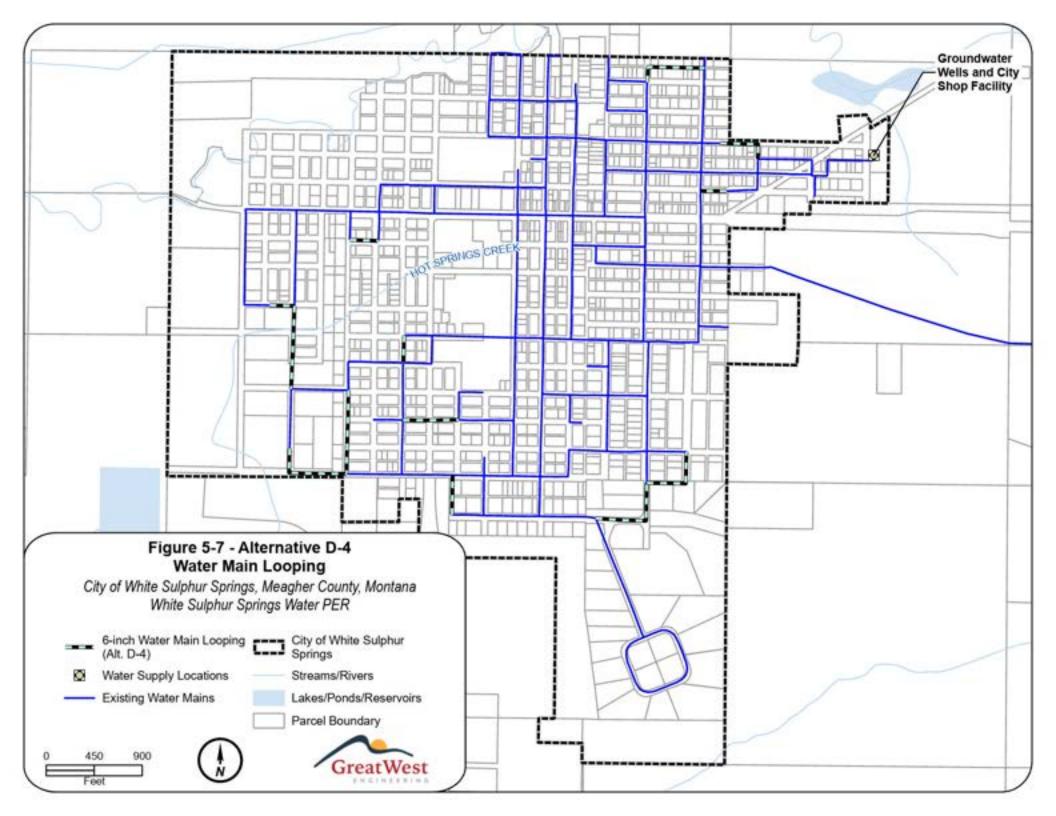
All water system improvements will comply with those requirements set forth in Circular DEQ 1. All design criteria presented in Circular DEQ 1 are applicable to each alternative considered, but specifically the transmission main project will meet the requirements in Chapter 8 – Transmission Mains, Distribution Systems, Piping & Appurtenances. All proposed improvements will receive MDEQ approval prior to commencement of any construction activity.

#### Map

Figure 5-7 presents a map of the proposed water main distribution additions that are part of Alternative D-4. It is assumed that all pipe loops will be 6-inch diameter PVC. Pipe size will be reevaluated during final design and adjusted if necessary.

#### **Environmental Impacts**

There are no significant environmental impacts to floodplains, wetlands, endangered species, historical and archaeological properties, or other important land resources as a result of implementation of this alternative. The generation of residuals and waste is expected to be minimal, and containment and disposal would be the responsibility of the contractor. Proposed water mains will be constructed within existing rights-of-way that have been previously disturbed.


This alternative involves water main construction at the intersection of Highway 12 and Hancock Street. Highway 12/3<sup>rd</sup> Avenue SW is a highway route owned by the Montana Department of Transportation (MDT). Construction within MDT right-of-way will require permitting that will be completed during preliminary design of the project.

#### Land Requirements

The water system improvements will occur in existing rights-of-way and no land acquisition is expected. Permitting will likely be required for water main construction within MDT right-of-way.

#### **Potential Construction Problems**

There are no known construction problems or other conditions which may affect construction for this alternative. It will be important the contractor coordinates with local businesses and residents during construction. Traffic control will be required, and temporary water service will be provided where existing mains must be taken out of service during installation of the new mains.



## Sustainability Considerations

Improving system water flow is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits. The current risks of limited fire flow due and stagnant water due to dead-end mains will be reduced with the implementation of this alternative.

#### Water and Energy Efficiency

There will be no changes to the water and energy efficiency of the system as a result of these improvements.

#### Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no impervious areas created as a result of the project and surface conditions will be restored upon completion of construction activities. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

#### Cost Estimates

Table 5-12 presents an estimated opinion of probable cost for Alternative D-4 which includes costs for construction, engineering, and administration. Table 5-13 presents an estimate of additional annual operation and maintenance costs associated with the project. Since Alternative D-4 adds on to the existing system, additional operation and maintenance can be expected due to labor associated with flushing hydrants and operation of water valves, plus additional mileage and vehicle maintenance for travel associated with regular monitoring by operations staff.

Table 5-12 - Alternative D-4 Opinion of Probable Cost

| #  | Bid Item                                     | Quantity | Units | Unit Price <sup>(1)</sup> | Total       |
|----|----------------------------------------------|----------|-------|---------------------------|-------------|
| 1  | Connect to Existing Water                    | 23       | EA    | \$2,900.00                | \$66,700    |
| 2  | Exploratory Excavation                       | 50       | HR    | \$300.00                  | \$15,000    |
| 3  | 6-inch PVC Water Main                        | 6,900    | LF    | \$110.00                  | \$759,000   |
| 4  | 6-inch Gate Valve w/ Valve Box               | 20       | EA    | \$2,300.00                | \$46,000    |
| 5  | 6-inch Fittings                              | 50       | EA    | \$940.00                  | \$47,000    |
| 6  | 6-inch Fire Hydrant with Gate Valve          | 10       | EA    | \$8,700.00                | \$87,000    |
| 7  | Water Service Connection, Curb Box and Valve | 60       | EA    | \$1,200.00                | \$72,000    |
| 8  | Temporary Water Service                      | 1        | LS    | \$45,000.00               | \$45,000    |
| 9  | 3/4-inch PE Water Service                    | 1,900    | LF    | \$50.00                   | \$95,000    |
| 10 | Flowable Fill                                | 50       | CY    | \$170.00                  | \$8,500     |
| 11 | Type A Surface Restoration (Asphalt)         | 4,700    | SY    | \$75.00                   | \$235,000   |
| 12 | Type B Surface Restoration (Aggregate)       | 2,900    | SY    | \$20.00                   | \$58,000    |
|    | Direct Construction Subtotal                 |          |       |                           | \$1,534,000 |
|    | Mobilization                                 |          | 10%   |                           | \$153,000   |
|    | Traffic Control                              |          | 1%    |                           | \$15,000    |
|    | Construction Subtotal                        |          |       |                           | \$1,702,000 |
|    | 2024 Construction Cost <sup>(2)</sup>        |          | 8.0%  |                           | \$1,838,000 |
|    | Contingency                                  |          | 20%   |                           | \$368,000   |
|    | Permitting                                   |          |       |                           | \$10,000    |
|    | Geotechnical Investigation                   |          |       |                           | \$20,000    |
|    | Engineering Design                           |          | 10%   |                           | \$221,000   |
|    | Engineering Construction                     |          | 10%   |                           | \$221,000   |
|    | Grant Admin, Legal, & Administrative         |          | 3%    |                           | \$66,000    |
|    | TOTAL(3)                                     |          |       |                           | \$2,744,000 |

<sup>(1)</sup>Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

Table 5-13 - Alternative D-4 Opinion of Probable O&M Costs

| # | O&M Item                          | Quantity | Units | Unit Price | Total   |
|---|-----------------------------------|----------|-------|------------|---------|
| 1 | Labor                             | 40       | HRS   | \$35.00    | \$1,400 |
| 2 | Spare Parts/Repair/Maintenance    | 1        | LS    | \$500.00   | \$500   |
| 3 | Vehicle Operation and Maintenance | 1        | LS    | \$250.00   | \$250   |
|   | TOTAL                             |          |       |            | \$2,200 |

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

## 6.0 SELECTION OF AN ALTERNATIVE

Each of the technically feasible alternatives considered meets the design criteria and applicable regulations identified in the alternative description. This section will examine advantages and disadvantages of each in terms of life cycle costs, operational and maintenance considerations, permitting concerns, social impacts, environmental impacts, and other non-monetary considerations.

# 6.1 Life Cycle Cost Analysis

The cost of extensive capital improvements to meet minimum health and safety requirements, applicable regulations, and environmental impacts is a great concern to small communities with limited budgets and resources. At the same time, some alternatives may have a low capital cost but high O&M costs that will put a continual burden on the community. A life cycle cost analysis provides a method to compare the costs of each alternative to one another.

To complete the life cycle cost analysis, the anticipated annual increase to O&M costs, and estimated salvage value of any improvements based upon a straight-line depreciation are converted to present day dollars using the "real" discount rate from Appendix C of OMB A-94. The "real" interest rate for a 20-year project is currently 2 percent. The useful life of the intake catwalk and flushing valve is assumed to be 50 years as well as all major pipelines and appurtenances for distribution and groundwater well improvements. Concrete work associated with the intake or treatment plant improvements is assumed to have a useful life of 75 years. Filter media, maintenance equipment, minor piping, and roadway components such as asphalt are assumed to have a useful life of 20 years while all electrical components and meters are assumed to have a useful life of 15 years. The net present value is then calculated for each alternative by adding the estimated capital cost and present worth of the increased O&M and then subtracting the present worth of the calculated salvage value.

Table 6-1 summarizes the 20-year life cycle cost analysis for the alternatives.

City of White Sulphur Springs Water System PER

Table 6-1 - Life Cycle Cost Analysis

| Alternative                                            | Capital Cost | Annual<br>Increase to<br>O&M | Present<br>Worth of O&M<br>Increase <sup>(1)</sup> | 20-Year<br>Salvage Value | Present<br>Worth of<br>Salvage <sup>(2)</sup> | Net Present<br>Worth | Criteria Score |
|--------------------------------------------------------|--------------|------------------------------|----------------------------------------------------|--------------------------|-----------------------------------------------|----------------------|----------------|
|                                                        |              | Supply                       | Alternatives                                       |                          |                                               |                      |                |
| S-2: Intake Pond Improvements                          | \$541,000    | \$12,700                     | \$207,700                                          | \$38,000                 | \$25,600                                      | \$723,100            | 0.8            |
| S-3: Groundwater Well Improvements                     | \$124,000    | \$-                          | \$-                                                | \$20,000                 | \$13,500                                      | \$110,500            | 9.2            |
|                                                        |              | Treatme                      | nt Alternatives                                    | 1                        |                                               |                      |                |
| T-3: Replace Filter Media                              | \$861,000    | \$-                          | \$-                                                | \$-                      | \$-                                           | \$861,000            | 2.5            |
| T-4a: Implement Scraping/Throw Over Cleaning Technique | \$16,000     | \$-                          | \$-                                                | \$-                      | \$-                                           | \$16,000             | 10.0           |
| T-4b: Implement Harrowing Cleaning<br>Technique        | \$153,000    | \$-                          | \$-                                                | \$-                      | \$-                                           | \$153,000            | 5.1            |
| T-5: Install Combined Filter Effluent Turbidimeter     | \$36,000     | \$-                          | \$-                                                | \$(6,000)                | \$(4,100)                                     | \$40,100             | 6.9            |
| T-6: Install Two New Slow Sand Filters                 | \$1,905,000  | \$5,600                      | \$91,600                                           | \$466,000                | \$313,700                                     | \$1,682,900          | 0.0            |
|                                                        |              | Distribution S               | System Alternative                                 | es                       |                                               |                      |                |
| D-2: Replace 12-inch Transmission Main                 | \$1,325,500  | \$-                          | \$-                                                | \$360,000                | \$242,300                                     | \$1,083,200          | 9.3            |
| D-3: Water Main Distribution Replacements              | \$9,360,000  | \$-                          | \$-                                                | \$1,999,000              | \$1,345,300                                   | \$8,014,700          | 0.7            |
| D-4: Water Main Looping                                | \$2,744,000  | \$2,200                      | \$36,000                                           | \$620,000                | \$417,300                                     | \$2,362,700          | 5.8            |

<sup>(1)</sup>In accordance with the Uniform Preliminary Engineering Report Outline, annual O&M costs are converted to present day dollars based on a uniform series present worth calculation using the "real" discount rate form the Office of Management and Budget (OMB) and a 20-year life cycle.

(2)Based on a single payment present worth calculation using the "real" discount rate and a 20-year life cycle.

# 6.2 Ranking Criteria

A matrix to compare each alternative objectively against the other will be developed to select the preferred alternative. Each alternative will be given a score ranging from 0 to 10 for a number of criteria, with 0 representing a negative impact and 10 representing the maximum benefit to the community. The alternatives will begin with a score of 5 for each criterion, and then the score will be adjusted up or down relative to the benefit of the particular alternative in relation to the other alternatives.

In addition to scoring each alternative, the criteria themselves with be weighted in relation to one another. Weighting factors ranging from 1 to 10 will be used to give greater importance to items such as cost. This is appropriate, as often times higher investments are made to overcome many other problems such as reliability or to mitigate problems with technical feasibility or environmental concerns.

## 6.2.1 Life Cycle Costs

The cost of extensive capital improvements to meet minimum health and safety requirements, applicable regulations, and environmental impacts is a great concern to small communities with limited budgets and resources. Life cycle costs also include anticipated increases to ongoing O&M costs. Accordingly, this criterion will be provided with the maximum weighting factor of 10. This represents over 30% of the total weighting. Public opinion is closely tied to cost also, giving the cost for each alternative even more weight.

In addition to providing the maximum emphasis on costs, a method must be utilized to provide an objective comparison of costs for each alternative relative to one another and not just an overall comparison. Given a range of costs for various alternatives, the relative cost of any alternative can be determined using the lowest cost and the highest cost from the range of costs and the following equation.

For example, if a number of alternatives were compared having costs of \$500,000, \$1,000,000 and \$2,000,000, the above equation would provide scores of 8.8, 5.0, and 1.3, respectively. The utilization of a formula to score the 20-year life cycle costs in the matrix eliminates any subjectivity and provides a consistent, relative comparison of costs.

#### **6.2.2** Operational and Maintenance Considerations

Operation and maintenance are an important issue when considering any large capital improvements within a small community. The costs for O&M associated with the alternatives is included in the 20-year life cycle costs compared under the financial feasibility, but there are other considerations that must be weighed for the O&M associated with each alternative.

The city has limited resources and manpower, and some alternatives may have O&M requirements that drastically tax those limited resources creating deficiencies in other areas. city personnel also have a much more intrinsic knowledge of the system than the average resident or even Council members. Priorities identified by the operators to facilitate the efficient operation of the system must be given some weight.

This criterion will be provided with a weighting factor of 7.

## 6.2.3 Permitting Issues

Some alternatives may encounter permitting issues that would significantly delay the project and/or result in additional expenses for the community. Consideration for these concerns will be given under this criterion.

This criterion will be provided with a weighting factor of 4.

#### 6.2.4 Social Impacts

Social impacts will be considered in the final alternative selection as a project poorly supported by the community will have a limited chance of success. Efforts such as public hearings are ways to identify public opinion and perceptions. Costs are always a concern with consumers, but the health and safety of their families is just as important.

This criterion will be provided with a weighting factor of 10.

#### **6.2.5** Environmental Impacts

Environmental impacts for each alternative, whether detrimental or beneficial, need to be considered in the final selection of a preferred alternative.

This criterion will be provided with a weighting factor of 5.

#### 6.2.6 Sustainability Considerations

Sustainable utility management practices can greatly benefit a community and result in cost savings. Consideration will be given to alternatives benefitting the sustainability of the utility.

This criterion will be provided with a weighting factor of 4.

## 6.2.7 Land Acquisition

Issues with land acquisition often supersede the black-and-white world of engineering. This ranking category will include the feasibility of acquiring sufficient land in terms of lease, right-of-way, and/or land purchases. Although these are not strict engineering issues, problems with land acquisition can greatly impact a project's overall feasibility and require that land issues be given a very serious consideration.

This criterion will be provided with a weighting factor of 3.

## 6.3 Scoring of Supply Alternatives

Three alternatives were considered to address deficiencies related to the city's supply facilities. The No Action alternative is not scored. The alternatives in this section are:

- Alternative S-1: No Action
- Alternative S-2: Intake Pond Improvements
- Alternative S-3: Groundwater Well Improvements

## 6.3.1 Life Cycle Costs

The 20-year life cycle costs calculated for each alternative were entered into the equation in Section 6.2.1. Alternatives received the following scores:

- Alternative S-2 (Intake): 0.8
- Alternative S-3 (Groundwater): 9.2

## 6.3.2 Operational and Maintenance Considerations

The operational and maintenance considerations extend beyond those of total cost. The cost of O&M has already been considered as part of the life cycle costs, therefore this criteria is based on the actual work involved in the O&M of each alternative versus the cost of it.

Alternative S-2 will require some additional maintenance due to improved infrastructure that will require more frequent access to keep maintained and functional, as it is the city's desire to keep the Willow Creek surface source viable. Additional maintenance will be required to maintain the side-by-side vehicle and raw water turbidimeter at the intake dam. With improved access, personnel will be able to and should access the site more frequently for site visits, flushing, and removal of deadfall.

Alternative S-3 would require minimal changes to operation and maintenance, other than some minimal training to become familiar with the operation of the new flow meter. The operation of the groundwater source would be similar to existing other than with improved flow measurement capabilities, operators will devote less time to recording manual flow measurements.

The alternatives are scored as follows:

- Alternative S-2 (Intake): 3
- Alternative S-3 (Groundwater): 6

## 6.3.3 Permitting Issues

Alternative S-2 will require permitting and consultation with multiple agencies due to the location of the project within an environmentally sensitive area and due to the nature of the work which involves draining and dredging a surface water body. Alternative S-3 will not require permitting other than approval from DEQ prior to construction.

The alternatives are scored as follows:

- Alternative S-2 (Intake): 2
- Alternative S-3 (Groundwater): 5

## 6.3.4 Social Impacts

The Willow Creek source operates entirely by gravity and is a high-quality water source that many residents prefer in terms of taste. City personnel, Council members, and residents recognize the importance of maintaining the Willow Creek surface water source and have indicated strong preference in proceeding with construction of Alternative S-2 over any improvements to the groundwater system.

The alternatives are scored as follows:

• Alternative S-2 (Intake): 10

• Alternative S-3 (Groundwater): 5

# 6.3.5 Environmental Impacts

The potential for environmental impacts is higher with Alternative S-2 due to the location of the project in forested land and within surface water. The project will be required to mitigate impacts during and after construction to the Westslope Cutthroat Trout population, wetlands, surface water, and the existing intake facilities which may have historical significance. Implementation of the project will benefit the environment post-construction due to improved water quality within and downstream of Willow Creek reservoir. Environmental impacts from Alternative S-3 will be minimal other than temporary ground disturbance during construction.

The alternatives are scored as follows:

Alternative S-2 (Intake): 2

Alternative S-3 (Groundwater): 4

## **6.3.6** Sustainability Considerations

Alternative S-2 will provide a greater benefit in terms of sustainability since use of the Willow Creek surface source operates entirely by gravity. Improvements to the intake will allow the city continued use of the surface water source and less reliance on the pumped groundwater source, thereby reducing energy consumption. Alternative S-3 will have little impact on sustainability other than allowing the city to better manage its supply and account for water loss through improved metering capabilities.

The alternatives are scored as follows:

Alternative S-2 (Intake): 10

Alternative S-3 (Groundwater): 6

#### **6.3.7** Land Acquisition

Neither supply alternative will require land acquisition, however Alternative S-2 will require landowner input and coordination during design since the project is accessed via easements on private land. The project must not adversely affect land use and function of the landowner's property or adversely affect public lands. Alternative S-3 is located on city property.

The alternatives are scored as follows:

- Alternative S-2 (Intake): 4
- Alternative S-3 (Groundwater): 5

## 6.4 Scoring of Treatment Alternatives

Six alternatives were considered to address deficiencies related to the city's treatment facilities. The No Action alternative is not scored. Alternative T-2 is identical to Alternative S-2 and was scored in the previous section. The alternatives in this section are:

- Alternative T-1: No Action
- Alternative T-2: Reduce Algae and Turbidity Loads on WTP (Identical to Alternative S-2)
- Alternative T-3: Replace Filter Media
- Alternative T-4a: Implement Scraping/Throw Over Cleaning Technique
- Alternative T-4b: Implement Harrowing Cleaning Technique
- Alternative T-5: Install Combined Filter Effluent Turbidimeter
- Alternative T-6: Install Two New Sand Filters

## 6.4.1 Life Cycle Costs

The 20-year life cycle costs calculated for each alternative were entered into the equation in Section 6.2.1. Alternatives received the following scores:

- Alternative T-3 (Filter Media): 2.5
- Alternative T-4a (Scraping Technique): 10.0
- Alternative T-4b (Harrowing Technique): 5.1
- Alternative T-5 (Turbidimeter): 6.9
- Alternative T-6 (New Sand Filters): 0.0

#### **6.4.2** Operational and Maintenance Considerations

The operational and maintenance considerations extend beyond those of total cost. The cost of O&M has already been considered as part of the life cycle costs, therefore this criteria is based on the actual work involved in the O&M of each alternative versus the cost of it.

Alternative T-3 is not expected to have an effect on operation and maintenance. Implementation of a new cleaning technique (scraping or harrowing) can be expected to reduce operation and maintenance slightly due to the implementation of mechanical techniques versus the hand raking

technique that is currently used. Alternative T-5 will have minimal effect on operation and maintenance and Alternative T-6 will require some additional operation and maintenance labor due to cleaning and maintenance of additional filters.

The alternatives are scored as follows:

- Alternative T-3 (Filter Media): 5
- Alternative T-4a (Scraping Technique): 6
- Alternative T-4b (Harrowing Technique): 7
- Alternative T-5 (Turbidimeter): 5
- Alternative T-6 (New Sand Filters): 3

## 6.4.3 Permitting Issues

No anticipated permitting issues exist for the treatment alternatives. All alternatives received a score of 5 with the exception of Alternative T-4b. Implementation of the harrowing technique was scored lower since the alternative will require construction and associated additional permitting through DEQ for a wash water waste drying lagoon.

The alternatives are scored as follows:

- Alternative T-3 (Filter Media): 5
- Alternative T-4a (Scraping Technique): 5
- Alternative T-4b (Harrowing Technique): 3
- Alternative T-5 (Turbidimeter): 5
- Alternative T-6 (New Sand Filters): 5

## 6.4.4 Social Impacts

Public opinion for system improvements is often based on the maximum benefit received by the community that would increase monthly rates the least. The Willow Creek source operates entirely by gravity and is a high-quality water source that many residents prefer in terms of taste. City personnel, Council members, and residents recognize the importance of maintaining the Willow Creek surface water source and treatment plant. The city intends to begin evaluation of the treatment plant performance through implementation of some of the lower cost items such as evaluation the filter media and implementing a more effective cleaning technique. The turbidimeter and new sand filters are less important at this time. The city will only consider new

sand filters as a last resort should the implementation of Alternatives T-3, T-4a, or T-4b prove insufficient to increase plant performance.

The alternatives are scored as follows:

- Alternative T-3 (Filter Media): 10
- Alternative T-4a (Scraping Technique): 9
- Alternative T-4b (Harrowing Technique): 8
- Alternative T-5 (Turbidimeter): 5
- Alternative T-6 (New Sand Filters): 3

#### **6.4.5** Environmental Impacts

There are no significant environmental impacts with any of the treatment alternatives. The majority of alternatives will take place within the existing sand filter building enclosure. The harrowing technique and new sand filter alternatives were scored slightly lower due to additional disturbance that would occur outside of the building due to a new wash water drying lagoon and larger footprint associated with the new sand filters.

The alternatives are scored as follows:

- Alternative T-3 (Filter Media): 5
- Alternative T-4a (Scraping Technique): 5
- Alternative T-4b (Harrowing Technique): 4
- Alternative T-5 (Turbidimeter): 5
- Alternative T-6 (New Sand Filters): 4

## 6.4.6 Sustainability Considerations

All treatment alternatives will provide a greater benefit in terms of sustainability since use of the Willow Creek surface source operates entirely by gravity. Improvements to the treatment plant performance will allow the city continued use of the surface water source and less reliance on the pumped groundwater source, thereby reducing energy consumption. Alternative T-5 will have little impact on sustainability other than providing the city with improved monitoring capabilities.

The alternatives are scored as follows:

- Alternative T-3 (Filter Media): 10
- Alternative T-4a (Scraping Technique): 10

- Alternative T-4b (Harrowing Technique): 10
- Alternative T-5 (Turbidimeter): 5
- Alternative T-6 (New Sand Filters): 10

## 6.4.7 Land Acquisition

Neither treatment alternative will require land acquisition with the exception of Alternative T-6. Expansion of the sand filter treatment building has the potential to extend outside of the current easement footprint and may require negotiations as part of the project.

The alternatives are scored as follows:

- Alternative T-3 (Filter Media): 5
- Alternative T-4a (Scraping Technique): 5
- Alternative T-4b (Harrowing Technique): 5
- Alternative T-5 (Turbidimeter): 5
- Alternative T-6 (New Sand Filters): 4

## 6.5 Scoring of Distribution System Alternatives

Four alternatives were considered to address deficiencies related to the city's distribution system. The No Action alternative is not scored. The alternatives in this section are:

- Alternative D-1: No Action
- Alternative D-2: Replace 12-inch Transmission Main
- Alternative D-3: Water Main Distribution Replacements
- Alternative D-4: Water Main Looping

## 6.5.1 Life Cycle Costs

The 20-year life cycle costs calculated for each alternative were entered into the equation in Section 6.2.1. Alternatives received the following scores:

- Alternative D-2 (Transmission Main): 9.3
- Alternative D-3 (Distribution Replacements): 0.7
- Alternative D-4 (Looping): 5.8

#### **6.5.2** Operational and Maintenance Considerations

It is very likely that O&M costs will be reduced with the implementation of distribution system improvements. The only distribution system alternative expected to slightly increase operation and maintenance is Alternative D-4 due to the construction of new mains the city will be required to maintain.

The alternatives are scored as follows:

- Alternative D-2 (Transmission Main): 8
- Alternative D-3 (Distribution Replacements): 8
- Alternative D-4 (Looping): 4

## 6.5.3 Permitting Issues

The transmission main project will likely require some stream permitting as the proposed pipeline will bore underneath the South Side Canal. Portions of the distribution improvements within the city will require permitting with MDT as portions of the proposed alignments are within MDT right-of-way.

The alternatives are scored as follows:

- Alternative D-2 (Transmission Main): 4
- Alternative D-3 (Distribution Replacements): 3
- Alternative D-4 (Looping): 4

#### 6.5.4 Social Impacts

Implementing the water transmission and distribution system improvements would reduce leakage, reduce pumping costs, and improve fire flow in the system, providing benefit to the residents of White Sulphur Springs. The City Council has indicated preference in replacement of the leaking 1940s era transmission main over distribution replacements or water main looping within the city.

The alternatives are scored as follows:

- Alternative D-2 (Transmission Main): 10
- Alternative D-3 (Distribution Replacements): 8
- Alternative D-4 (Looping): 5

#### 6.5.5 Environmental Impacts

Environmental impacts are expected to be minimal as water mains within the city will be replaced or constructed within existing rights-of-way. The transmission main was scored slightly lower due to the canal crossing and associated permitting.

The alternatives are scored as follows:

- Alternative D-2 (Transmission Main): 4
- Alternative D-3 (Distribution Replacements): 5
- Alternative D-4 (Looping): 5

## **6.5.6** Sustainability Considerations

Distribution and transmission system improvements are a sustainable utility management practice that will increase system reliability and safety, as well as reduce pumping and energy consumption due to water loss. Alternative D-2 provides the greatest benefit to sustainability as the transmission main is believed to be the largest source of leakage in the system. Alternative D-4 provides less benefit to sustainability since the project will not have an effect on reducing water loss but will greatly improve fire flows.

The alternatives are scored as follows:

- Alternative D-2 (Transmission Main): 10
- Alternative D-3 (Distribution Replacements): 9
- Alternative D-4 (Looping): 5

## 6.5.7 Land Acquisition

Land acquisition is not required for the distribution system alternatives as water mains will be replaced and constructed within existing rights-of-way with the exception of Alternative D-2. A portion of the transmission main will traverse private land and easement negotiations will be required for final placement of the water main.

The alternatives are scored as follows:

- Alternative D-2 (Transmission Main): 3
- Alternative D-3 (Distribution Replacements): 5
- Alternative D-4 (Looping): 5

# 6.6 Decision Matrix and Selection of Preferred Alternative

The scores and weighted scores for each alternative were compiled to provide a comparison using a decision matrix, presented in Table 6-2. At this time, the city has selected to replace the existing leaking transmission main (Alternative D-2). It is their intent to include intake and treatment improvements as a future phase in order to put the Willow Creek surface source back online. A detailed description of the preferred alternative is provided in Chapter 7.

City of White Sulphur Springs Water System PER

Table 6-2 - Decision Matrix

|             | Life Cyc | le Costs | Operati<br>Mainte | on and<br>nance | Perm    | itting | Social I    | mpacts     | Environ<br>Impa |      | Sustair | ability | Land Acc | quisition |       |
|-------------|----------|----------|-------------------|-----------------|---------|--------|-------------|------------|-----------------|------|---------|---------|----------|-----------|-------|
| Alternative | Weight:  | 10       | Weight:           | 7               | Weight: | 4      | Weight:     | 10         | Weight:         | 5    | Weight: | 4       | Weight:  | 3         | TOTAL |
|             | Score    | Wtd.     | Score             | Wtd.            | Score   | Wtd.   | Score       | Wtd.       | Score           | Wtd. | Score   | Wtd.    | Score    | Wtd.      |       |
|             |          |          |                   |                 |         | S      | Supply Alte | rnatives   |                 |      |         |         |          |           |       |
| S-2         | 0.8      | 8        | 3.0               | 21              | 2.0     | 8      | 10.0        | 100        | 2.0             | 10   | 10.0    | 40      | 4.0      | 12        | 199   |
| S-3         | 9.2      | 92       | 6.0               | 42              | 5.0     | 20     | 5.0         | 50         | 4.0             | 20   | 6.0     | 24      | 5.0      | 15        | 263   |
|             | ı        |          |                   |                 |         | Tre    | eatment Alt | ernatives  |                 |      |         |         |          |           |       |
| T-3         | 2.5      | 25       | 5.0               | 35              | 5.0     | 20     | 10.0        | 100        | 5.0             | 25   | 10.0    | 40      | 5.0      | 15        | 260   |
| T-4a        | 10.0     | 100      | 6.0               | 42              | 5.0     | 20     | 9.0         | 90         | 5.0             | 25   | 10.0    | 40      | 5.0      | 15        | 332   |
| T-4b        | 5.1      | 51       | 7.0               | 49              | 3.0     | 12     | 8.0         | 80         | 4.0             | 20   | 10.0    | 40      | 5.0      | 15        | 267   |
| T-5         | 6.9      | 69       | 5.0               | 35              | 5.0     | 20     | 5.0         | 50         | 5.0             | 25   | 5.0     | 20      | 5.0      | 15        | 234   |
| T-6         | 0.0      | 0        | 3.0               | 21              | 5.0     | 20     | 3.0         | 30         | 4.0             | 20   | 10.0    | 40      | 4.0      | 12        | 143   |
|             |          |          |                   |                 |         | Dis    | tribution A | Iternative | S               |      |         |         |          |           |       |
| D-2         | 9.3      | 93       | 8.0               | 56              | 4.0     | 16     | 10.0        | 100        | 4.0             | 20   | 10.0    | 40      | 3.0      | 9         | 334   |
| D-3         | 0.7      | 7        | 8.0               | 56              | 3.0     | 12     | 8.0         | 80         | 5.0             | 25   | 9.0     | 36      | 5.0      | 15        | 231   |
| D-4         | 5.8      | 58       | 4.0               | 28              | 4.0     | 16     | 5.0         | 50         | 5.0             | 25   | 5.0     | 20      | 5.0      | 15        | 212   |

The above scoring and weighting are subjective. Alternatives that score overall within 10 points of each other may essentially hold the same degree of preference.

# 7.0 PROPOSED PROJECT

As discussed in Chapter 6, the preferred project is Alternative D-2. The preferred alternative will be discussed in this chapter.


# 7.1 Preliminary Project Design

The city has identified replacement of the 1940s era deteriorated steel transmission main as one of its top priorities due to concerns regarding the age of this pipe, the suspected large amounts of leakage from this pipe, and the threat of breaks among this pipe. The line has shown to be actively leaking with the leakage surfacing in the field. The city wishes to replace the 1946 steel line and re-align the main along Castle Mountain Road and along property lines in the adjoining subdivision.

This preferred alternative includes construction of approximately 4,000 lineal feet of new 12-inch PVC water transmission main from the water storage tank to the existing water main connection near the Townsend Ranch property line. The project will abandon the existing 1940's era steel transmission main which is known to be leaking excessively. The new PVC transmission main will deviate from the original 1940s alignment and will follow the Castle Mountain Road alignment as well as existing property lines in the adjoining subdivision. Easement negotiations will be required for this realignment with the goal to benefit property owners by re-aligning the water line along property lines versus the current alignment which traverses through the properties and potentially limits the owner's use of their properties. There will be no water services off of the new transmission main as the subdivision has its own drinking water source and is outside of the city limits. The project will include a pipeline bore underneath the South Side Canal.

The project will be designed in accordance with Circular DEQ 1 and will receive MDEQ approval prior to commencement of any construction activity.

Figure 7-1 presents a map of the proposed project.



# 7.2 Project Schedule

Chapter 8 of this report includes a detailed implementation schedule. Tasks associated with implementation of the project include securing funding, easement negotiations, permitting, design, bidding, and construction. It is anticipated that permitting, easement negotiation, and design will commence in fall of 2023. Design plans and specifications for the water system improvements will be submitted to MDEQ and other required agencies for approval by the end of 2023 and bidding and construction for the project will take place in the winter and spring of 2024. Construction is anticipated to be completed by the end of 2024. It is likely this PER will then be updated to address intake and treatment plant deficiencies and used to support future funding applications.

## 7.3 Permit Requirements

The design phase of the project will include obtaining plans and specifications approval from the Montana Department of Environmental Quality Public Water Supply Section. The project will involve a bore underneath the South Side Canal which will likely require permitting from the Army Corps of Engineers for the crossing and other agencies as necessary to assure no adverse impacts to surface water quality or wetlands as a result of construction activities.

The proposed transmission main will be installed within the County road right-of-way of Castle Mountain Estate Road and may require permitting from the County and/or subdivision homeowner's association for placement of the pipeline within the right-of-way. Additionally, easement negotiations will need to occur concurrently with the design process.

Construction permits will likely include a Stormwater Pollution Prevention Plan (SWPPP), which will be the responsibility of the selected contractor.

# 7.4 Sustainability Considerations

The preferred alternative will replace a critical component of water system infrastructure and is a sustainable utility management practice that aids in creating a resilient utility and provides social, economic, and environmental benefits. The current risk of contamination associated with the leaking and failing transmission main will be reduced with the implementation of this alternative.

## 7.4.1 Water and Energy Efficiency

It is roughly estimated that the system loses approximately 40-50% of the water pumped into the system. The transmission main is believed to be the biggest source of leakage in the system and operators report the line has shown to be actively leaking with the leakage surfacing in the field. Replacing the leaking transmission main will reduce pumping costs and eliminate unnecessary demand on the system, resulting in energy and water conservation.

#### 7.4.2 Green Infrastructure

The project will have little impact on post-construction stormwater management as there will be no impervious areas created as a result of the project and surface conditions will be restored upon completion of construction activities. Erosion and sediment control measures will be implemented during construction to reduce or eliminate the erosion of soils and transport of sediment offsite as a result of construction activities.

# 7.5 Total Project Cost Estimate

Table 7-1 presents an estimated opinion of probable cost for the preferred alternative which includes costs for construction, engineering, and administration.

Table 7-1 - Preferred Alternative Opinion of Probable Cost

| # | Bid Item                              | Quantity | Units | Unit Price <sup>(1)</sup> | Total       |
|---|---------------------------------------|----------|-------|---------------------------|-------------|
| 1 | 12-inch PVC Water Main                | 4,000    | LF    | \$125.00                  | \$500,000   |
| 2 | 12-inch Gate Valve                    | 5        | EA    | \$8,000.00                | \$40,000    |
| 3 | 12-inch Fittings                      | 5        | EA    | \$4,500.00                | \$22,500    |
| 4 | HDPE Bore for Canal Crossing          | 150      | LF    | \$250.00                  | \$37,500    |
| 5 | Gravel Surface Restoration            | 4,000    | LF    | \$25.00                   | \$100,000   |
| 6 | Seed and Fertilize                    | 1        | LS    | \$8,000.00                | \$8,000     |
|   | Direct Construction Subtotal          |          |       |                           | \$708,000   |
|   | Mobilization                          |          | 10%   |                           | \$71,000    |
|   | Traffic Control                       | 1%       |       |                           | \$7,000     |
|   | Construction Subtotal                 |          |       |                           | \$786,000   |
|   | 2024 Construction Cost <sup>(2)</sup> |          | 8.0%  |                           | \$849,000   |
|   | Contingency                           |          | 20%   |                           | \$170,000   |
|   | Permitting                            |          |       |                           | \$5,000     |
|   | Land Acquisition                      |          |       |                           | \$2,500     |
|   | Geotechnical Investigation            |          |       |                           | \$10,000    |
|   | Engineering Design                    |          | 10%   |                           | \$102,000   |
|   | Engineering Construction              |          | 10%   |                           | \$102,000   |
|   | Grant Admin, Legal, & Administrative  |          |       |                           | \$85,000    |
|   | TOTAL <sup>(3)</sup>                  |          |       |                           | \$1,325,500 |

<sup>(1)</sup>Estimated unit costs are based upon estimates from suppliers and bid tabs for similar projects throughout Montana.

# 7.6 Annual Operating Budget

The system's annual operating budget was discussed in Chapter 3, and potential impacts to O&M costs were discussed for each alternative. The following sections will summarize this information for ease of reference. Appendix U can be referenced for detailed records from the city.

#### 7.6.1 Income

The main source of revenue for the water system is the collection of water sales in the form of water rates. Users are charged a flat fee of \$42.87 plus an additional usage fee based on the amount of gallons used each month. This rate structure has been in place since 2018. The city does not currently use a rate structure based on water meter size.

<sup>&</sup>lt;sup>(2)</sup>The ENR average Construction Cost Index is +8.0% (as of January 2022), so capital costs are projected to an anticipated construction date in 2024 using an 8% inflation rate.

<sup>(3)</sup>The total cost estimate is a Class 5 Estimate as defined by the Association for the Advancement of Cost Engineering.

Revenue from the collection of water rates for recent years was discussed in Section 3.5 of this report and on average is about \$392,000 per year. The projected income as a result of the user rate increase that is proposed for the transmission main project is approximately \$32,303 annually, or \$4.18 per month per equivalent dwelling unit (EDU).

#### 7.6.2 Annual O&M Costs

O&M costs are not anticipated to increase with the proposed project and may in fact be reduced with proposed improvements due to less power required for pumping costs. If the city does recognize a cost savings, the extra funds can be used to pay down the debt that will result from this project or to further build a reserve account for future system improvements.

Current O&M costs are approximately \$250,000 per year, excluding debt service payments. O&M costs are currently covered by the existing water rates.

#### 7.6.3 Debt Repayments

The city is currently paying on four SRF drinking water loans to cover costs for water projects that date back to 2012. The combined average annual payment for the existing four bonds is approximately \$119,000. The total proposed financing for this project includes a \$268,792 SRF loan. The estimated annual debt service for the loan is \$19,569. The loan payments will be covered through user fees which will increase as necessary to cover the additional loan payments. The proposed funding package is discussed further in Chapter 8.

#### 7.6.4 Reserves

#### **Debt Service Reserve**

As shown on the coverage calculation included within Appendix U, the highest existing debt service payment is expected to be \$121,133 occurring in fiscal year 2026. Assuming a 10% loan coverage, the highest total existing annual debt service cost is \$133,246.

The proposed funding scenario for the transmission main project will include a fifth low-interest loan from the Drinking Water State Revolving Fund. SRF requires a 10% bond reserve to be maintained on loan funds. The estimated debt service annual reserve amount for this project is \$19,569, bringing the total proposed debt service cost to approximately \$153,000.

#### Short-Lived Asset Reserve

Short-lived assets are water system components that are typically replaced every 15 years or less and are not associated with projects that are usually funded with long-term capital financing. Examples of short-lived assets include parts such pumps, pump motors and controls, telemetry, meters, meter boxes, vaults, lids, access hatches, and other small equipment. Table 7-2 provides a summary of estimated short-lived asset costs for components within the White Sulphur Springs water system. It is recommended the city have an annual reserve of at least \$25,000 to fund replacement of short-lived assets.

Table 7-2 - Short-Lived Assets

| Short-Lived Asset                           | Replacement<br>Cost | Useful<br>Life/Service<br>Required | Annual<br>Contribution |
|---------------------------------------------|---------------------|------------------------------------|------------------------|
| Computer equipment/software/office supplies | \$1,500             | 5                                  | \$300                  |
| Tank cleaning and inspection                | \$10,000            | 5                                  | \$2,000                |
| Chemical feed system (\$5,000 x 2)          | \$10,000            | 10                                 | \$1,000                |
| Tank mixer                                  | \$10,000            | 10                                 | \$1,000                |
| Tank vents, access hatches                  | \$5,000             | 10                                 | \$500                  |
| Telemetry control system                    | \$15,000            | 10                                 | \$1,500                |
| Well source flow meter                      | \$5,000             | 10                                 | \$500                  |
| Emergency generator                         | \$15,000            | 15                                 | \$1,000                |
| Fencing                                     | \$10,000            | 15                                 | \$667                  |
| Individual water meters (\$250 x 623)       | \$155,750           | 15                                 | \$10,383               |
| New pump motors (\$4,500 x 2)               | \$9,000             | 15                                 | \$600                  |
| New well pumps (\$10,000 x 2)               | \$20,000            | 15                                 | \$1,333                |
| Pump control upgrades (\$5,000 x 2)         | \$10,000            | 15                                 | \$667                  |
| Turbidimeters (\$6,000 x 5)                 | \$30,000            | 15                                 | \$2,000                |
| Valving at treatment plant                  | \$7,500             | 15                                 | \$500                  |
| Valving at well site                        | \$7,500             | 15                                 | \$500                  |
| Vehicle replacement                         | \$15,000            | 15                                 | \$1,000                |
|                                             | Total Ann           | ual Contributions                  | \$25,450               |

## 8.0 CONCLUSIONS AND RECOMMENDATIONS

The previous sections of this report have focused on the need for the project, physical and socioeconomic characteristics of the community, project costs, and the technical viability. This section will focus on the financial strategy and implementation schedule. One of the main goals of a comprehensive PER is to provide a workable funding plan for recommended improvements included in the preferred alternative. This section will discuss available funding sources as well as develop various funding scenarios. Ultimately, a preferred funding scenario will be selected and further analyzed along with an associated implementation plan.

# 8.1 Funding

Due to the high cost of the proposed improvements, the City of White Sulphur Springs plans to pursue outside assistance to fund the project in the form of grants and loans. Prior to examining the funding sources available to the city, it is important to understand the concept of "Target Rate" as established by the Montana Department of Commerce (MDOC). The target rate is used to determine if a municipality is paying its fair share of a project's cost. To apply for grant funding from the MDOC, user rates after completion of the project must meet or exceed the established target rates.

The target rates are calculated as a percentage of the median household income (MHI) for the municipality, as listed in the 2019 American Community Survey. The MDOC has determined, based on surveying communities that have undergone recent upgrades to their water and/or wastewater systems that the "fair share" of cost per user after completing a project should be approximately 1.4% of the median household income for water only, 0.9% for wastewater only, or 2.3% for water and wastewater combined.

According to the MDOC's website, the MHI for the City of White Sulphur Springs is \$41,458 and the target rate for the combined water and sewer system is \$79.46. The existing average water rate for the city is \$47.94 and the existing sewer rate is \$42.00. The current combined rate of \$89.94 is 113% of the target rate, prior to implementation of this project. Appendix W includes MHI and target rate information for White Sulphur Springs.

## 8.1.1 Funding Sources

The following sections provide a brief description of the potential funding sources and whether or not the City of White Sulphur Springs would be eligible for those funds.

#### Montana Coal Endowment Program (MCEP)

MCEP is a state funded grant program, which is administered by the Montana Department of Commerce (MDOC). MCEP provides financial assistance to local governments for infrastructure improvements. Grants can be obtained from MCEP for up to \$500,000 if the projected user rates are less than 125% of the target rate, for up to \$625,000 if projected user rates are between 125% and 150% of the target rate, and for up to \$750,000 if the projected user rates are over 150% of the target rate. MCEP grant recipients are required to match the grant dollar for dollar, but the match may come from a variety of sources including other grants, loans, or cash contributions.

The proposed project is eligible for MCEP funds. The city's user rates are currently 113% of the target rate for the community. With the existing rates, the city is eligible for a \$500,000 MCEP grant. Additionally, the focus of the MCEP program is public health and safety. Preserving the integrity of the city's water transmission system is vital to protecting public health and safety of the White Sulphur Springs residents. A new transmission main will greatly reduce the threat of main breaks and backflow contamination of the water system.

The use of MCEP grant funding was ultimately not selected in the city's preferred funding strategy for this project due to timing of the availability of grant funds. MCEP grant applications are only accepted every other year, in the spring of even numbered years. If applied for, MCEP funds for this project would not become available until spring of 2025. The city prefers to pursue an alternate funding package that would allow for earlier design and construction of the transmission main project.

#### Renewable Resource Grant and Loan Program (RRGL)

RRGL is a state program that is funded through interest accrued on the Resource Indemnity Trust Fund and the sale of Coal Severance Tax Bonds and is administered by the Montana Department of Natural Resources and Conservation (DNRC). The primary purpose of the RRGL is to enhance Montana's renewable resources. For public facilities projects that conserve, manage, develop, or protect renewable resources, grants of up to \$125,000 are available.

The proposed project will be promoting the city's water conservation efforts by eliminating leaking transmission system components. This will also promote energy conservation in that less pumping will be required if the leaks are reduced. Replacing deteriorated infrastructure will greatly reduce wasted water and improve the city's competitiveness in obtaining up to \$125,000 of grant funds through the DNRC-RRGL program.

The use of RRGL grant funding was ultimately not selected in the city's preferred funding strategy for this project due to the timing of the availability of grant funds. Similar to MCEP, RRGL grant applications are only accepted every other year, in the spring of even numbered years. If applied for, RRGL funds for this project would not become available until spring of 2025. The city prefers to pursue an alternate funding package that would allow for earlier design and construction of the transmission main project.

# Community Development Block Grant (CDBG)

CDBG is a federally funded program that is also administered by the Montana Department of Commerce (MDOC). The primary purpose of CDBG funds is to benefit low to moderate income (LMI) families. Hence, a municipality must have an LMI of 51% or greater. This is usually determined by the current Census. However, under certain circumstances, the MDOC may allow an income survey to be completed (such as there have been major economic changes since the Census or if a community is only slightly under the required LMI percentage).

The maximum CDBG grant award is \$750,000 with a limit of \$20,000 per LMI household, so a community needs 37 LMI households to apply for the maximum grant funds. The use of CDBG funds require a 25% local match that can be provided through cash funds, loans, or a combination thereof.

The City of White Sulphur Springs has an LMI of 50.8%, which is below the required LMI of 51%. The community does not qualify for CDBG funding and does not wish to pursue an income survey at this time. The preferred funding strategy assumes no CDBG funds will be available for the transmission main project.

# State Revolving Fund (SRF)

SRF provides low-interest loan funds for both water and wastewater projects through the Drinking Water State Revolving Fund (DWSRF) and the Water Pollution Control State Revolving Fund (WPCSRF), respectively. The SRF program is administered by the Montana Department of

Environmental Quality and the DNRC. Current loan terms include an interest rate of 2.5% for a 20-year period. In some instances, SRF has approved a 30-year term. The loan requires a debt service reserve (1/2-year payment) and requires 10% annual loan coverage.

SRF also has a limited amount of "principal forgiveness" funds available for projects. For water projects, 75% or up to \$750,000 of SRF funding for a project may include principal forgiveness, depending on the availability of funds.

The preferred funding strategy utilizes a 20-year SRF loan of \$268,792 with \$750,000 in loan forgiveness.

# **USDA Rural Development (RD)**

RD provides grant and loan funding to municipalities for water and wastewater projects that improve the quality of life and promote economic development in Rural America. Municipalities with a population of less than 10,000 are eligible to apply, though; priority is given to those with a population of less than 5,500.

Grant eligibility and loan interest rates are based on the community's median household income (MHI) and user rates. If the area to be served has a MHI of \$50,894 or lower and the project is necessary to alleviate a health and/or sanitation concern, up to 75% of the project costs are grant eligible. Up to 45% of the project costs are grant eligible if the planning area has an MHI between \$50,894 and \$63,617.

RD currently offers the following loan interest rates, effective until January 1, 2024:

- Poverty 2.375%. A community qualifies for the poverty rate if its median household income (MHI) is less than \$50,894 and the project is needed to alleviate a health and/or sanitary problem (potential threat not eligible).
- Intermediate 3.125%. Applies to communities with an MHI greater than \$50,894 and less than \$63,617 without an existing health and/or sanitary problem. This rate also applies to communities with an MHI less than \$50,894 and no documented health and/or sanitary problem.
- Market 3.875%. Applies to communities with an MHI greater than \$63,617.

The RD program uses MHI data from the 2021 American Community Survey 5-Year Estimates. According to this data, the city's MHI is \$67,631. White Sulphur Springs qualifies for the market

rate for loan interest rates, and they are not eligible for a grant through RD. A larger loan is required from RD than SRF, therefore, the city is interested in pursuing SRF instead of RD.

# Montana Coal Board

The Coal Board provides grant funding to municipalities to adequately provide for the expansion of public services or facilities needed as a direct consequence of coal development activities. There is no maximum limit to the amount the Coal Board can fund, but available funding is very limited so it can be difficult to receive any funds from the Coal Board, especially large sums.

White Sulphur Springs is not within the region the Coal Board identifies as impacted by the coal industry and cannot associate an impact due to coal development with the proposed project, thus a Coal Board grant will not be pursued.

# Economic Development Administration (EDA)

EDA provides grant funding for projects that are demonstrated to be needed for the placement of a new business. The amount of grant is dependent on the number of jobs created.

The city will not pursue an EDA grant. The proposed project will not create many jobs and thus would not be competitive in this program.

# **INTERCAP**

INTERCAP provides loan funds at a low cost, variable interest rate to local governments. INTERCAP is administered by the Montana Board of Investments and is very flexible in the variety of funding, which would include both water and wastewater projects. There is no funding cycle (funds are always available), however, the maximum loan term is 15 years.

Due to the relatively large amount of financing required, an INTERCAP loan with the shorter loan term would cause an undesirable increase in user rates for the residents and is not recommended for long-term financing.

# American Rescue Plan Act (ARPA)

ARPA funding was made available to Montana communities through the March 11, 2021, American Rescue Act (H.R. 1319). The act generally aided Montana communities in two different ways:

- ARPA Local Fiscal Recovery Funds (LFR) The act provided direct assistance from Treasury to towns, cities, and counties. Direct assistance was given to local governments in two tranches. The first tranche became available in June 2021, and the second in June 2022. The funds can be used for various purposes, including water and sewer infrastructure.
- ARPA Minimum Allocation Grants (MAG) The act appropriated \$463 million to the State of Montana. The State of Montana, through House Bill 632, allocated \$150 million of the appropriation to towns, cities, districts, and counties through the Minimum Allocation grant process that was developed in Montana's 2021 legislative session through House Bill 632. Minimum Allocation Grants can be used for water and sewer infrastructure and must be committed by January 1, 2023. A commitment of funds requires local governments to have all matching funds for the proposed project in place by January 1, 2023.

The city has dedicated its Local Fiscal Recovery Funds for other uses. The city submitted an ARPA MAG application in November 2022 and has dedicated \$306,708 for the proposed water transmission main project.

# 8.1.2 Funding Strategy

Table 8-1 shows various funding strategies for the proposed project. The potential funding scenarios are:

- Scenario 1 ARPA MAG, DNRC Grant, MCEP Grant, and RD Loan (3.875% for 40 years)
- Scenario 2 ARPA MAG, SRF Loan Forgiveness, and SRF Loan (2.5% for 20 years)
- Scenario 3 ARPA MAG, DNRC Grant, MCEP Grant, SRF Loan Forgiveness, and SRF Loan (2.5% for 20 years)

The city's preferred funding package and that recommended by this PER includes:

ARPA MAG: \$306,708

• SRF Loan Forgiveness: \$750,000

• SRF Loan: \$268,792

With the proposed funding package, water rates are anticipated to increase by approximately \$4 per month per EDU. Using the preferred Scenario 2 as a basis, a detailed project budget is presented in Table 8-2, which provides a breakdown of each of the line item costs by funding source.

# 8.2 Implementation

The city submitted an ARPA MAG application in November 2022 and will submit an SRF application in November 2023. Upon securing all funding, the project start-up for the grant programs is expected to be about a two-month process. It is anticipated that final design and approvals would be completed by February 2024 and bidding could take place in March 2024. Commencement of construction activities is anticipated to start in June 2024. Table 8-3 provides a summary of the project implementation schedule.

Table 8-1 – Funding Scenarios for Water System Improvements

| ITEM                                   | SCENARIO #1 | SCENARIO #2 | SCENARIO #3 |
|----------------------------------------|-------------|-------------|-------------|
| Preferred Alternative Project Cost     | \$1,325,500 | \$1,325,500 | \$1,325,500 |
| ARPA MAG (City & County Combined)      | \$306,708   | \$306,708   | \$306,708   |
| DNRC Grant                             | \$125,000   |             | \$125,000   |
| MCEP Grant                             | \$500,000   |             | \$500,000   |
| RD Grant or SRF Loan Forgiveness       |             | \$750,000   | \$295,344   |
| RD or SRF Loan                         | \$393,792   | \$268,792   | \$98,448    |
| Total Project Funds                    | \$1,325,500 | \$1,325,500 | \$1,325,500 |
| SRF Bond Reserve (1/2-year payment)    |             | \$8,615     | \$3,155     |
| Total Loan Amount                      | \$393,792   | \$277,407   | \$101,603   |
| Annual Loan Payment                    | \$19,540    | \$17,790    | \$6,520     |
| Total Loan Payments Over Life of Loan  | \$781,600   | \$355,800   | \$130,400   |
| Total Interest Paid Over Life of Loan  | \$387,808   | \$78,393    | \$28,797    |
| Annual Loan Coverage                   | \$1,954     | \$1,779     | \$652       |
| TOTAL ANNUAL CAPITAL DEBT              | \$21,494    | \$19,569    | \$7,172     |
| User Capital Cost/Month <sup>(1)</sup> | \$2.78      | \$2.53      | \$0.93      |
| Current Annual O&M(2)                  | \$250,000   | \$250,000   | \$250,000   |
| Current Annual Debt Service(3)         | \$133,246   | \$133,246   | \$133,246   |
| Additional O&M Due To Project          | \$0         | \$0         | \$0         |
| TOTAL ANNUAL O&M COSTS                 | \$383,246   | \$383,246   | \$383,246   |
| User O&M Cost/Month <sup>(1)</sup>     | \$49.59     | \$49.59     | \$49.59     |
| TOTAL USER COST/MONTH(1)               | \$52.37     | \$52.12     | \$50.52     |
| Existing Average User Cost/Month/EDU   | \$47.94     | \$47.94     | \$47.94     |
| COST/MONTH INCREASE/EDU                | \$4.43      | \$4.18      | \$2.58      |
| Existing Other System Cost/Month       | \$42.00     | \$42.00     | \$42.00     |
| Total Proposed Water & Sewer           | \$94.37     | \$94.12     | \$92.52     |
| Combined Systems Target Rate           | \$79.46     | \$79.46     | \$79.46     |
| PERCENT OF COMBINED TARGET             | 119%        | 118%        | 116%        |

<sup>(1)</sup>Based on 644 EDUs.

<sup>&</sup>lt;sup>(2)</sup>Based on analysis of last four years actual expenditures.

<sup>(3)</sup>Based on highest calculated coverage calculation - SRF Debt Service Schedule on Current Drinking Water Loans

Table 8-2 - Project Budget

| ADMINISTRATIVE/FINANCIAL COSTS                   | Source    | Source:   | Source:   | Total       |
|--------------------------------------------------|-----------|-----------|-----------|-------------|
| ADMINISTRATIVE/FINANCIAL COSTS                   | ARPA MAG  | SRF A     | SRF B     | - Total     |
| Grant & Loan Administration Services             | \$20,000  | \$10,000  |           | \$30,000    |
| Legal Costs                                      |           | \$2,000   |           | \$2,000     |
| Audit Fees                                       | \$15,000  |           |           | \$15,000    |
| Loan Reserves                                    |           |           | \$8,000   | \$8,000     |
| Bond Counsel and Related Costs                   |           |           | \$30,000  | \$30,000    |
| TOTAL ADMINISTRATIVE/FINANCIAL COSTS             | \$35,000  | \$12,000  | \$38,000  | \$85,000    |
| CONSTRUCTION RELATED ACTIVITY COSTS:             |           |           |           |             |
| Permitting and Land Acquisition                  | \$7,500   |           |           | \$7,500     |
| Geotechnical Investigation                       | \$10,000  |           |           | \$10,000    |
| Engineering - Design, Bidding, Post Construction | \$102,000 |           |           | \$102,000   |
| Engineering - Construction Management & RPR      | \$102,000 |           |           | \$102,000   |
| Construction                                     | \$50,208  | \$618,319 | \$180,473 | \$849,000   |
| Contingency                                      |           | \$119,681 | \$50,319  | \$170,000   |
| TOTAL ACTIVITY COSTS                             | \$271,708 | \$738,000 | \$230,792 | \$1,240,500 |
| TOTAL PROJECT COSTS                              | \$306,708 | \$750,000 | \$268,792 | \$1,325,500 |

Table 8-3 - Project Implementation Schedule

| Action                                         | Date                 |
|------------------------------------------------|----------------------|
| Public Hearing on Draft PER & EA               | March 2023           |
| Prepare Final PER                              | March – October 2023 |
| Submit SRF Application                         | November 2023        |
| Finalize Grant Financing                       | December 2023        |
| Begin Design                                   | September 2023       |
| Design Basis Report/Cost Estimates to the Town | November 2023        |
| Submit Design Plans and Specifications to MDEQ | December 2023        |
| MDEQ Review & Approval                         | February 2024        |
| Advertise for Bids                             | March 2024           |
| Start Construction                             | June 2024            |
| Complete Construction                          | December 2024        |

# 9.0 REFERENCES

- Census and Economic Information Center GIS Resources. Montana Department of Commerce. Retrieved on 11/18/2022 from <a href="https://ceic-mtdoc.opendata.arcgis.com/search?tags=dec">https://ceic-mtdoc.opendata.arcgis.com/search?tags=dec</a>
- Census and Economic Information Center Income and Poverty. Montana Department of Commerce. Retrieved on 3/17/23 from <a href="https://ceic.mt.gov/People-and-Housing/Income-and-Poverty">https://ceic.mt.gov/People-and-Housing/Income-and-Poverty</a>
- City of White Sulphur Springs & Meagher County Consolidated City/County Growth Policy. February, 2021.
  - https://www.whitesulphurspringsmontana.com/documents/77/Consolidated City County Growth Policy February 2021 3.pdf
- Clean Water Act Information Center (CWAIC) 2020. Montana Department of Environmental Quality. Retrieved on 3/17/23 from <a href="https://gis.mtdeq.us/portal/apps/webappviewer/index.html?id=708aae89f060403db2710">https://gis.mtdeq.us/portal/apps/webappviewer/index.html?id=708aae89f060403db2710</a> 378ac4945f0
- Clean Water Act Information Center (CWAIC) Water Quality Use Class Map. Montana Department of Environmental Quality. Retrieved on 3/17/23 from <a href="https://gis.mtdeq.us/portal/apps/webappviewer/index.html?id=507f07b69b7c4d69bd855fb2b78ef9e7">https://gis.mtdeq.us/portal/apps/webappviewer/index.html?id=507f07b69b7c4d69bd855fb2b78ef9e7</a>
- Collins, Robin M., T. Taylor Eighmy, and James P. Malley Jr. "Evaluating Modifications to Slow Sand Filters." <u>Journal AWWA.</u> (1991): 62-70.
- FEMA Flood Map Service Center: Search by Address. FEMA. Retrieved on 3/17/23 from <a href="https://msc.fema.gov/portal/search?AddressQuery=White%20Sulphur%20Springs%2C%20Montana#searchresultsanchor">https://msc.fema.gov/portal/search?AddressQuery=White%20Sulphur%20Springs%2C%20Montana#searchresultsanchor</a>
- IPaC Information for Planning and Consultation. U.S. Fish & Wildlife Service. Retrieved on 3/16/23 from <a href="https://ipac.ecosphere.fws.gov/location/index">https://ipac.ecosphere.fws.gov/location/index</a>
- Low- and Moderate-Income Area Data Map Application, based on 2011-2015 ACS. US Department of Housing and Urban Development. Retrieved on 3/18/23 from <a href="https://hud.maps.arcgis.com/apps/webappviewer/index.html?id=ffd0597e8af24f88b501b7e7f326bedd">https://hud.maps.arcgis.com/apps/webappviewer/index.html?id=ffd0597e8af24f88b501b7e7f326bedd</a>
- Montana Department of Environmental Quality Circular DEQ-1 Standards for Water Works. 2022.
- Montana Department of Environmental Quality Source Water Protection Program. White Sulphur Springs Public Water System Source Water Delineation and Assessment Report PWSID # MT0000360. 2002.
- Montana Department of Environmental Quality Source Water Protection Program. Source Water Protection Plan City White Sulphur Springs Public Water Supply PWSID # MT0000360. 2015.

- Montana Department of Environmental Quality Surface Water Regulations Summary. May 2010.
- Montana Groundwater Information Center Water Well Data. Montana Bureau of Mines and Geology (MBMG). Retrieved on 3/16/23 from <a href="https://mbmgftp.mtech.edu/#/gwic/">https://mbmgftp.mtech.edu/#/gwic/</a>
- Montana Natural Heritage Program. Environmental Summary Report for Latitude 46.47856 to 46.59148 and Longitude -110.76008 to -110.96478. Retrieved on 3/15/2023.
- Montana Sage Grouse Habitat Conservation Map. Montana Sage Grouse Habitat Conservation Program. Retrieved on 10/18/22 from <a href="https://sagegrouse.mt.gov/ProgramMap">https://sagegrouse.mt.gov/ProgramMap</a>
- National Interagency Fire Center Wildland Fire Interagency Geospatial Services. Wildland Fire Incident Locations | Wildland Fire Incident Locations | National Interagency Fire Center (arcgis.com)
- National Integrated Drought Information System. https://www.drought.gov/states/montana/county/Meagher
- Natural Heritage Map Viewer for Land Cover and Land Management. Montana Natural Heritage Program. Retrieved on 3/14/23 from <a href="http://mtnhp.org/MapViewer/">http://mtnhp.org/MapViewer/</a>
- Natural Heritage Map Viewer for Wetland and Riparian Mapping. Montana Natural Heritage Program. Retrieved on 3/17/23 from http://mtnhp.org/MapViewer/
- Web Soil Survey. United States Department of Agriculture Natural Resources Conservation Service. Retrieved on 3/14/23 from <a href="https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx">https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</a>

# **Appendix A**

**Uniform Environmental Checklist** 

# **Environmental Checklist**

| Environmental Checklist Prepared by:                                                                 | On: 10/24/2023                                                                                                                    |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Jessica Salo, PE                                                                                     | Great West Engineering, Inc.                                                                                                      |
| Name of Person 1                                                                                     | Organization                                                                                                                      |
| 406-422-1288                                                                                         | jsalo@greatwesteng.com                                                                                                            |
| Phone Number                                                                                         | Email                                                                                                                             |
| Casey Bereszniewicz                                                                                  | Great West Engineering, Inc.                                                                                                      |
| Name of Person 2                                                                                     | Organization                                                                                                                      |
| 978-460-3785                                                                                         | cbereszniewicz@greatwesteng.com                                                                                                   |
| Phone Number                                                                                         | Email                                                                                                                             |
|                                                                                                      | (print name of engineer) s checklist and believe that it accurately identifies e potential impacts that the project could have on |
| information about the project and requested to pro<br>Their comments have been incorporated into and | vide comments on the proposed public facility project.                                                                            |

| Physical Environment |             |                        |                                   |
|----------------------|-------------|------------------------|-----------------------------------|
|                      |             | Permits/<br>Mitigation |                                   |
| Impact Code          | Impact Type | Required?              | Explanation of Impact to Resource |

| 1. Soil Suitabili | ty, Topographic a  | and/or Geologi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c Constraints (example: soil slump, steep slopes,                                                             |
|-------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| subsidence, se    | ismic activity)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |
| ☑ No Impact       | ☐ Direct           | □Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current Conditions:                                                                                           |
| ☐ Beneficial      | □ Indirect         | $\square$ Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Topography in the area is primarily gently rolling hills which                                                |
| ☐ Adverse         | ☐ Cumulative       | extstyle 	ext | slope to the northwest. Slopes are not excessive or unstable.                                                 |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soils characteristics vary depending on location within the                                                   |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | planning area. Soils are generally classified as loam (clay loam,                                             |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gravelly loam, sandy loams, and silt loams).                                                                  |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | There are no identified soil or topographical constraints, and                                                |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the area is not a high seismic area.                                                                          |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Preferred Alternative Environmental Narrative:                                                                |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water system improvements will generally require a                                                            |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | geotechnical engineering site evaluation and report to provide                                                |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | specific guidance for construction. There are no identified soil                                              |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or topographic issues with construction of the backup                                                         |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | generator project and this portion of the project does not                                                    |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | require a geotechnical evaluation.                                                                            |
| 2. Hazardous F    | acilities (example | e: power lines,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hazardous waste sites, acceptable distance from                                                               |
|                   |                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emical/petrochemical storage tanks, underground fuel                                                          |
| -                 |                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tural gas storage facilities and propane storage tanks)                                                       |
| ☑ No Impact       | ☐ Direct           | □Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current Conditions:                                                                                           |
| ☐ Beneficial      | ☐ Indirect         | ☐Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | According to the Montana DEQ Interactive GIS map, there are                                                   |
| ☐ Adverse         | ☐ Cumulative       | ⊠ NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | some abandoned hard rock mine areas near the intake facility,                                                 |
| L Adverse         | □ Cumulative       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a resolved petroleum release and junk vehicle site in the                                                     |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | general vicinity of the subdivision east of the City, and several                                             |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | other regulated storage tanks, petroleum release sites, and                                                   |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Superfund facilities located within the City limits. There are                                                |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | also existing powerlines in the project area that the                                                         |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contractor will be made aware of in the design plans.                                                         |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Preferred Alternative Environmental Narrative:                                                                |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The new distribution system pipes within the City may be                                                      |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | installed adjacent to some of these locations. The project                                                    |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | specifications will provide special provisions for soil and                                                   |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | groundwater handling, removal and imported backfill                                                           |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | requirements should contaminated soils be encountered.                                                        |
|                   | Air Quality (exar  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |
| ☐ No Impact       | □ Direct           | ☐ Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Current Conditions:                                                                                           |
| ☐ Beneficial      | ☐ Indirect         | ☐ Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | There are no current/existing air quality concerns in the City                                                |
| □ Adverse         | ☐ Cumulative       | $\boxtimes$ NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of White Sulphur Springs.                                                                                     |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Preferred Alternative Environmental Narrative:                                                                |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | There is an expected temporary negative impact on the air                                                     |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | quality during construction due to dust and equipment emissions. Prudent measures will be taken to reduce the |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | impact. There will be no long-term effects to the surrounding                                                 |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | air quality from the proposed projects.                                                                       |

| 4. Groundwat | er Resources and  | Aquifers (exan | nple: quantity, quality, distribution, depth to                                                                       |
|--------------|-------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|
| groundwater, | sole source aquif | ers)           |                                                                                                                       |
| ☑ No Impact  | ☐ Direct          | □Permit        | Current Conditions:                                                                                                   |
| ☐ Beneficial | ☐ Indirect        | ☐Mitigation    | Montana's Groundwater Information Center (GWIC) was used                                                              |
| ☐ Adverse    | ☐ Cumulative      | ⊠ NA           | to collect information on groundwater in the planning area                                                            |
|              |                   |                | and well information was acquired in spatial format through                                                           |
|              |                   |                | the Montana State Library. The average depth of wells in the                                                          |
|              |                   |                | area is 101 feet below ground surface. The average static                                                             |
|              |                   |                | water level is 36 feet below ground surface with an average                                                           |
|              |                   |                | yield of 52 gallons per minute. Most of the wells in the vicinity                                                     |
|              |                   |                | are domestic, monitoring, or stockwater wells. There is a grouping of domestic wells within the rural subdivision one |
|              |                   |                | mile east of the city in the proximity of where a potential                                                           |
|              |                   |                | transmission main project would occur. According to well log                                                          |
|              |                   |                | data, these wells are approximately 130 feet deep with                                                                |
|              |                   |                | surface water levels ranging from 40 to 90 feet below ground                                                          |
|              |                   |                | surface.                                                                                                              |
|              |                   |                |                                                                                                                       |
|              |                   |                | White Sulphur Springs obtains municipal water supply from                                                             |
|              |                   |                | two groundwater wells located at the City shop facility at the                                                        |
|              |                   |                | northeastern edge of the city limits. The two city wells are                                                          |
|              |                   |                | positioned approximately 20 feet apart, are both 200 feet                                                             |
|              |                   |                | deep, have static water levels of approximately 20 feet below ground surface, and yield 1,000 gpm and 200 gpm         |
|              |                   |                | respectively, according to the well log data. The drinking                                                            |
|              |                   |                | water wells for White Sulphur Springs have sufficient quantity                                                        |
|              |                   |                | and the quality is generally good. Groundwater from both                                                              |
|              |                   |                | wells is disinfected using chlorine gas since both wells have                                                         |
|              |                   |                | static water tables less than 25 feet. The GWIC well data also                                                        |
|              |                   |                | revealed two additional wells within the city limits that are                                                         |
|              |                   |                | classified as public water supply. These two wells as                                                                 |
|              |                   |                | associated with the Spa Hot Springs Motel located at the                                                              |
|              |                   |                | center of the city and these wells are the source of                                                                  |
|              |                   |                | geothermal water for the swimming pools.                                                                              |
|              |                   |                | Preferred Alternative Environmental Narrative:                                                                        |
|              |                   |                | There is the potential to encounter groundwater during                                                                |
|              |                   |                | construction of water system improvements. Groundwater                                                                |
|              |                   |                | could be a concern during construction, especially if construction takes place during the spring when the             |
|              |                   |                | groundwater table is at its highest or in the late summer/fall                                                        |
|              |                   |                | when groundwater is influenced from irrigation practices.                                                             |
|              |                   |                | Encountering groundwater is not uncommon during                                                                       |
|              |                   |                | construction projects and will be accounted for as part of the                                                        |
|              |                   |                | project cost. Further, the location of existing groundwater                                                           |
|              |                   |                | wells will be examined carefully during design of any water                                                           |
|              |                   |                | system improvements and the contractor will be responsible                                                            |
|              |                   |                | for developing a pollution prevention plan that details                                                               |
|              |                   |                | planned contamination avoidance techniques in place during                                                            |
|              |                   |                | construction. Therefore, groundwater will not be adversely                                                            |
| 1            |                   | I              | impacted by construction activities.                                                                                  |

|                  |              | , Quantity and | Distribution (example: streams, lakes, storm runoff,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| irrigation syste |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| No Impact     ■  | □ Direct     | ⊠Permit<br>—   | Current Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ☑ Beneficial     | ☐ Indirect   | ☐Mitigation    | Surface water within the planning boundary generally consists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| □ Adverse        | ☐ Cumulative | □ NA           | of the Willow Creek Reservoir, South Fork of Willow Creek, Willow Creek, Pinchout Creek, Hot Springs Creek, and the North Fork of the Smith River. The South Side Canal also runs through the rural subdivision one mile east of the city. In addition to the two groundwater wells, the South Fork of Willow Creek also provides drinking water to the city of White Sulphur Springs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |              |                | Surface water quality information was obtained from DEQ's Clean Water Act Information Center (CWAIC) website and interactive maps. Montana classifies its waters according to present and future beneficial uses they are expected to support. The South Fork of Willow Creek is classified as A-1 use which is considered high-quality with the principal beneficial use of public water supply. All other surface waters in the planning area are classified as B-1. Both A-1 and B-1 waters are to be maintained suitable for drinking water after conventional treatment, recreation, agriculture, industry, and propagation of salmonid fishes and associated aquatic life. The only difference between A-1 and B-1 class is that B-1 water must support beneficial use for drinking water after conventional treatment while A-1 water must support beneficial use for drinking water after conventional treatment for removal of naturally occurring impurities only. Beneficial uses for the surface waters within the planning area are not currently threatened or impaired with the exception of the North Fork of the Smith River. The most recent CWIAC surface water report was completed in 2020 and documents that the North Fork of the Smith River in the planning area is not fully supporting the beneficial use of primary contact recreation and a TMDL is required to address the factors causing the impairment or threat. |
|                  |              |                | The city is concerned with the quality of water in Willow Creek in terms of turbidity. Willow Creek Reservoir is currently built up with sediment and appears to be affecting the quality of water which flows into the intake collection system to the treatment plant. There are current operational deficiencies at the intake dam which prevent the city from being able to properly operate a flushing valve to eliminate the sediment. As a result, the city has not been able to reliably use the Willow Creek source for the past two to three years.  Preferred Alternative Environmental Narrative:  Proposed improvements at the intake dam would take place within Willow Creek Reservoir and Creek. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |              |                | permitting would be required as part of the construction project and all appropriate approvals would be obtained from FWP, DEQ, U.S. Army Corps of Engineers (USACE), and other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 6. Floodnlains   | and Floodplain M | Janagement (le | agencies as necessary to assure no adverse impacts to surface water quality as a result of construction activities. Overall, intake improvements have the potential to improve water quality through reduction of turbidity. Water system improvements in other parts of the planning area will implement appropriate storm water pollution prevention measures during construction to eliminate sediment transport to nearby surface waters and minimize disturbance to affected surface waters.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of the project.) | -                | idiagement (it | zentiny any moduplamo vicinii one inite or the boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ☑ No Impact      | ☐ Direct         | □Permit        | Current Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ☐ Beneficial     | ☐ Indirect       | ☐Mitigation    | A review of the Federal Emergency Management Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| □ Adverse        | □ Cumulative     | ⊠ NA           | (FEMA) flood map service center reveals there is one flood map for the White Sulphur Springs area. The map indicates there is a small portion of the northwestern corner of the city limits within the 100-year floodplain of the North Fork of the Smith River. The area within the unincorporated portions of Meagher County is unmapped and no flood insurance rate maps currently exist.  Preferred Alternative Environmental Narrative:  Based on existing water system mapping, there are currently no water lines within the floodplain area of the northwestern city limits and no planned water system improvements in this location at this time. The potential for floodplain disturbance will be considered carefully, however, during preliminary design. If any floodplains will be impacted by the proposed project, all appropriate permits will be obtained prior to construction of the improvements. |

| 7. Wetlands (Id | dentify any wetla | nds within one       | mile of the boundary of the project and state potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|-------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| impacts.)       |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| □ No Impact     | □ Direct          | $\boxtimes$ Permit   | <u>Current Conditions:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| □ Beneficial    | ☐ Indirect        | $\square$ Mitigation | Mapped riparian and wetland areas of Montana are provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | ☐ Cumulative      | □ NA                 | by the Montana Natural Heritage Program. Mapped wetland areas fall within the planning area. Most of the mapped wetlands are associated with the North Fork of the Smith River in the northwestern corner of the city limits and the upper reaches of Willow Creek near the intake facility. There are also a few isolated small emergent wetlands located throughout the planning area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 |                   |                      | The wetlands directly adjacent to the North Fork of the Smith River are classified as palustrine emergent wetland characterized by erect, rooted herbaceous vegetation present during most of the growing season and palustrine scrub-shrub wetland which is dominated by woody vegetation less than 20 feet tall. The wetlands within the planning area adjacent to Willow Creek are riparian forested and riparian scrub-shrub wetland characterized by woody vegetation that can be greater than 20 feet tall.  Preferred Alternative Environmental Narrative: Improvements at the intake could likely impact wetlands. There would also be a stream/canal crossing if the transmission main is replaced within the rural residential subdivision east of the city, near the existing storage tank. Precautions will be taken during construction to prohibit any sedimentation or other potential adverse impact on the wetlands. A site-specific wetlands inventory will be conducted prior to construction for all stream crossings or low-lying areas. (CWA Section 404 permit likely) |

8. Agricultural Lands, Production, and Farmland Protection (example: grazing, forestry, cropland, prime or unique agricultural lands) Identify any prime or important farm ground or forest lands within one mile of the boundary of the project.

| ☑ No Impact  | ☐ Direct     | □Permit     | Current Conditions:                                                                                                          |
|--------------|--------------|-------------|------------------------------------------------------------------------------------------------------------------------------|
| ☐ Beneficial | □ Indirect   | ☐Mitigation | The Montana Natural Heritage Program (MNHP) map viewer                                                                       |
| ☐ Adverse    | ☐ Cumulative | ⊠ NA        | was used to determine land cover and land management                                                                         |
|              |              |             | within the planning boundary and surrounding areas of White                                                                  |
|              |              |             | Sulphur Springs. Land use within the planning boundary and                                                                   |
|              |              |             | outside of the city limits of White Sulphur Springs is primarily                                                             |
|              |              |             | ranchland and farmland. Areas that are not cultivated for                                                                    |
|              |              |             | crops are generally sagebrush shrubland or foothill grasslands.<br>There is some National Forest land surrounding the Willow |
|              |              |             | Creek intake reservoir at the southeast end of the planning                                                                  |
|              |              |             | area and some floodplain and riparian systems adjacent to                                                                    |
|              |              |             | Willow Creek. There is a semi-developed rural residential area                                                               |
|              |              |             | within the planning area, approximately one mile east of the                                                                 |
|              |              |             | city limits. This residential area consists of approximately 15                                                              |
|              |              |             | lots ranging in size from five to 15 acres. Developed areas with                                                             |
|              |              |             | the city limits of White Sulphur Springs are comprised                                                                       |
|              |              |             | primarily of low-intensity residential and commercial areas.                                                                 |
|              |              |             | Land ownership within the planning area is primarily private.                                                                |
|              |              |             | The Helena-Lewis and Clark National Forest surrounds the                                                                     |
|              |              |             | Willow Creek intake and diversion structure, although the                                                                    |
|              |              |             | intake facilities are located on private land. The transmission                                                              |
|              |              |             | main from the intake to the city limits traverses private land,                                                              |
|              |              |             | with a large portion of the private land also designated as a                                                                |
|              |              |             | conservation easement managed by the Montana Land Reliance. There are several parcels within the city limits                 |
|              |              |             | owned by local government entities such as Meagher County                                                                    |
|              |              |             | and the City of White Sulphur Springs. Water distribution                                                                    |
|              |              |             | mains within the city limits are principally located within                                                                  |
|              |              |             | street rights-of-way.                                                                                                        |
|              |              |             | Farmland classifications within the planning area were                                                                       |
|              |              |             | determined from the United States Department of                                                                              |
|              |              |             | Agriculture's (USDA) National Resources Conservation Service                                                                 |
|              |              |             | (NRCS) Web Soil Survey online database. Most of the planning                                                                 |
|              |              |             | area is not classified as prime farmland. The area in the                                                                    |
|              |              |             | central/southeast city limits is classified as prime farmland if irrigated. Small, isolated segments along the intake        |
|              |              |             | transmission main are classified as farmland of statewide                                                                    |
|              |              |             | importance and one other small area along the intake                                                                         |
|              |              |             | transmission main is classified as prime farmland.                                                                           |
|              |              |             | Preferred Alternative Environmental Narrative:                                                                               |
|              |              |             | If water distribution system improvements are made,                                                                          |
|              |              |             | temporary disturbance will occur mostly in previously                                                                        |
|              |              |             | disturbed areas within the city limits. If water system                                                                      |
|              |              |             | transmission main, treatment system, storage tank, or intake improvements are made, temporary disturbance will occur         |
|              |              |             | within the privately owned rural residential area and                                                                        |
|              |              |             | agricultural land east and southeast of the city. Landowner                                                                  |
|              |              |             | input and coordination will be important during final design,                                                                |
|              |              |             | so any project does not adversely affect land use and function                                                               |
|              |              |             | of the landowner's property.                                                                                                 |

|                 |              |                | Areas of disturbance will be restored to original conditions to the greatest extent possible upon completion of construction. Ultimately, the project will result in minimal change in land use and minimal adverse impacts to land resources. Any water system improvements constructed southeast of town will generally preserve the open space and maintain the rural character of the land. |
|-----------------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _               | •            | ies and Habita | ts, Including Fish (example: terrestrial, avian and aquatic                                                                                                                                                                                                                                                                                                                                     |
| life and habita | ts)          |                |                                                                                                                                                                                                                                                                                                                                                                                                 |
| ☑ No Impact     | ☐ Direct     | □Permit        | Current Conditions:                                                                                                                                                                                                                                                                                                                                                                             |
| ☐ Beneficial    | ☐ Indirect   | ☐Mitigation    | Wildlife in White Sulphur Springs and surrounding areas                                                                                                                                                                                                                                                                                                                                         |
| ☐ Adverse       | ☐ Cumulative | ⊠ NA           | primarily consists of small and large mammals such as deer,                                                                                                                                                                                                                                                                                                                                     |
|                 |              |                | antelope, coyote, rabbit, skunk, rodents and others, fish such                                                                                                                                                                                                                                                                                                                                  |
|                 |              |                | as trout, and numerous species of birds.                                                                                                                                                                                                                                                                                                                                                        |
|                 |              |                | Preferred Alternative Environmental Narrative:                                                                                                                                                                                                                                                                                                                                                  |
|                 |              |                | Any disturbance associated with distribution, transmission                                                                                                                                                                                                                                                                                                                                      |
|                 |              |                | main, treatment system, or storage infrastructure water                                                                                                                                                                                                                                                                                                                                         |
|                 |              |                | system improvements will be temporary in nature. All                                                                                                                                                                                                                                                                                                                                            |
|                 |              |                | disturbed areas will be restored to nearly existing conditions                                                                                                                                                                                                                                                                                                                                  |
|                 |              |                | upon completion of construction. Overall, minimal adverse                                                                                                                                                                                                                                                                                                                                       |
|                 |              |                | impacts to biological resources are anticipated                                                                                                                                                                                                                                                                                                                                                 |

| 10. Unique, Endangered, Fragile, or Limited Environmental Resources, Including Endangered Species |                        |                    |                                                                                                                      |  |
|---------------------------------------------------------------------------------------------------|------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|--|
| (example: plar                                                                                    | nts, fish or wildlif   | e)                 |                                                                                                                      |  |
| No Impact     ■                                                                                   | ⊠ Direct               | □Permit            | Current Conditions:                                                                                                  |  |
| ⊠ Beneficial                                                                                      | □ Indirect             | ☐Mitigation        | The Montana Species of Concern (SOC) include one fish                                                                |  |
| ☐ Adverse                                                                                         | ☐ Cumulative           | □NA                | species (Westslope Cutthroat Trout), two mammal bat species                                                          |  |
|                                                                                                   |                        |                    | (Little Brown Myotis and Long-eared Myotis), and ten bird                                                            |  |
|                                                                                                   |                        |                    | species (Bobolink, Brewer's Sparrow, Cassin's Finch, Clark's                                                         |  |
|                                                                                                   |                        |                    | Nutcracker, Evening Grosbeak, Great Blue Heron, Greater                                                              |  |
|                                                                                                   |                        |                    | Sage-Grouse, Green-tailed Towhee, Long-billed Curlew, and Verry). The planning area falls within sage grouse general |  |
|                                                                                                   |                        |                    | habitat. The USFWS Information for Planning and Consultation                                                         |  |
|                                                                                                   |                        |                    | (IPaC) report identifies potentially affected species in the area                                                    |  |
|                                                                                                   |                        |                    | such as the Canada lynx, North American Wolverine, Monarch                                                           |  |
|                                                                                                   |                        |                    | butterfly, Whitebark Pine, and several migratory birds                                                               |  |
|                                                                                                   |                        |                    | including the Bald Eagle.                                                                                            |  |
|                                                                                                   |                        |                    | FWP noted the native Westslope Cutthroat Trout population                                                            |  |
|                                                                                                   |                        |                    | upstream of the diversion structure on Willow Creek and                                                              |  |
|                                                                                                   |                        |                    | stressed the high conservation value of this species. FWP                                                            |  |
|                                                                                                   |                        |                    | requested that any improvements to the diversion structure not promote or enable additional fish passage upstream.   |  |
|                                                                                                   |                        |                    | Additionally, FWP would prefer enhancement of the structure                                                          |  |
|                                                                                                   |                        |                    | to prevent all passage of non-native fish with the goal to                                                           |  |
|                                                                                                   |                        |                    | preserve the integrity of the upstream Westslope Cutthroat                                                           |  |
|                                                                                                   |                        |                    | Trout population.                                                                                                    |  |
|                                                                                                   |                        |                    | Preferred Alternative Environmental Narrative:                                                                       |  |
|                                                                                                   |                        |                    | Any disturbance associated with distribution, transmission                                                           |  |
|                                                                                                   |                        |                    | main, treatment system, or storage infrastructure water system improvements will be temporary in nature. All         |  |
|                                                                                                   |                        |                    | disturbed areas will be restored to nearly existing conditions                                                       |  |
|                                                                                                   |                        |                    | upon completion of construction. Overall, minimal adverse                                                            |  |
|                                                                                                   |                        |                    | impacts to biological resources are anticipated                                                                      |  |
|                                                                                                   |                        |                    | Potential improvements to the diversion or intake facilities on                                                      |  |
|                                                                                                   |                        |                    | Willow Creek will involve close consultation with FWP and                                                            |  |
|                                                                                                   |                        |                    | other agencies to assure conservation of the Westslope                                                               |  |
|                                                                                                   |                        |                    | Cutthroat Trout population and other affected biological                                                             |  |
| 11. Unique Na                                                                                     | <br>tural Features (ex | <br>kample: geolog | ic features)                                                                                                         |  |
| No Impact     ■                                                                                   | □ Direct               | □Permit            | Current Conditions:                                                                                                  |  |
| ☐ Beneficial                                                                                      | □ Indirect             | ☐Mitigation        | The only known unique natural feature in the planning area                                                           |  |
| ☐ Adverse                                                                                         | ☐ Cumulative           | ⊠ NA               | are the hot springs that White Sulphur Springs is named for.                                                         |  |
|                                                                                                   |                        |                    | The two groundwater wells for the hot springs are located at                                                         |  |
|                                                                                                   |                        |                    | the center of the city.  Professed Alternative Environmental Narrative:                                              |  |
|                                                                                                   |                        |                    | Preferred Alternative Environmental Narrative: The only project that would be in the vicinity of the hot             |  |
|                                                                                                   |                        |                    | springs would be potential water line replacement on Main                                                            |  |
|                                                                                                   |                        |                    | Street. The location of the wells will be carefully examined                                                         |  |
|                                                                                                   |                        |                    | during design of the water system improvements on Main                                                               |  |
|                                                                                                   |                        |                    | Street.                                                                                                              |  |

| 12. Access to,  | 12. Access to, and Quality of, Recreational and Wilderness Activities, Public Lands and Waterways |                      |                                                                    |  |  |
|-----------------|---------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|--|--|
| (including Fed  | (including Federally Designated Wild & Scenic Rivers), and Public Open Space                      |                      |                                                                    |  |  |
| ⋈ No Impact     | Direct                                                                                            | □Permit              | Current Conditions:                                                |  |  |
| ☐ Beneficial    | ☐ Indirect                                                                                        | $\square$ Mitigation | The eastern extent of the project, by the Willow Creek intake,     |  |  |
| ☐ Adverse       | ☐ Cumulative                                                                                      | $\boxtimes$ NA       | is U.S. Forest Service land with multiple recreation and           |  |  |
|                 |                                                                                                   |                      | wilderness activities. There is no existing public access point to |  |  |
|                 |                                                                                                   |                      | the National Forest through the planning area.                     |  |  |
|                 |                                                                                                   |                      | Preferred Alternative Environmental Narrative:                     |  |  |
|                 |                                                                                                   |                      | There is no anticipated impact to access or quality of             |  |  |
|                 |                                                                                                   |                      | recreational and wilderness activities, public lands, waterways    |  |  |
|                 |                                                                                                   |                      | and open spaces associated with water system improvements.         |  |  |
|                 |                                                                                                   | Huma                 | an Environment                                                     |  |  |
| Impact Code     | Impact Type                                                                                       | Resource             |                                                                    |  |  |
| 1. Visual Quali | ty – Coherence, [                                                                                 | Diversity, Comp      | patibility of Use and Scale, Aesthetics                            |  |  |
| ☑ No Impact     | ☐ Direct                                                                                          | □Permit              | Current Conditions:                                                |  |  |
| ☐ Beneficial    | ☐ Indirect                                                                                        | $\square$ Mitigation | Current conditions consist of developed residential and            |  |  |
| ☐ Adverse       | ☐ Cumulative                                                                                      | ⊠ NA                 | commercial conditions within the City of White Sulphur             |  |  |
|                 |                                                                                                   |                      | Springs. Conditions outside of the City are characteristic of a    |  |  |
|                 |                                                                                                   |                      | rural, agricultural landscape with rolling hills and distant       |  |  |
|                 |                                                                                                   |                      | mountainous features.                                              |  |  |
|                 |                                                                                                   |                      | Preferred Alternative Environmental Narrative:                     |  |  |
|                 |                                                                                                   |                      | The proposed project will not impact visual quality. The           |  |  |
|                 |                                                                                                   |                      | majority of water system construction will be buried and there     |  |  |
|                 |                                                                                                   |                      | are no proposed permanent features that will significantly         |  |  |
|                 |                                                                                                   |                      | alter existing visual quality.                                     |  |  |
| -               | example: glare, fu                                                                                | _                    |                                                                    |  |  |
| ☐ No Impact     | □ Direct                                                                                          | □Permit              | Current Conditions:                                                |  |  |
| ☐ Beneficial    | ☐ Indirect                                                                                        | $\square$ Mitigation | Current conditions consist of developed residential and            |  |  |
| □ Adverse       | ☐ Cumulative                                                                                      | ⊠ NA                 | commercial conditions within the City of White Sulphur             |  |  |
|                 |                                                                                                   |                      | Springs. Conditions outside of the City are characteristic of a    |  |  |
|                 |                                                                                                   |                      | rural, agricultural landscape with rolling hills and distant       |  |  |
|                 |                                                                                                   |                      | mountainous features.                                              |  |  |
|                 |                                                                                                   |                      | Preferred Alternative Environmental Narrative:                     |  |  |
|                 |                                                                                                   |                      | During construction there will be temporary nuisances such as      |  |  |
|                 |                                                                                                   |                      | dust, fumes, and noise. Measures will be taken to reduce           |  |  |
|                 |                                                                                                   |                      | these nuisances. There will be no permanent nuisance impacts       |  |  |
|                 |                                                                                                   |                      | from the proposed improvements.                                    |  |  |

| 3. Noise – Suitable Separation Between Housing and Other Noise Sensitive Activities and Major Noise |                    |                      |                                                                    |  |
|-----------------------------------------------------------------------------------------------------|--------------------|----------------------|--------------------------------------------------------------------|--|
| Sources (example: aircraft, highways and railroads.)                                                |                    |                      |                                                                    |  |
| ☐ No Impact                                                                                         | □ Direct           | □Permit              | Current Conditions:                                                |  |
| ☐ Beneficial                                                                                        | ☐ Indirect         | $\square$ Mitigation | Current conditions consist of developed residential and            |  |
|                                                                                                     | ☐ Cumulative       | oxtimes NA           | commercial conditions within the City of White Sulphur             |  |
|                                                                                                     |                    |                      | Springs. Conditions outside of the City are characteristic of a    |  |
|                                                                                                     |                    |                      | rural, agricultural landscape with rolling hills and distant       |  |
|                                                                                                     |                    |                      | mountainous features.                                              |  |
|                                                                                                     |                    |                      | Preferred Alternative Environmental Narrative:                     |  |
|                                                                                                     |                    |                      | During construction, nearby residential and commercial areas       |  |
|                                                                                                     |                    |                      | will be affected by some noise such as large trucks and            |  |
|                                                                                                     |                    |                      | equipment. The proposed backup generators for the water            |  |
|                                                                                                     |                    |                      | and wastewater systems may produce some noise, however,            |  |
|                                                                                                     |                    |                      | the generators are only anticipated for use during a power         |  |
|                                                                                                     |                    |                      | outage and will not be routinely used. There will be no long-      |  |
|                                                                                                     |                    |                      | term noise impacts from this proposed project.                     |  |
| 4. Historic Prop                                                                                    | perties, Cultural, | and Archaeolog       | gical Resources                                                    |  |
| □ No Impact                                                                                         | □ Direct           | □Permit              | <u>Current Conditions:</u>                                         |  |
| ☑ Beneficial                                                                                        | ☐ Indirect         | $\square$ Mitigation | SHPO conducted a file search for the project area and              |  |
| ☐ Adverse                                                                                           | ☐ Cumulative       | ⊠ NA                 | determined there have been several previously recorded             |  |
|                                                                                                     |                    |                      | historic sites within the area relating to historic residences,    |  |
|                                                                                                     |                    |                      | architecture, homestead/farmsteads, commercial                     |  |
|                                                                                                     |                    |                      | development, railroads, a courthouse, irrigation systems, a        |  |
|                                                                                                     |                    |                      | school, and mining. Four of the listed sites provided by SHPO      |  |
|                                                                                                     |                    |                      | were identified as currently being listed in the National          |  |
|                                                                                                     |                    |                      | Register of Historic Places.                                       |  |
|                                                                                                     |                    |                      | SHPO recommends that any found structure over fifty years          |  |
|                                                                                                     |                    |                      | old be considered historic and potentially eligible for listing in |  |
|                                                                                                     |                    |                      | the National Register of Historic Places. A found structure over   |  |
|                                                                                                     |                    |                      | fifty years old should be recorded and assessed prior to any       |  |
|                                                                                                     |                    |                      | disturbance taking place. SHPO did express concern over the        |  |
|                                                                                                     |                    |                      | fact the Willow Creek diversion and intake structures may be       |  |
|                                                                                                     |                    |                      | over fifty years old. SHPO asked that these structures be          |  |
|                                                                                                     |                    |                      | recorded prior to any rehabilitation taking place through          |  |
|                                                                                                     |                    |                      | further site investigation and coordination with SHPO.             |  |
|                                                                                                     |                    |                      | Preferred Alternative Environmental Narrative:                     |  |
|                                                                                                     |                    |                      | It is not anticipated that cultural properties will be impacted    |  |
|                                                                                                     |                    |                      | by improvements to the water system. The work to the               |  |
|                                                                                                     |                    |                      | diversion and intake structures will proceed through               |  |
|                                                                                                     |                    |                      | coordination with SHPO to assure proper documentation of           |  |
|                                                                                                     |                    |                      | any historic structures.                                           |  |

| 5. Changes in I             | 5. Changes in Demographic (Population) Characteristics (example: quantity, distribution, density) |                      |                                                                                                               |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| ☑ No Impact                 | ☐ Direct                                                                                          | □Permit              | Current Conditions:                                                                                           |  |  |
| ☐ Beneficial                | ☐ Indirect                                                                                        | $\square$ Mitigation | The City has experienced decline in population since 1980 but                                                 |  |  |
| ☐ Adverse                   | ☐ Cumulative                                                                                      | ⊠ NA                 | population over the last thirty years has remained relatively                                                 |  |  |
|                             |                                                                                                   |                      | unchanged.                                                                                                    |  |  |
|                             |                                                                                                   |                      | Preferred Alternative Environmental Narrative:                                                                |  |  |
|                             |                                                                                                   |                      | There will be no impacts to the demographics from the                                                         |  |  |
|                             |                                                                                                   |                      | proposed project. The proposed project is designed to sustain                                                 |  |  |
|                             |                                                                                                   |                      | the needs of the community. The implementation of water                                                       |  |  |
|                             |                                                                                                   |                      | system improvements will make the community a more                                                            |  |  |
|                             |                                                                                                   |                      | desirable place to live, however, a noteworthy change in                                                      |  |  |
|                             |                                                                                                   |                      | population is not anticipated. The project is designed to                                                     |  |  |
|                             |                                                                                                   |                      | accommodate a 1% annual growth rate over the next 20                                                          |  |  |
|                             |                                                                                                   |                      | years.                                                                                                        |  |  |
|                             |                                                                                                   | •                    | ntity, Affordability                                                                                          |  |  |
| ⋈ No Impact                 | ☐ Direct                                                                                          | □Permit              | Current Conditions:                                                                                           |  |  |
| Beneficial                  | ☐ Indirect                                                                                        | $\square$ Mitigation | Current conditions consist of developed residential and                                                       |  |  |
| ☐ Adverse                   | ☐ Cumulative                                                                                      | ⊠ NA                 | commercial conditions within the City of White Sulphur                                                        |  |  |
|                             |                                                                                                   |                      | Springs. Conditions outside of the City are characteristic of a                                               |  |  |
|                             |                                                                                                   |                      | rural, agricultural landscape with rolling hills and distant                                                  |  |  |
|                             |                                                                                                   |                      | mountainous features. Meagher County has an established                                                       |  |  |
|                             |                                                                                                   |                      | housing coalition working on ways to improve housing                                                          |  |  |
|                             |                                                                                                   |                      | conditions in the area.                                                                                       |  |  |
|                             |                                                                                                   |                      | <u>Preferred Alternative Environmental Narrative:</u> Proposed water system improvements will have no general |  |  |
|                             |                                                                                                   |                      | effect on housing conditions although having a reliable, safe,                                                |  |  |
|                             |                                                                                                   |                      | water system may make the community a more desirable                                                          |  |  |
|                             |                                                                                                   |                      | place to live.                                                                                                |  |  |
| 7. Rusinesses d             | r Residents (exa                                                                                  | mple: loss of .d     | lisplacement, or relocation)                                                                                  |  |  |
| ☐ No Impact                 | ⊠ Direct                                                                                          | □ Permit             | Current Conditions:                                                                                           |  |  |
| ⊠ Beneficial                | ☐ Indirect                                                                                        | ☐Mitigation          | Current conditions consist of developed residential and                                                       |  |  |
| <ul><li>✓ Adverse</li></ul> | ☐ Cumulative                                                                                      |                      | commercial conditions within the City of White Sulphur                                                        |  |  |
| Auverse                     | Cumulative                                                                                        |                      | Springs. Conditions outside of the City are characteristic of a                                               |  |  |
|                             |                                                                                                   |                      | rural, agricultural landscape with rolling hills and distant                                                  |  |  |
|                             |                                                                                                   |                      | mountainous features.                                                                                         |  |  |
|                             |                                                                                                   |                      | Preferred Alternative Environmental Narrative:                                                                |  |  |
|                             |                                                                                                   |                      | Some residents and businesses may be temporarily impacted                                                     |  |  |
|                             |                                                                                                   |                      | during construction. There are no anticipated permanent                                                       |  |  |
|                             |                                                                                                   |                      | impacts of loss of, displacement, or relocation for the                                                       |  |  |
|                             |                                                                                                   |                      | proposed project. In the long-term, businesses and residents                                                  |  |  |
|                             |                                                                                                   |                      | will benefit from fewer service disruptions as a result of                                                    |  |  |
|                             |                                                                                                   |                      | improved infrastructure.                                                                                      |  |  |

| 8. Public Healt | 8. Public Health and Safety |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |  |
|-----------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| ☐ No Impact     | ☐ Direct                    | □Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current Conditions:                                                                                                             |  |
| ⋈ Beneficial    | ☐ Indirect                  | $\square$ Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The city has clear, identifiable issues present in their water                                                                  |  |
| ☐ Adverse       |                             | extstyle 	ext | system related to health, sanitation, and security. The city                                                                    |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | currently has no backup source of power for their water                                                                         |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | system wells or wastewater lift station. The city also                                                                          |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | experiences a high amount of water system leakage due to old                                                                    |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cast iron mains which not only wastes a valuable resource but                                                                   |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | also increases the threat of backflow contamination of the                                                                      |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | drinking water source. Deficiences at the intake and treatment facilities currently limit use of the surface water source which |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | threatens the reliability of the city's overall drinking water                                                                  |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sources.                                                                                                                        |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Preferred Alternative Environmental Narrative:                                                                                  |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Improving the current water system will have beneficial                                                                         |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | impacts to the public health and safety of the community.                                                                       |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water system improvements will reduce health risks and risk                                                                     |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of failures of the current system.                                                                                              |  |
| 9. Local Emplo  | yment – Quantity            | or Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n of Employment, Economic Impact                                                                                                |  |
| ☐ No Impact     | ☐ Direct                    | □Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>Current Conditions:</u>                                                                                                      |  |
| ☑ Beneficial    | ☐ Indirect                  | $\square$ Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Several local businesses, hotels, restaurants, and retail stores                                                                |  |
| ☐ Adverse       |                             | extstyle 	ext | are located within the city.                                                                                                    |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Preferred Alternative Environmental Narrative:                                                                                  |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The proposed projects have the potential to result in significant direct capital expenditures in the local economy.             |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | During construction, workers would strengthen the economy                                                                       |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | by spending money on food, lodging, and other recreational                                                                      |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | activities. The contractor may also look to hire local help for                                                                 |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | various construction positions.                                                                                                 |  |
| 10. Income Pat  | terns – Economic            | : Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |  |
| ☑ No Impact     | ☐ Direct                    | □Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current Conditions:                                                                                                             |  |
| ☐ Beneficial    | ☐ Indirect                  | $\square$ Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | According to the 2015-2019 American Community Survey                                                                            |  |
| ☐ Adverse       | ☐ Cumulative                | $\boxtimes$ NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ACS) 5-Year estimates, the median household income in the                                                                      |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | City of White Sulphur Springs is \$41,458 and 14.4 percent of                                                                   |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | its residents live below the poverty level. The low to moderate                                                                 |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | income (LMI) percentage for White Sulphur Springs is 50.8                                                                       |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | percent.  Preferred Alternative Environmental Narrative:                                                                        |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The proposed projects will have no long-term effects on                                                                         |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | income patterns.                                                                                                                |  |
| 11. Local and S | tate Tax Base an            | d Revenues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |  |
| ☐ No Impact     | ☐ Direct                    | □Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current Conditions:                                                                                                             |  |
| ⊠ Beneficial    | ☐ Indirect                  | $\square$ Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Several local businesses, hotels, restaurants, and retail stores                                                                |  |
| ☐ Adverse       | □ Cumulative                | extstyle 	ext | are located within the city. The city's tax base has not                                                                        |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | experienced notable growth in recent years.                                                                                     |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Preferred Alternative Environmental Narrative:                                                                                  |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benefits from the proposed improvements will create a more                                                                      |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dependable system thus potentially creating growth in the                                                                       |  |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | residential and commercial industries in the area.                                                                              |  |

| 12. Community                                                                                                                   | 12. Community and Government Services and Facilities (example: educational facilities; health and |                  |                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------|--|--|
| medical services and facilities; police; emergency medical services; and parks, playgrounds and open                            |                                                                                                   |                  |                                                                  |  |  |
| space)                                                                                                                          |                                                                                                   |                  |                                                                  |  |  |
| ☐ No Impact                                                                                                                     | ☐ Direct                                                                                          | □Permit          | Current Conditions:                                              |  |  |
|                                                                                                                                 | ☐ Indirect                                                                                        | ☐Mitigation      | The community consists of existing educational facilities, a     |  |  |
| ☐ Adverse                                                                                                                       |                                                                                                   | ⊠ NA             | hospital and medical center, library, police and emergency       |  |  |
| _ //averse                                                                                                                      | Camalative                                                                                        |                  | services, several parks, and open spaces.                        |  |  |
|                                                                                                                                 |                                                                                                   |                  | Preferred Alternative Environmental Narrative:                   |  |  |
|                                                                                                                                 |                                                                                                   |                  | The proposed projects will have a beneficial effect on the       |  |  |
|                                                                                                                                 |                                                                                                   |                  | community and government facilities by creating a more           |  |  |
|                                                                                                                                 |                                                                                                   |                  | dependable system that is vital to a community.                  |  |  |
| 13. Commercia                                                                                                                   | l and Industrial F                                                                                | acilities – Prod | uction and Activity, Growth or Decline                           |  |  |
| ☐ No Impact                                                                                                                     | ☐ Direct                                                                                          | □Permit          | Current Conditions:                                              |  |  |
| ⊠ Beneficial                                                                                                                    | ☐ Indirect                                                                                        | ☐Mitigation      | Commercial buildings and small businesses rely on the existing   |  |  |
| ☐ Adverse                                                                                                                       | □ Indirect     □ Cumulative     □ Cumulative     □ Cumulative                                     | ⊠ NA             | water system for their water needs.                              |  |  |
| □ Auverse                                                                                                                       | Cumulative                                                                                        | △ NA             | Preferred Alternative Environmental Narrative:                   |  |  |
|                                                                                                                                 |                                                                                                   |                  | The proposed project will have a beneficial effect on the        |  |  |
|                                                                                                                                 |                                                                                                   |                  | commercial and industrial facilities by creating a more          |  |  |
|                                                                                                                                 |                                                                                                   |                  | dependable system that is vital to a community. Commercial       |  |  |
|                                                                                                                                 |                                                                                                   |                  | or industrial facilities would likely be severely compromised if |  |  |
|                                                                                                                                 |                                                                                                   |                  | they lost their source of water supply.                          |  |  |
| 14 Social Strue                                                                                                                 | rtures and Mores                                                                                  | : levamnle: star | ndards of social conduct/social conventions)                     |  |  |
| ✓ No Impact                                                                                                                     |                                                                                                   | ☐ Permit         | Current Conditions:                                              |  |  |
|                                                                                                                                 | ☐ Direct                                                                                          |                  | The whole community is dependent on the existing water           |  |  |
| ☐ Beneficial                                                                                                                    | ☐ Indirect                                                                                        | ☐Mitigation      | infrastructure.                                                  |  |  |
| ☐ Adverse                                                                                                                       | ☐ Cumulative                                                                                      | ⊠ NA             | Preferred Alternative Environmental Narrative:                   |  |  |
|                                                                                                                                 |                                                                                                   |                  | There are no anticipated impacts to social structures or         |  |  |
|                                                                                                                                 |                                                                                                   |                  |                                                                  |  |  |
| 15 Land Has C                                                                                                                   | ompotibility /ovo                                                                                 | manda, arayıtla  | mores.                                                           |  |  |
| 15. Land Use Compatibility (example: growth, land use change, development activity, adjacent land uses and potential conflicts) |                                                                                                   |                  |                                                                  |  |  |
|                                                                                                                                 |                                                                                                   |                  | Comment Conditions                                               |  |  |
| ☑ No Impact                                                                                                                     | ☐ Direct                                                                                          | □Permit          | Current Conditions:                                              |  |  |
| ☐ Beneficial                                                                                                                    | ☐ Indirect                                                                                        | ☐Mitigation      | Land use within the planning boundary and outside of the city    |  |  |
| ☐ Adverse                                                                                                                       | □ Cumulative                                                                                      | $\boxtimes$ NA   | limits of White Sulphur Springs is primarily ranchland and       |  |  |
|                                                                                                                                 |                                                                                                   |                  | farmland. Areas that are not cultivated for crops are generally  |  |  |
|                                                                                                                                 |                                                                                                   |                  | sagebrush shrubland or foothill grasslands. There is some        |  |  |
|                                                                                                                                 |                                                                                                   |                  | National Forest land surrounding the Willow Creek intake         |  |  |
|                                                                                                                                 |                                                                                                   |                  | reservoir at the southeast end of the planning area and some     |  |  |
|                                                                                                                                 |                                                                                                   |                  | floodplain and riparian systems adjacent to Willow Creek.        |  |  |
|                                                                                                                                 |                                                                                                   |                  | There is a semi-developed rural residential area within the      |  |  |
|                                                                                                                                 |                                                                                                   |                  | planning area, approximately one mile east of the city limits.   |  |  |
|                                                                                                                                 |                                                                                                   |                  | This residential area consists of approximately 15 lots ranging  |  |  |
|                                                                                                                                 |                                                                                                   |                  | in size from five to 15 acres. Developed areas with the city     |  |  |
|                                                                                                                                 |                                                                                                   |                  | limits of White Sulphur Springs are comprised primarily of       |  |  |
|                                                                                                                                 |                                                                                                   |                  | low-intensity residential and commercial areas.                  |  |  |
|                                                                                                                                 |                                                                                                   |                  | Preferred Alternative Environmental Narrative:                   |  |  |
|                                                                                                                                 |                                                                                                   |                  | The proposed projects are not anticipated to create any          |  |  |
|                                                                                                                                 |                                                                                                   |                  | substantial changes in land use in either the adjacent areas or  |  |  |
|                                                                                                                                 |                                                                                                   |                  | the service area within the city.                                |  |  |

| 16. Energy Resources – Consumption and Conservation |                   |                      |                                                                                                                               |
|-----------------------------------------------------|-------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ☑ No Impact                                         | ☐ Direct          | □Permit              | Current Conditions:                                                                                                           |
| ☑ Beneficial                                        | ☐ Indirect        | $\square$ Mitigation | The existing water system utilizes energy for treatment and                                                                   |
| ☐ Adverse                                           |                   | $\boxtimes$ NA       | conveyance needs. Average day use based on the source                                                                         |
|                                                     |                   |                      | meter data is 242,537 gpd. Average day use based on                                                                           |
|                                                     |                   |                      | individual meter data is 120,487 gpd, indicating that over                                                                    |
|                                                     |                   |                      | 122,000 gpd, or 50% of the water pumped into the system is                                                                    |
|                                                     |                   |                      | lost or unaccounted for. As a rule of thumb, any amount of                                                                    |
|                                                     |                   |                      | lost and unaccounted for water greater than 10 to 15% is                                                                      |
|                                                     |                   |                      | considered excessive. Typically, water lost or unaccounted for in a system is the result of leaks, unmetered uses, inaccurate |
|                                                     |                   |                      | meters, and/or flushing of fire hydrants. In White Sulphur                                                                    |
|                                                     |                   |                      | Springs, the largest known source of unaccounted for water is                                                                 |
|                                                     |                   |                      | leaking transmission and distribution mains.                                                                                  |
|                                                     |                   |                      | Preferred Alternative Environmental Narrative:                                                                                |
|                                                     |                   |                      | Water distribution and transmission main replacements will                                                                    |
|                                                     |                   |                      | greatly reduce the operational energy that is currently lost.                                                                 |
|                                                     |                   |                      | The project will benefit energy resources, as a significant                                                                   |
|                                                     |                   |                      | amount of water is currently being lost due to leakage. The                                                                   |
|                                                     |                   |                      | addition of backup generators will have little effect on energy                                                               |
|                                                     |                   |                      | resources. Improvements at the intake and treatment facility                                                                  |
|                                                     |                   |                      | will increase the operational efficiency of these facilities but                                                              |
|                                                     |                   |                      | should not have a notable effect on energy resources as these                                                                 |
| 47 Calid Mask                                       |                   |                      | facilities operate via gravity.                                                                                               |
|                                                     | e Management      | □p ::                | Command Complision on                                                                                                         |
| ☑ No Impact ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐   | □ Direct          | □Permit              | Current Conditions:                                                                                                           |
| ☐ Beneficial                                        | ☐ Indirect        | ☐Mitigation          | The city provides solid waste management.  Preferred Alternative Environmental Narrative:                                     |
| ☐ Adverse                                           | ☐ Cumulative      | ⊠ NA                 | There will be no impact to solid waste management from the                                                                    |
|                                                     |                   |                      | proposed water projects.                                                                                                      |
| 18. Wastewate                                       | er Treatment – Se | wage System          | proposed water projector                                                                                                      |
| ✓ No Impact                                         | □ Direct          | Permit               | Current Conditions:                                                                                                           |
| ☐ Beneficial                                        | ☐ Indirect        | ☐Mitigation          | The city maintains a wastewater collection and treatment                                                                      |
| ☐ Adverse                                           | ☐ Cumulative      | ⊠ NA                 | system.                                                                                                                       |
| L Adverse                                           | _ cumulative      |                      | Preferred Alternative Environmental Narrative:                                                                                |
|                                                     |                   |                      | There will be no impact to the wastewater system as a result                                                                  |
|                                                     |                   |                      | of the proposed water projects.                                                                                               |
| 19. Storm Wat                                       | er – Surface Drai | nage                 |                                                                                                                               |
| ☑ No Impact                                         | ☐ Direct          | □Permit              | <u>Current Conditions:</u>                                                                                                    |
| ☐ Beneficial                                        | ☐ Indirect        | $\square$ Mitigation | Storm drainage generally flows to the northwest as overland                                                                   |
| ☐ Adverse                                           | ☐ Cumulative      | oxtimes NA           | flow. There is no storm sewer/inlet system. Several roads                                                                     |
|                                                     |                   |                      | within the city are unpaved.                                                                                                  |
|                                                     |                   |                      | Preferred Alternative Environmental Narrative:                                                                                |
|                                                     |                   |                      | Stormwater drainage and discharge may be temporarily impacted by construction activities. No long-term impacts are            |
|                                                     |                   |                      | anticipated. The contractor will be required to manage excess                                                                 |
|                                                     |                   |                      | runoff from construction activities via a Stormwater Pollution                                                                |
|                                                     |                   |                      | Prevention Plan (SWPPP) if necessary.                                                                                         |

| 20. Community                                      | y Water Supply           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------|--------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ No Impact                                        | □ Direct                 | □Permit                | Current Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ☑ Beneficial                                       | ☐ Indirect               | ☐Mitigation            | The White Sulphur Springs existing water system includes the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ☐ Adverse                                          | ☐ Cumulative             | □ NA                   | intake diversion structure, intake dam, slow sand filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                    |                          |                        | building, storage tank, transmission main, well locations, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                          |                        | distribution system. There are deficiencies at the intake dam,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                          |                        | slow sand filter, wells, and leaking transmission and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    |                          |                        | distribution mains. There is currently no backup power source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                    |                          |                        | for the groundwater wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    |                          |                        | Preferred Alternative Environmental Narrative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                          |                        | There will be numerous beneficial impacts from the proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                    |                          |                        | water projects including improving health and safety,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    |                          |                        | removing deficiencies, updating an aging infrastructure, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21. Fire Protec                                    | tion — Hazards           |                        | adding emergency power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| □ No Impact                                        | ☐ Direct                 | □Permit                | Current Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| □ No Impact     □ Beneficial     □                 |                          | ☐Mitigation            | The City has a local fire department and maintains the water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                    | ☐ Indirect               |                        | infrastructure including fire hydrants. The city's water system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ☐ Adverse                                          | □ Cumulative             | □ INA                  | is used for fire protection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                    |                          |                        | Preferred Alternative Environmental Narrative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                          |                        | The proposed improvements will improve water conveyance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                          |                        | and provide new hydrants which will increase the reliability of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                    |                          |                        | the system and its ability to provide fire protection. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    |                          |                        | addition of backup power will allow the system to maintain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    |                          |                        | it's fire protection capabilities throughout a power outage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22 Cultural Fa                                     | -:         -   -   -   - | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22. Cultural Fa                                    | cilities, Cultural L     | iniqueness and         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| No Impact                                          | ☐ Direct                 | Permit □ Permit        | Current Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                    |                          | •                      | Current Conditions: SHPO conducted a file search for the project area and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ☑ No Impact                                        | ☐ Direct                 | □Permit                | Current Conditions: SHPO conducted a file search for the project area and determined there have been several previously recorded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any disturbance taking place. SHPO did express concern over the                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any disturbance taking place. SHPO did express concern over the fact the Willow Creek diversion and intake structures may be                                                                                                                                                                                                                                                                                                                                                            |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any disturbance taking place. SHPO did express concern over the fact the Willow Creek diversion and intake structures may be over fifty years old. SHPO asked that these structures be recorded prior to any rehabilitation taking place through further site investigation and coordination with SHPO.                                                                                                                                                                                 |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any disturbance taking place. SHPO did express concern over the fact the Willow Creek diversion and intake structures may be over fifty years old. SHPO asked that these structures be recorded prior to any rehabilitation taking place through further site investigation and coordination with SHPO.  Preferred Alternative Environmental Narrative:                                                                                                                                 |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any disturbance taking place. SHPO did express concern over the fact the Willow Creek diversion and intake structures may be over fifty years old. SHPO asked that these structures be recorded prior to any rehabilitation taking place through further site investigation and coordination with SHPO.  Preferred Alternative Environmental Narrative:  No impacts are anticipated to any cultural facilities, cultural                                                                |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any disturbance taking place. SHPO did express concern over the fact the Willow Creek diversion and intake structures may be over fifty years old. SHPO asked that these structures be recorded prior to any rehabilitation taking place through further site investigation and coordination with SHPO.  Preferred Alternative Environmental Narrative:  No impacts are anticipated to any cultural facilities, cultural uniqueness, or diversity. The work to the diversion and intake |
| <ul><li>☑ No Impact</li><li>☐ Beneficial</li></ul> | ☐ Direct<br>☐ Indirect   | ☐Permit<br>☐Mitigation | Current Conditions:  SHPO conducted a file search for the project area and determined there have been several previously recorded historic sites within the area relating to historic residences, architecture, homestead/farmsteads, commercial development, railroads, a courthouse, irrigation systems, a school, and mining. Four of the listed sites provided by SHPO were identified as currently being listed in the National Register of Historic Places.  SHPO recommends that any found structure over fifty years old be considered historic and potentially eligible for listing in the National Register of Historic Places. A found structure over fifty years old should be recorded and assessed prior to any disturbance taking place. SHPO did express concern over the fact the Willow Creek diversion and intake structures may be over fifty years old. SHPO asked that these structures be recorded prior to any rehabilitation taking place through further site investigation and coordination with SHPO.  Preferred Alternative Environmental Narrative:  No impacts are anticipated to any cultural facilities, cultural                                                                |

| 23. Transportation Networks and Traffic Flow Conflicts (example: rail; auto including local traffic; |                      |                      |                                                                                                                    |
|------------------------------------------------------------------------------------------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|
| airport runway clear zones – avoidance of incompatible land use in airport runway clear zones)       |                      |                      |                                                                                                                    |
| ☐ No Impact                                                                                          | □ Direct             | □Permit              | <u>Current Conditions:</u>                                                                                         |
| ☐ Beneficial                                                                                         | ☐ Indirect           | $\square$ Mitigation | Residential roadways, as well as major transportation routes                                                       |
| □ Adverse                                                                                            | ☐ Cumulative         | oxtimes NA           | in the area including US Highway 12 and US Highway 89.                                                             |
|                                                                                                      |                      |                      | Preferred Alternative Environmental Narrative:                                                                     |
|                                                                                                      |                      |                      | There will be temporary impacts of traffic flow during                                                             |
|                                                                                                      |                      |                      | construction. Contractors will be required to submit traffic                                                       |
|                                                                                                      |                      |                      | control plans as a part of the construction contract in order to                                                   |
|                                                                                                      |                      |                      | coordinate the traffic flow in the construction area. There are                                                    |
|                                                                                                      |                      |                      | no long-term impacts to the transportation networks.                                                               |
|                                                                                                      | -                    |                      | tions, or Plans (example: conformance with local                                                                   |
|                                                                                                      | e plans, zoning, o   |                      |                                                                                                                    |
| ⋈ No Impact                                                                                          | ☐ Direct             | □Permit              | <u>Current Conditions:</u>                                                                                         |
| ☐ Beneficial                                                                                         | ☐ Indirect           | $\square$ Mitigation | The city has local ordinances and several local planning                                                           |
| $\square$ Adverse                                                                                    | $\square$ Cumulative | ⊠ NA                 | documents including a capital improvements plan and growth                                                         |
|                                                                                                      |                      |                      | policy.                                                                                                            |
|                                                                                                      |                      |                      | Preferred Alternative Environmental Narrative:                                                                     |
|                                                                                                      |                      |                      | All applicable local, state, and federal rules and regulations                                                     |
|                                                                                                      |                      |                      | will be adhered to during the design and implementation of                                                         |
|                                                                                                      | . 51.1. /            |                      | the proposed improvements.                                                                                         |
|                                                                                                      |                      | -                    | tory action or project activity that reduces, minimizes, or                                                        |
|                                                                                                      | use of private pr    | • • •                |                                                                                                                    |
| ☑ No Impact                                                                                          | ☑ Direct             | ☐ Permit             | <u>Current Conditions:</u>                                                                                         |
| ☐ Beneficial                                                                                         | ☐ Indirect           | ☐Mitigation          | Land ownership within the planning area east and southeast                                                         |
| □ Adverse                                                                                            | ☐ Cumulative         | ⊠ NA                 | of the City is primarily private. Distribution improvements and                                                    |
|                                                                                                      |                      |                      | generator improvements would take place on City property                                                           |
|                                                                                                      |                      |                      | and public right-of-way.                                                                                           |
|                                                                                                      |                      |                      | <u>Preferred Alternative Environmental Narrative:</u> If water system transmission main, treatment system, storage |
|                                                                                                      |                      |                      | tank, or intake improvements are made, temporary                                                                   |
|                                                                                                      |                      |                      | disturbance will occur within the privately owned rural                                                            |
|                                                                                                      |                      |                      | residential area and agricultural land east and southeast of the                                                   |
|                                                                                                      |                      |                      | city. Landowner input and coordination will be important                                                           |
|                                                                                                      |                      |                      | during final design, so any project does not adversely affect                                                      |
|                                                                                                      |                      |                      | land use and function of the landowner's property.                                                                 |
| 26. Environme                                                                                        | ntal Justice (exan   | nple: does the       | project avoid placing lower income households in areas                                                             |
|                                                                                                      | -                    | -                    | ed, such as adjacent to brownfield sites?)                                                                         |
| ☑ No Impact                                                                                          | ☐ Direct             | □Permit              | Current Conditions:                                                                                                |
| ☐ Beneficial                                                                                         | ☐ Indirect           | ☐Mitigation          | N/A .                                                                                                              |
| ☐ Adverse                                                                                            | ☐ Cumulative         | ⊠ NA                 | Preferred Alternative Environmental Narrative:                                                                     |
|                                                                                                      | _ cumulative         |                      | The project will not force low-income households into                                                              |
|                                                                                                      |                      |                      | environmentally degraded areas.                                                                                    |

| 27. Lead Based Paint and/or Asbestos (example: does the project replace asbestos-lined pipes? Do any |              |             |                                                              |  |
|------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------------------------------------------------|--|
| structures qualify as containing lead-based paint?)                                                  |              |             |                                                              |  |
| ☑ No Impact                                                                                          | ☐ Direct     | □Permit     | Current Conditions:                                          |  |
| ☐ Beneficial                                                                                         | ☐ Indirect   | ☐Mitigation | There are no known lead service lines within the water       |  |
| ☐ Adverse                                                                                            | ☐ Cumulative | ⊠ NA        | system. Existing water system information indicates only a   |  |
|                                                                                                      |              |             | small amount of AC pipe (250 feet).                          |  |
|                                                                                                      |              |             | Preferred Alternative Environmental Narrative:               |  |
|                                                                                                      |              |             | No anticipated impacts from lead-based paint or asbestos are |  |
|                                                                                                      |              |             | anticipated as a result of the water system improvement      |  |
|                                                                                                      |              |             | projects.                                                    |  |

# **Additional Information**

List all sources of information used to complete the Environmental Checklist. Sources may include studies, plans, documents, or the individuals, organizations, or agencies contacted for assistance. For individuals, groups, or agencies, please include a contact person and phone number. List any scoping documents or meetings and/or public meetings during project development.

# **Agencies Consulted:**

**Bureau of Indian Affairs** 

**Bureau of Land Management** 

City of White Sulphur Springs Floodplain Administrator

**Department of Commerce, Census and Economic Information Center** 

**Department of Environmental Quality** 

**Department of Fish, Wildlife and Parks** 

**Department of Labor and Industry** 

**Department of Natural Resources and Conservation** 

**Department of Natural Resources and Conservation Water Resources Regional Office** 

**Department of Transportation** 

**Federal Aviation Administration** 

**Helena-Lewis and Clark National Forest** 

**Meagher County Conservation District** 

**Meagher County Floodplain Administrator** 

**Meagher County Historical Association** 

**Montana Land Reliance** 

**National Park Service** 

**Natural Resource Conservation Service** 

**Occupational Safety and Health Administration** 

**State Historic Preservation Office** 

**US Department of Transportation** 

**US Environmental Protection Agency** 

**US Fish and Wildlife Service** 

**US Army Corps of Engineers** 

Agency Responses/Documents Referenced:

**Department of Natural Resources and Conservation Water Resources Regional Office** 

Rebekah Luchterhand - Meagher County Floodplain Administrator

Matt Bell - Montana Land Reliance

Damon Murdo – Montana State Historic Preservation Office (SHPO)

Jacob Martin – U.S. Fish and Wildlife Service (USFWS)

Helen Smith - Helena-Lewis and Clark National Forest

Gary Bertellotti - Montana Fish, Wildlife and Parks

**US Army Corps of Engineers – Montana Regulatory Team** 

# References:

Census and Economic Information Center – GIS Resources. Montana Department of Commerce. Retrieved on 11/18/2022 from <a href="https://ceic-mtdoc.opendata.arcgis.com/search?tags=dec">https://ceic-mtdoc.opendata.arcgis.com/search?tags=dec</a>

Census and Economic Information Center Income and Poverty. Montana Department of Commerce. Retrieved on 3/17/23 from <a href="https://ceic.mt.gov/People-and-Housing/Income-and-Poverty">https://ceic.mt.gov/People-and-Housing/Income-and-Poverty</a>

City of White Sulphur Springs & Meagher County Consolidated City/County Growth Policy. February, 2021.

https://www.whitesulphurspringsmontana.com/documents/77/Consolidated City County Growth Policy - February 2021 3.pdf

Clean Water Act Information Center (CWAIC) 2020. Montana Department of Environmental Quality. Retrieved on 3/17/23 from

https://gis.mtdeq.us/portal/apps/webappviewer/index.html?id=708aae89f060403db2710 378ac4945f0

Clean Water Act Information Center (CWAIC) Water Quality Use Class Map. Montana Department of Environmental Quality. Retrieved on 3/17/23 from <a href="https://gis.mtdeq.us/portal/apps/webappviewer/index.html?id=507f07b69b7c4d69bd855f">https://gis.mtdeq.us/portal/apps/webappviewer/index.html?id=507f07b69b7c4d69bd855f</a> b2b78ef9e7

- FEMA Flood Map Service Center: Search by Address. FEMA. Retrieved on 3/17/23 from <a href="https://msc.fema.gov/portal/search?AddressQuery=White%20Sulphur%20Springs%2C%20Montana#searchresultsanchor">https://msc.fema.gov/portal/search?AddressQuery=White%20Sulphur%20Springs%2C%20Montana#searchresultsanchor</a>
- IPaC Information for Planning and Consultation. U.S. Fish & Wildlife Service. Retrieved on 3/16/23 from <a href="https://ipac.ecosphere.fws.gov/location/index">https://ipac.ecosphere.fws.gov/location/index</a>
- Low- and Moderate-Income Area Data Map Application, based on 2011-2015 ACS. US Department of Housing and Urban Development. Retrieved on 3/18/23 from <a href="https://hud.maps.arcgis.com/apps/webappviewer/index.html?id=ffd0597e8af24f88b501b">https://hud.maps.arcgis.com/apps/webappviewer/index.html?id=ffd0597e8af24f88b501b</a> 7e7f326bedd
- Montana DEQ Interactive Map. Retrieved on 4/6/2023 from https://gis.mtdeq.us/portal/apps/webappviewer/index.html?id=f554f421c3e64f5599e76b5 cb8dd3391
- Montana Groundwater Information Center Water Well Data. Montana Bureau of Mines and Geology (MBMG). Retrieved on 3/16/23 from <a href="https://mbmgftp.mtech.edu/#/gwic/">https://mbmgftp.mtech.edu/#/gwic/</a>
- Montana Natural Heritage Program. Environmental Summary Report for Latitude 46.47856 to 46.59148 and Longitude -110.76008 to -110.96478. Retrieved on 3/15/2023.
- Montana Sage Grouse Habitat Conservation Map. Montana Sage Grouse Habitat Conservation Program. Retrieved on 10/18/22 from <a href="https://sagegrouse.mt.gov/ProgramMap">https://sagegrouse.mt.gov/ProgramMap</a>
- Natural Heritage Map Viewer for Land Cover and Land Management. Montana Natural Heritage Program. Retrieved on 3/14/23 from http://mtnhp.org/MapViewer/
- Natural Heritage Map Viewer for Wetland and Riparian Mapping. Montana Natural Heritage Program. Retrieved on 3/17/23 from http://mtnhp.org/MapViewer/
- Web Soil Survey. United States Department of Agriculture Natural Resources Conservation Service. Retrieved on 3/14/23 from <a href="https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx">https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</a>

# Below is a list of electronic resources available for data gathering to aid in the development of the Environmental Checklist:

Abandoned Mines (DEQ): https://deq.mt.gov/cleanupandrec/Programs/aml

Agricultural Statistics (USDA): <u>USDA - National Agricultural Statistics Service - Data and Statistics</u>

Air Quality

- Nonattainment Areas: Plan and Rule Development | Montana DEQ (mt.gov)
- Opening Burning Guidelines: <u>Open Burning | Montana DEQ (mt.gov)</u>

Army Corps of Engineers: <a href="http://www.usace.army.mil/Home.aspx">http://www.usace.army.mil/Home.aspx</a>

Bureau of Business and Economic Research, UM: <a href="http://www.bber.umt.edu/">http://www.bber.umt.edu/</a>

# **Appendix B**

**Agency Correspondence** 

# **Agency Letters Requesting Comments**

# See what's possible.



2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

## BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

## SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Bureau of Indian Affairs 2021 4th Ave N. Billings MT 59101

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.

Y:\Shared\Helena Projects\1-21278-White Sulphur Springs On-Call\TO2 - Water PER\Project\Reports\2022 Water PER\Environmental\Agency Consultation\1-21278\_EA\_Agency\_Ltr.docx



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

Please take a few moments to review the site and the proposed projects. Please provide a written response detailing any comments you may have regarding the project and any potential environmental impacts that should be considered in the project design, avoidance, or mitigation measures.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[] Bureau of Indian Affairs has reviewed the enclosed information and has no comment on the project at this time.

Signature

Date

# See what's possible.



2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

## BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

## SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Bureau of Land Management 5001 Southgate Drive Billings MT 59101

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.

Y:\Shared\Helena Projects\1-21278-White Sulphur Springs On-Call\TO2 - Water PER\Project\Reports\2022 Water PER\Environmental\Agency Consultation\1-21278\_EA\_Agency\_Ltr.docx



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

Please take a few moments to review the site and the proposed projects. Please provide a written response detailing any comments you may have regarding the project and any potential environmental impacts that should be considered in the project design, avoidance, or mitigation measures.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Bureau of Land Management has reviewed the enclosed information and has no comment on the project at this time.

Date

Signature



# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

City of White Sulphur Springs Floodplain Administrator Julian Theriault PO Box 442 White Sulphur Springs MT 59645

### RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.





- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena. MT 59601

Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] City of White Sulphur Springs Floodplain Administrator has reviewed the enclosed information and has no comment on the project at this time.



# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Department of Commerce, Census and Economic Information Center PO Box 200505
Helena MT 59620

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

| Department of Commerce, Census and I<br>enclosed information and has no comment of | Economic Information Center has reviewed the on the project at this time. |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Signature                                                                          | Date                                                                      |



# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Department of Environmental Quality Permitting and Compliance Division PO Box 200901 Helena MT 59620

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by December 17, 2022, at jsalo@greatwesteng.com or the following address:

> Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

**Great West Engineering, Inc.** Junea L. Salo Jessica Salo, PE **Project Engineer** Attached: Figure 1 – Area of Potential Effect (APE) [ ] Department of Environmental Quality has reviewed the enclosed information and has no comment on the project at this time. Date Signature

# HELENA

2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Department of Fish, Wildlife and Parks 1420 E. 6th Ave. Helena MT 59620

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Department of Fish, Wildlife and Parks has reviewed the enclosed information and has no comment on the project at this time.



### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Department of Labor and Industry PO Box 1728 Helena MT 59624

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Junea L. Salo

Jessica Salo, PE Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Department of Labor and Industry has reviewed the enclosed information and has no comment on the project at this time.

Signature

Date



# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Department of Natural Resources and Conservation Attn: Resource Development Bureau Engineer PO Box 201601 Helena MT 59620

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Department of Natural Resources and Conservation has reviewed the enclosed information and has no comment on the project at this time.

| Signature | Date | Date

# HELENA

2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Department of Natural Resources and Conservation Water Resources Regional Office Lewistown Regional Office 613 NE Main, Suite E Lewistown MT 59457

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Department of Natural Resources and Conservation Water Resources Regional Office has reviewed the enclosed information and has no comment on the project at this time.

Date

Signature

# See what's possible.



2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Department of Transportation PO Box 201001 Helena MT 59620

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Signature

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Department of Transportation has reviewed the enclosed information and has no comment on the project at this time.

Date

### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Federal Aviation Administration Airport District Office 2725 Skyway Drive Suite 2 Helena MT 59602

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.





- Well pump house improvements.
- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by December 17, 2022, at jsalo@greatwesteng.com or the following address:

> Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc. Junea T. Jalo Jessica Salo, PE **Project Engineer** Attached: Figure 1 – Area of Potential Effect (APE) [ ] Federal Aviation Administration has reviewed the enclosed information and has no comment on the project at this time. Signature Date



### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Helena-Lewis and Clark National Forest Emily Platt 2880 Skyway Drive Helena MT 59602

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.





- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Signature

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Helena-Lewis and Clark National Forest has reviewed the enclosed information and has no comment on the project at this time.

Date

# HELENA

2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Meagher County Conservation District PO Box 589 White Sulphur Springs MT 59645

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.





- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Meagher County Conservation District has reviewed the enclosed information and has no comment on the project at this time.

Signature

Date



### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Meagher County Floodplain Administrator Rebekah Luchterhand PO Box 309 White Sulphur Springs MT 59645

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

| <ul><li>Meagher County Floodplain Administ</li></ul> | trator has reviewed the enclosed information and has |
|------------------------------------------------------|------------------------------------------------------|
| no comment on the project at this time.              |                                                      |
|                                                      |                                                      |
| Signature                                            | <br>Date                                             |

# HELENA

2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Meagher County Historical Association 310 2nd Ave NE White Sulphur Springs MT 59645

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Meagher County Historical Association has reviewed the enclosed information and has no comment on the project at this time.

| Signature | Date |

# See what's possible.



HELENA 2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Montana Land Reliance PO Box 355 Helena MT 59624

RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by December 17, 2022, at jsalo@greatwesteng.com or the following address:

> Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely, **Great West Engineering, Inc.** Junea L. Salo Jessica Salo, PE **Project Engineer** Attached: Figure 1 – Area of Potential Effect (APE) [ ] Montana Land Reliance has reviewed the enclosed information and has no comment on the project at this time. Signature Date

# See what's possible.



2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

### GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

National Park Service PO Box 25287 Denver CO 80225

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

**Great West Engineering, Inc.** 

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

| [ ] National Park Service has reviewed the project at this time. | enclosed information and has no comment on the |
|------------------------------------------------------------------|------------------------------------------------|
| Signature                                                        | <br>Date                                       |



# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Natural Resource Conservation Service 10 E. Babcock St. Bozeman MT 59771

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Signature

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Natural Resource Conservation Service has reviewed the enclosed information and has no comment on the project at this time.

Date



### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

Occupational Safety and Health Administration 2900 4th Ave. N Billings MT 59101

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] Occupational Safety and Health Administration has reviewed the enclosed information and has no comment on the project at this time.

# See what's possible.



2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

# BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

# **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

State Historic Preservation Office PO Box 201202 Helena MT 59620

# RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.





- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] State Historic Preservation Office has reviewed the enclosed information and has no comment on the project at this time.

Date

Signature

| File                                  | Search Reques                                                                                                                                      | t Form                      |                                                                                                                                            |                                                                                                                                                                                                                             |                                                                                                                    |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Contact Name:                         | Jessica Salo                                                                                                                                       |                             |                                                                                                                                            | 4                                                                                                                                                                                                                           |                                                                                                                    |
| Organization:                         | Great West Engine                                                                                                                                  | ering                       | M                                                                                                                                          |                                                                                                                                                                                                                             | NTANA                                                                                                              |
| Address:                              | 2501 Belt View Driv                                                                                                                                | /e                          | _                                                                                                                                          | HISTOR                                                                                                                                                                                                                      | ICAL SOCIETY                                                                                                       |
| City/State/Zip:                       | Helena/MT/59604                                                                                                                                    |                             |                                                                                                                                            | Historic                                                                                                                                                                                                                    | Preservation Office                                                                                                |
| Telephone:                            | 406                                                                                                                                                | -422-1288                   | н                                                                                                                                          |                                                                                                                                                                                                                             | y, PO Box 201202                                                                                                   |
| Email:                                | jsalo@greatwest                                                                                                                                    | eng.com                     |                                                                                                                                            | Present Mr.                                                                                                                                                                                                                 | 35020-1202                                                                                                         |
|                                       |                                                                                                                                                    | SEND TO: Damo dmurdo@mt.gov | n Murdo⊡<br>(406) 444-7767                                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                    |
| Project Name:                         |                                                                                                                                                    | ur Springs - Water Syste    | •                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                    |
| Describe the proposed project:        | • Water treatment s • Replacement of le • Replacement of ag • Construction of w • Dpgrade of other • Well pump house • The addition of en station. | nergency power at the (     | slow sand filter bun<br>n east of the City li<br>ystem piping withing<br>ty limits to elimina<br>m appurtenances.<br>City shop facility fo | mits.<br>in the City limits.                                                                                                                                                                                                |                                                                                                                    |
| Land Use:                             | Sagebrush, Croplan<br>Developed                                                                                                                    | d, Grassland, Forest,       | Meagher County                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                    |
| Agency Involved:<br>(Private,FWP,BLM) | City of White Sulphur Springs, US Forest Service, Private, MDT, Meagher County  Ownership:                                                         |                             | Federal, Local Government, Private                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                    |
|                                       | Project Area Loca                                                                                                                                  | tion Information            |                                                                                                                                            | File Search Fe                                                                                                                                                                                                              | e Structure                                                                                                        |
| Township(N/S)                         | Range (E/W)                                                                                                                                        | Section                     | -                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                    |
| 9N<br>9N                              | 6E<br>7E 7, 14, 1                                                                                                                                  |                             | 18, 23, 26                                                                                                                                 | \$35 / se                                                                                                                                                                                                                   | ection                                                                                                             |
|                                       |                                                                                                                                                    |                             |                                                                                                                                            | Please complete this formap showing the proportionation. Feel free to a project information if a shift fields must be compared from the box below befused place.  An invoice will be sent to results.  Total Sections to be | esed project<br>etach additional<br>vailable.<br>leted in order to<br>ded up and entered<br>ore a file search will |
|                                       |                                                                                                                                                    |                             |                                                                                                                                            | searched:                                                                                                                                                                                                                   | 10                                                                                                                 |
|                                       |                                                                                                                                                    |                             |                                                                                                                                            | Total amount to be pai                                                                                                                                                                                                      | \$350.00                                                                                                           |

\$350.00

to SHPO:



2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

#### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

#### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

#### **GREAT FALLS**

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

#### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

US Department of Transportation 585 Shephard Way Helena MT 59601

#### RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.

Y:\Shared\Helena Projects\1-21278-White Sulphur Springs On-Call\TO2 - Water PER\Project\Reports\2022 Water PER\Environmental\Agency Consultation\1-21278\_EA\_Agency\_Ltr.docx



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

Please take a few moments to review the site and the proposed projects. Please provide a written response detailing any comments you may have regarding the project and any potential environmental impacts that should be considered in the project design, avoidance, or mitigation measures.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] US Department of Transportation has reviewed the enclosed information and has no comment on the project at this time.

| Signature | Date



2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

#### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

#### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

#### GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

#### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

US Environmental Protection Agency Montana Office Federal Building 10 West 15th Street, Suite 3200 Helena MT 59625

#### RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.

Y:\Shared\Helena Projects\1-21278-White Sulphur Springs On-Call\TO2 - Water PER\Project\Reports\2022 Water PER\Environmental\Agency Consultation\1-21278\_EA\_Agency\_Ltr.docx





- · Well pump house improvements.
- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

Please take a few moments to review the site and the proposed projects. Please provide a written response detailing any comments you may have regarding the project and any potential environmental impacts that should be considered in the project design, avoidance, or mitigation measures.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] US Environmental Protection Agency has reviewed the enclosed information and has no comment on the project at this time.

Signature

Date



2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

#### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

#### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

#### GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

#### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



November 17, 2022

US Fish and Wildlife Service Ecological Services 585 Shepherd Way Helena MT 59601

#### RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.

Y:\Shared\Helena Projects\1-21278-White Sulphur Springs On-Call\TO2 - Water PER\Project\Reports\2022 Water PER\Environmental\Agency Consultation\1-21278\_EA\_Agency\_Ltr.docx



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

Please take a few moments to review the site and the proposed projects. Please provide a written response detailing any comments you may have regarding the project and any potential environmental impacts that should be considered in the project design, avoidance, or mitigation measures.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Jessica Salo, PE
Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

[ ] US Fish and Wildlife Service has reviewed the enclosed information and has no comment on the project at this time.

Signature

Date

## HELENA

2501 Belt View Drive Helena, MT 59601 Ph: (406) 449-8627 F: (406) 449-8631

#### BILLINGS

6780 Trade Center Avenue Billings, MT 59101 Ph: (406) 652-5000 F: (406) 248-1363

#### BOISE

3050 N Lakeharbor Lane Suite 201 Boise, ID 83703 Ph: (208) 576-6646

#### GREAT FALLS

702 2nd Street S, #2 Great Falls, MT 59405 Ph: (406) 952-1109

#### SPOKANE

9221 N Division Street Suite F Spokane, WA 99218 Ph: (509) 413-1430



March 15, 2023

US Army Corps of Engineers

email: Montana.Reg@usace.army.mil

#### RE: White Sulphur Springs Water System Preliminary Engineering Report

Dear to Whom It May Concern:

The City of White Sulphur Springs is proposing to review and upgrade its water system. The purpose of this letter is to solicit comments about any concerns about construction within the community and surrounding area to the east and southeast. White Sulphur Springs is a city of 955 residents and is the county seat of Meagher County, located in central Montana. The City of White Sulphur Springs and surrounding agricultural land is generally located within the foothills of two forested mountain ranges, the Castle Mountains to the southeast and the expansive Little Belt Mountains to the northeast. Major transportation routes in the project vicinity include U.S Highway 12 and Montana Highway 360. Major surface waters in the vicinity include the North Fork of the Smith River, located just north of the City limits, and Willow Creek, located east of the community.

Drinking water for the City comes from both groundwater and surface water sources. Groundwater is obtained from two groundwater wells located in the northeastern portion of the City. The South Fork of Willow Creek is the surface water source for the system, located approximately five miles southeast of the City.

The extents of the project area are the current city limits as well as the intake, slow sand filter treatment system, storage tank, and transmission mains located to the east and southeast of the community. The project area is contained within:

- Township 9 North, Range 6 East, Sections 12, 13
- Township 9 North, Range 7 East, Sections 7, 14, 15, 16, 17, 18, 23, 26

Enclosed is a map of the Area of Potential Effect (APE) (Figure 1) to help illustrate the proposed project location and water system components.

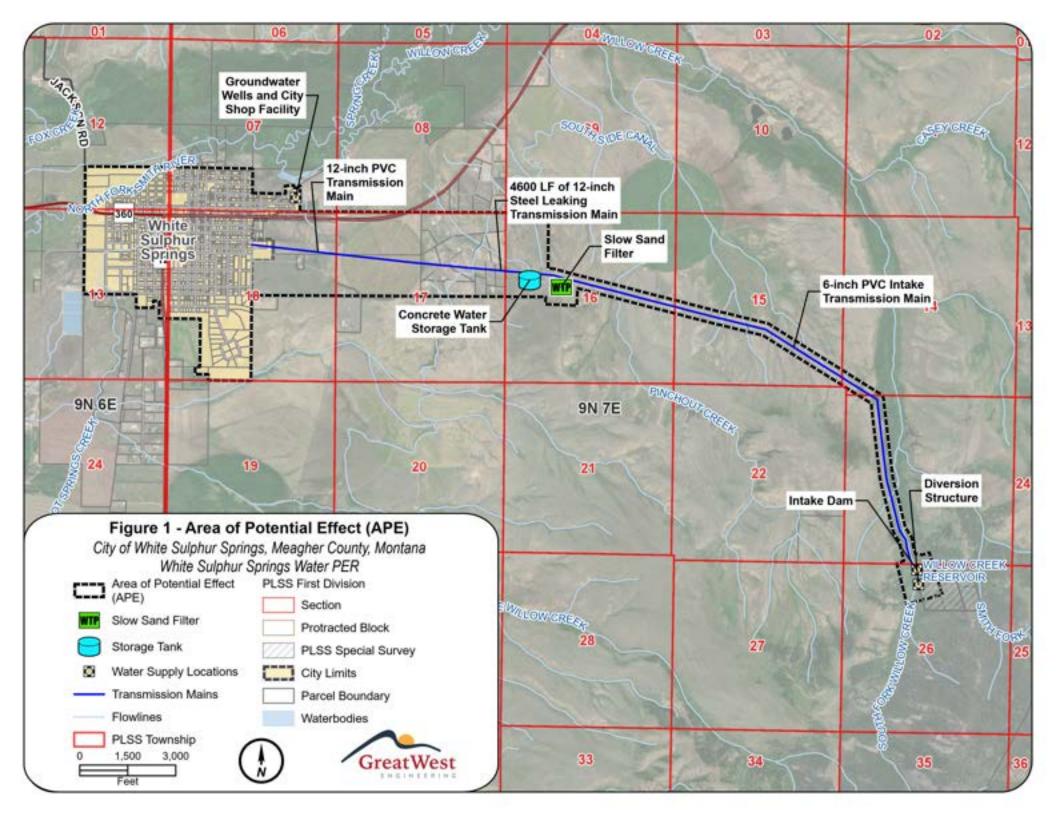
The purpose of this project is to identify deficiencies within the current water system, design rehabilitative or replacement efforts, and implement the design. Projects to address identified deficiencies are currently being considered. Such projects may include:

- Rehabilitation of the Willow Creek diversion and intake structure.
- Intake facility access road/safety improvements.
- Water treatment system upgrades at the slow sand filter building.
- Replacement of leaking transmission main east of the City limits.
- Replacement of aging water distribution system piping within the City limits.
- Construction of water mains within the City limits to eliminate dead-end mains.
- Upgrade of other water distribution system appurtenances.
- Well pump house improvements.

Y:\Shared\Helena Projects\1-21278-White Sulphur Springs On-Call\TO2 - Water PER\Project\Reports\2022 Water PER\Environmental\Agency Consultation\1-21278\_EA\_Agency\_Ltr\_USACE.docx






- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

Please take a few moments to review the site and the proposed projects. Please provide a written response detailing any comments you may have regarding the project and any potential environmental impacts that should be considered in the project design, avoidance, or mitigation measures.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by April 15, 2023, at jsalo@greatwesteng.com or the following address:

> Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely, **Great West Engineering, Inc.** Junea Z. Salo Jessica Salo, PE **Project Engineer** Attached: Figure 1 – Area of Potential Effect (APE) [ ] «Company» has reviewed the enclosed information and has no comment on the project at this time. Signature Date



# **Agency Responses**



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

Please take a few moments to review the site and the proposed projects. Please provide a written response detailing any comments you may have regarding the project and any potential environmental impacts that should be considered in the project design, avoidance, or mitigation measures.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:jsalo@greatwesteng.com">jsalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

Justia I. shalo

Jessica Salo, PE Project Engineer

Attached: Figure 1 – Area of Potential Effect (APE)

MI Department of Natural Resources and Conservation Water Resources Regional Office has reviewed the enclosed information and has no comment on the project at this time.

Signature

Data

From: Rebekah Luchterhand <rluchterhand@meagherco.net>

Sent: Tuesday, November 22, 2022 11:50 AM

**To:** Jessica Salo

**Subject:** Comments on White Sulphur Springs Water System Preliminary Engineering Report

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Hello Ms. Salo,

According to the attached Community Status Book Report from the Federal Emergency Management Agency Meagher County participates in the National Flood Program. That being said there are currently no flood insurance rate maps (FIRM) for the unincorporated portions of Meagher County. Therefore, the County does not administer floodplain regulations in the unincorporated areas of the County.

Let me know if you need anything else.

Sincerely,

Rebekah Luchterhand Clerk to the Commission P.O. Box 309 White Sulphur Springs, MT 59645 406-547-3037 rluchterhand@meagherco.net

From: Matt Bell <matt@mtlandreliance.org>
Sent: Wednesday, November 23, 2022 12:22 PM

**To:** Jessica Salo

**Subject:** White Sulphur Springs Water System

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Hi Jessica,

My name is Matt Bell and I work for The Montana Land Reliance (MLR). I'm reaching out to you today because I'm the MLR employee who monitors the Stone Temple Ranch and we received notice regarding the water system review/upgrade.

There appears to be a right of access to the pipeline conveyance from Willow Creek Reservoir to the City of White Sulphur Springs, however MLR is interested in the details regarding surface disturbance, timeline, and remedial aspects of the project. Please keep us informed as this project moves along. If you need anything from us please let us know.

Best regards, Matt

## Matt Bell GIS Coordinator/Land Steward Montana Land Reliance 324 Fuller Ave. P.O. Box 355 | Helena, MT 59624 (406) 443-7027



From: Murdo, Damon <dmurdo@mt.gov>
Sent: Monday, November 28, 2022 11:10 AM

**To:** Jessica Salo

**Subject:** WHITE SULPHUR SPRINGS WATER SYSTEM PER

**Attachments:** 2022112801.pdf; Reports.pdf; Sites.pdf

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

November 28, 2022

Jessica Salo Great West Engineering 2501 Belt View Drive Helena MT 59601



RE: WHITE SULPHUR SPRINGS WATER SYSTEM PER. SHPO Project #: 2022112801

#### Dear Jessica:

I have conducted a cultural resource file search for the above-cited project. According to our records there have been several previously recorded sites within the designated search locales. In addition to the sites there have been a few previously conducted cultural resource inventories done in the areas. I've attached a list of these sites and reports. If you would like any further information regarding these sites or reports, you may contact me at the number listed below.

It is SHPO's position that any structure over fifty years of age is considered historic and is potentially eligible for listing in the National Register of Historic Places. If any structures are within the Area of Potential Effect, and are over fifty years old, we would recommend that they be recorded, and a determination of their eligibility be made prior to any disturbance taking place.

The only concern that the MT SHPO has with the proposed project would be if the Willow Creek diversion and intake structures are over fifty years of age. We would ask that they be recorded prior to any rehabilitation taking place. As long as there will be no disturbance or alteration to structures over fifty years of age, we feel that there is a low likelihood cultural properties will be impacted. We, therefore, feel that a recommendation for a cultural resource inventory is unwarranted at this time. However, should structures need to be altered or if cultural materials are inadvertently discovered during this project, we would ask that our office be contacted, and the site investigated.

If you have any further questions or comments, you may contact me at (406) 444-7767 or by e-mail at <a href="mailto:dmurdo@mt.gov">dmurdo@mt.gov</a>. I have attached an invoice for the file search. Thank you for consulting with us.

Sincerely,

Damon Murdo Cultural Records Manager State Historic Preservation Office

File: DEQ/AWWM/2022



# STATE HISTORIC PRESERVATION OFFICE Cultural Resource Information Systems

CRIS Township, Range, Section Report Report Date:11/28/2022

| Site #   | Twp | Rng | Sec | Qs   | Site Type 1                             | Site Type 2 | Time Period                         | Owner       | NR Status     |
|----------|-----|-----|-----|------|-----------------------------------------|-------------|-------------------------------------|-------------|---------------|
| 24ME0293 | 9N  | 7E  | 23  |      | Historic Residence                      |             | 1920-1930                           | Private     | Eligible      |
| 24ME0258 | 9N  | 7E  | 7   | SW   | Historic Architecture                   |             | 1890-1899                           | Private     | NR Listed     |
| 24ME0309 | 9N  | 6E  | 13  | SE   | Historic<br>Homestead/Farmstead         |             | Prehistoric More<br>Than One Period | Private     | Undetermined* |
| 24ME0310 | 9N  | 6E  | 13  | SE   | Historic<br>Homestead/Farmstead         |             | Prehistoric More<br>Than One Period | Private     | Undetermined* |
| 24ME0345 | 9N  | 7E  | 18  | NW   | Historic Commercial<br>Development      |             | Historic More Than<br>One Decade    | Private     | NR Listed     |
| 24ME0491 | 9N  | 7E  | 18  | NW   | Historic Architecture                   |             | Historic More Than<br>One Decade    | Private     | NR Listed     |
| 24ME0703 | 9N  | 6E  | 13  | Comb | Historic Railroad                       |             | Historic More Than<br>One Decade    | No Data     | Eligible      |
| 24ME0746 | 9N  | 6E  | 13  | SW   | Historic<br>Homestead/Farmstead         |             | Historic More Than<br>One Decade    | State Owned | Eligible      |
| 24ME0836 | 9N  | 7E  | 18  | NW   | Historic Courthouse                     |             | Historic More Than<br>One Decade    | Other       | Eligible      |
| 24ME0875 | 9N  | 7E  | 18  | NW   | Historic District                       |             | Historic More Than<br>One Decade    | Private     | NR Listed     |
| 24ME0909 | 9N  | 7E  | 17  | comb | Historic Irrigation<br>System           |             | Historic More Than<br>One Decade    | Private     | Undetermined* |
| 24ME0904 | 9N  | 6E  | 13  | NW   | Historic Irrigation<br>System           |             | Historic More Than<br>One Decade    | Private     | Undetermined* |
| 24ME0939 | 9N  | 6E  | 13  | NE   | Historic Railroad<br>Building/Structure |             | Historic Period                     | Private     | Undetermined* |
| 24ME1115 | 9N  | 7E  | 18  | NW   | Historic School                         |             | Historic More Than<br>One Decade    | Other       | Undetermined* |
| 24ME1120 | 9N  | 6E  | 13  | Comb | Historic Mining                         |             | Historic More Than<br>One Decade    | Combination | Eligible      |
| 24ME1120 | 9N  | 7E  | 14  | Comb | Historic Mining                         |             | Historic More Than<br>One Decade    | Combination | Eligible      |
| 24ME1120 | 9N  | 7E  | 15  | Comb | Historic Mining                         |             | Historic More Than<br>One Decade    | Combination | Eligible      |
| 24ME1120 | 9N  | 7E  | 16  | Comb | Historic Mining                         |             | Historic More Than<br>One Decade    | Combination | Eligible      |
| 24ME1120 | 9N  | 7E  | 17  | Comb | Historic Mining                         |             | Historic More Than<br>One Decade    | Combination | Eligible      |
| 24ME1120 | 9N  | 7E  | 18  | Comb | Historic Mining                         |             | Historic More Than<br>One Decade    | Combination | Eligible      |
| 24ME1120 | 9N  | 7E  | 23  | Comb | Historic Mining                         |             | Historic More Than<br>One Decade    | Combination | Eligible      |
| 24ME1120 | 9N  | 7E  | 26  | Comb | Historic Mining                         |             | Historic More Than<br>One Decade    | Combination | Eligible      |



# STATE HISTORIC PRESERVATION OFFICE Montana Cultural Resource Database

CRABS Township,Range,Section Results
Report Date:11/28/2022

Township:9 N Range:7 E Section: 26

**ELLINGTON WAYNE** 

6/10/1986 WILLOW CREEK RESERVOIR REHABILITATION

CRABS Document Number: ME 1 5819 Agency Document Number: 86-LC-7-25

Township:9 N Range:6 E Section: 12

ROBSON LARRY G.

9/29/1980 ROBERT FOWLIE, 404 PERMIT APPLICATION

CRABS Document Number: ME 6 5905 Agency Document Number: 00

Township:9 N Range:7 E Section: 18

GCM SERVICES INC. ANONYMOUS

4/22/1992 WHITE SULPHUR SPRINGS-SOUTH FEDERAL AID PROJECT-F 14-2(9)34 MEAGHERCOUNTY, MONTANA

CRABS Document Number: ME 4 13528 Agency Document Number: F14-2(9)34

Township:9 N Range:7 E Section: 17

DAU BARRY J.

5/1/1996 MARTINSDALE TO WHITE SULPHUR SPRINGS AND HARLOWTON TO P.O.M. BURIED TELEPHONE CABLE CULTURAL RESOURCES INVENTORY

CRABS Document Number: ME 6 17979 Agency Document Number:

Township:9 N Range:7 E Section: 18

DAU BARRY J.

5/1/1996 MARTINSDALE TO WHITE SULPHUR SPRINGS AND HARLOWTON TO P.O.M. BURIED TELEPHONE CABLE CULTURAL RESOURCES INVENTORY

CRABS Document Number: ME 6 17979 Agency Document Number:

Township:9 N Range:6 E Section: 13

RENNIE PATRICK J.

6/1/2001 CULTURAL RESOURCES INVENTORY OF THE MIKESELL RANGE RENOVATION PROJECT: MEAGHER COUNTY MONTANA

CRABS Document Number: ME 5 23702 Agency Document Number: 2001-3-1

Township:9 N Range:7 E Section: 18

FRENCH SANDRA L

9/14/2003 LEWIS AND CLARK NATIONAL FOREST - 2003 ANNUAL PROGRAMMATIC REPORT IN MONTANA FOR 2002 PROJECTS

CRABS Document Number: ZZ 1 26354 Agency Document Number:

Township:9 N Range:7 E Section: 18

AXLINE JON

7/20/2006 MEAGHER COUNTY COURTHOUSE (24ME0836)

CRABS Document Number: ME 4 28903 Agency Document Number:

Township:9 N Range:7 E Section: 18

FRENCH SANDRA L., et.al.

7/10/2007 ANNUAL PA REPORT FOR PROJECTS CONDUCTED IN 2006 ON THE LEWIS AND CLARK NATIONAL FOREST

CRABS Document Number: ZZ 1 29494 Agency Document Number: 07-LC-00-007

Township:9 N Range:6 E Section: 12

BRUMLEY JOHN H., ET AL.

12/1/2010 A CULTURAL RESOURCE INVENTORY OF CENTRAL MONTANA COMMUNICATIONS, INC.'S WHITE SULPHER SPRINGS EXCHANGE

CRABS Document Number: ME 6 32708 Agency Document Number:

Township:9 N Range:6 E Section: 13

BRUMLEY JOHN H., ET AL.

12/1/2010 A CULTURAL RESOURCE INVENTORY OF CENTRAL MONTANA COMMUNICATIONS, INC.'S WHITE SULPHER SPRINGS EXCHANGE

CRABS Document Number: ME 6 32708 Agency Document Number:

Township:9 N Range:7 E Section: 7

BRUMLEY JOHN H., ET AL.

12/1/2010 A CULTURAL RESOURCE INVENTORY OF CENTRAL MONTANA COMMUNICATIONS, INC.'S WHITE SULPHER SPRINGS EXCHANGE

CRABS Document Number: ME 6 32708 Agency Document Number:



# STATE HISTORIC PRESERVATION OFFICE Montana Cultural Resource Database

CRABS Township,Range,Section Results
Report Date:11/28/2022

Township:9 N Range:7 E Section: 16

BRUMLEY JOHN H., ET AL.

12/1/2010 A CULTURAL RESOURCE INVENTORY OF CENTRAL MONTANA COMMUNICATIONS, INC.'S WHITE SULPHER SPRINGS EXCHANGE

CRABS Document Number: ME 6 32708 Agency Document Number:

Township:9 N Range:7 E Section: 17

BRUMLEY JOHN H., ET AL.

12/1/2010 A CULTURAL RESOURCE INVENTORY OF CENTRAL MONTANA COMMUNICATIONS, INC.'S WHITE SULPHER SPRINGS EXCHANGE

CRABS Document Number: ME 6 32708 Agency Document Number:

Township:9 N Range:7 E Section: 18

BRUMLEY JOHN H., ET AL.

12/1/2010 A CULTURAL RESOURCE INVENTORY OF CENTRAL MONTANA COMMUNICATIONS, INC.'S WHITE SULPHER SPRINGS EXCHANGE

CRABS Document Number: ME 6 32708 Agency Document Number:

Township:9 N Range:6 E Section: 12

HOPE SHANE

5/1/2012 TRILEAF: VISUAL IMPACT ASSESSMENT FOR A CELLULAR COMMUNICATION TOWER IN WHITE SULPHUR SPRINGS, MEAGHER COUNTY, MONTANA

CRABS Document Number: ME 6 33604 Agency Document Number:

Township:9 N Range:6 E Section: 13

HOPE SHANE

5/1/2012 TRILEAF: VISUAL IMPACT ASSESSMENT FOR A CELLULAR COMMUNICATION TOWER IN WHITE SULPHUR SPRINGS, MEAGHER COUNTY, MONTANA

CRABS Document Number: ME 6 33604 Agency Document Number:

Township:9 N Range:7 E Section: 7

HOPE SHANE

5/1/2012 TRILEAF: VISUAL IMPACT ASSESSMENT FOR A CELLULAR COMMUNICATION TOWER IN WHITE SULPHUR SPRINGS, MEAGHER COUNTY, MONTANA

CRABS Document Number: ME 6 33604 Agency Document Number:

Township:9 N Range:7 E Section: 17

HOPE SHANE

5/1/2012 TRILEAF: VISUAL IMPACT ASSESSMENT FOR A CELLULAR COMMUNICATION TOWER IN WHITE SULPHUR SPRINGS, MEAGHER COUNTY, MONTANA

CRABS Document Number: ME 6 33604 Agency Document Number:

Township:9 N Range:7 E Section: 18

HOPE SHANE

5/1/2012 TRILEAF: VISUAL IMPACT ASSESSMENT FOR A CELLULAR COMMUNICATION TOWER IN WHITE SULPHUR SPRINGS, MEAGHER COUNTY, MONTANA

CRABS Document Number: ME 6 33604 Agency Document Number:

Township:9 N Range:7 E Section: 18

FRENCH SANDRA

5/1/2007 WHITE SULPHUR SPRINGS HOUSES DECOMMISSIONING/SALE

CRABS Document Number: ME 1 36521 Agency Document Number: 06-LC-07-042

Township:9 N Range:7 E Section: 18

PAYETTE JACQUIE

6/24/2010 MT-06-WHITE SULPHUR SPRINGS DI-DV PROPOSED TELECOMMUNICATIONS TOWER, MEAGHER COUNTY

CRABS Document Number: ME 6 37596 Agency Document Number:

Township:9 N Range:7 E Section: 26

KEIM KELLY M.

10/25/2019 WSS CITY WATER.

CRABS Document Number: ME 1 40222 Agency Document Number: R201601150014A

Township:9 N Range:7 E Section: 26

BODILY MARK, ET AL.

9/26/2020 CASTLES VEG RESTORATION PROJECT 2014, 2015, 2016, 2019, AND 2020 INVENTORIES REPORT, HERITAGE IMPLEMENTATION PLAN, AND

ADDENDUM REPORT.

CRABS Document Number: ME 1 40656 Agency Document Number: R201401150026



# STATE HISTORIC PRESERVATION OFFICE Montana Cultural Resource Database

CRABS Township,Range,Section Results
Report Date:11/28/2022

Township:9 N Range:7 E Section: 18

#### WELLS SHELLEY

7/16/2021 A CLASS III CULTURAL RESOURCE INVENTORY FOR THE MOUNTAINVIEW MEDICAL - USDA PROJECT IN MEAGHER COUNTY, MONTANA.

CRABS Document Number: ME 6 41014 Agency Document Number:

From: Martin, Jacob <jacob\_martin@fws.gov>
Sent: Tuesday, December 6, 2022 3:26 PM

**To:** Jessica Salo

Subject: water system improvement project at White Sulphur Springs, Meagher County, Montana

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

#### Dear Ms. Salo:

Thank you for your November 17, 2022, letter, received on November 28, 2022, requesting U.S. Fish and Wildlife Service (USFWS) comment on a proposed water system improvement project at White Sulphur Springs, Meagher County, Montana. The City of White Sulphur Springs is considering repairs and upgrades to existing facilities as detailed in your letter.

The USFWS reviewed your letter. Based on the information provided, we have no comments regarding federally listed or proposed threatened or endangered species or other trust species. Additional information regarding listed species that may occur within the project footprint may be obtained using the IPaC project-planning tool, which streamlines the USFWS environmental review process at <a href="https://ecos.fws.gov/ipac/">https://ecos.fws.gov/ipac/</a>.

Thank you for the opportunity to comment. If you have any questions or comments about this correspondence, please contact me via reply email or at the address or phone numbers, below.

#### Sincerely,

Jacob M. (Jake) Martin
Assistant Field Supervisor
Montana Ecological Services Office
585 Shephard Way, Suite 1
Helena, Montana 59601
(406) 422-8524 (cell, preferred, I'm teleworking)
(406) 430-9007 (office)
jacob\_martin@fws.gov

From: Smith, Helen -FS <helen.smith@usda.gov> Sent: Tuesday, December 13, 2022 4:35 PM

To: Jessica Salo

**Subject:** Response: White Sulphur Springs Water System Preliminary Engineering Report

**Attachments:** great west letter signed HSmith USFS.pdf

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

#### Good afternoon, Jessica

Please see my signed indicating no comment on the project at this time. Please keep us in the loop as this moves forward.

Thanks, Helen



#### Helen Smith, District Ranger **Forest Service**

Helena-Lewis & Clark National Forest, **Belt Creek-White Sulphur Springs Ranger District** 

p: 406-547-3361

helen.smith@usda.gov 204 W. Folsom P.O. Box A

White Sulphur Springs, MT 59645

www.fs.usda.gov

Tenderfoot Creek Experimental Forest: https://arcg.is/4uDP9







Caring for the land and serving people

This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.



- The addition of emergency power at the City shop facility for the groundwater wells and wastewater lift station.
- Telemetry system and control upgrades at the tank control and well pump house buildings.

Please take a few moments to review the site and the proposed projects. Please provide a written response detailing any comments you may have regarding the project and any potential environmental impacts that should be considered in the project design, avoidance, or mitigation measures.

If you have no comment on this project, please check the box below and countersign the bottom of this letter and return both pages to Great West Engineering, Inc. at the address listed below. Please send your response back to me by **December 17, 2022**, at <a href="mailto:isalo@greatwesteng.com">isalo@greatwesteng.com</a> or the following address:

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Sincerely,

Great West Engineering, Inc.

June & Jaco

Jessica Salo, PE Project Engineer

Attached: Figure 1 - Area of Potential Effect (APE)

M Helena-Lewis and Clark National Forest has reviewed the enclosed information and has

no comment on the project at this time.

Signature

BC-WSS

Date

## FWP.MT.GOV



## THE OUTSIDE IS IN US ALL.

4600 Giant Spring Road Great Falls, MT 59405

January 4, 2022

Great West Engineering, Inc. Attn: Jessica Salo 2501 Belt View Drive Helena, MT 59601

Dear Ms. Salo,

We received your notice that the City of White Sulphur Springs is proposing to review and upgrade its water system. Thank you for the opportunity to provide comment.

It is important to note the native westslope cutthroat trout population upstream of the diversion structure on Willow Creek. This population is of high conservation value, and we ask that any modifications to the diversion structure do not promote or enable additional fish passage upstream. The diversion structure prevents upstream fish passage to a fair degree, and we recommend that any modifications to the structure maintain or enhance this barrier. In fact, our preference would be that the diversion structure would be enhanced to prevent all passage of non-native fish in order to preserve the integrity of the westslope cutthroat trout population upstream.

We would be happy to discuss the diversion structure, the native westslope cutthroat trout population, and potential conservation opportunities within the drainage with the city and its consultants in more detail, at any time.

Sincerely,

Gary Bertellotti

Gary Bertellotti Region 4 Supervisor Montana Fish, Wildlife and Parks



#### **DEPARTMENT OF THE ARMY**

U.S. ARMY CORPS OF ENGINEERS, OMAHA DISTRICT MONTANA REGULATORY OFFICE 100 NEILL AVENUE HELENA, MONTANA 59601-3329

May 1, 2023

SUBJECT: City of White Sulphur Springs - Water System Improvements - North Fork Smith River (Meagher County), File No. **NWO-2019-00462-MTH** 

Jessica Salo Great West Engineering 2501 Belt View Drive Helena. Montana 59601

Dear Ms. Salo:

This letter is in response to correspondence we received requesting comments or permitting information regarding the above-referenced project. Specifically, the project involves Water System Improvements throughout the City of White Sulphur Springs. The project is located on or near North Fork Smith River, at Latitude 46.545543°, Longitude -110.868898°, in Section 17, Township 9 N, Range 7 E, White Sulphur Springs, Meagher County, Montana.

This letter contains our initial comments on this project for your consideration. The purpose of this letter is to inform you that based on the information provided in your submittal, we are unable to ascertain if regulated activities are proposed or if jurisdictional waters of the U.S. are present within the project area. A Department of the Army (DA) permit may be required for the proposed activity. In lieu of a specific response, please consider the following general information concerning our regulatory program that may apply to the proposed project.

If the proposal involves activity in navigable waters of the United States, it may be subject to the U.S. Army Corps of Engineers (USACE) jurisdiction under Section 10 of the Rivers and Harbors Act of 1899 (RHA). Within the state of Montana, portions of the Kootenai River, the Missouri River, and the Yellowstone River¹ are considered a navigable water of the U.S. Section 10 prohibits the construction, excavation, or deposition of materials in, over, or under navigable waters of the United States unless the work has been authorized by a DA permit. Structures or work outside the limits defined for navigable waters of the United States require a Section 10 permit if the structure or work affects the course, location, or condition of the water body. The law applies to any dredging or disposal of dredged materials, excavation, filling,

-

<sup>&</sup>lt;sup>1</sup> Section 10 waters in Montana are the Kootenai River (from the International Border between the United States and Canada downstream to Jennings Rapids near Jennings, Montana), the Missouri River and its impoundments (from its headwaters near Three Forks to the North Dakota state line), and the Yellowstone River (from Emigrant to the North Dakota state line).

rechannelization, or any other modification of a navigable water of the United States, and applies to all structures, from the smallest floating dock to the largest commercial undertaking.

If the proposal involves a discharge of dredged or fill material into waters of the United States, it may be subject to USACE jurisdiction under Section 404 of the Clean Water Act (CWA). Discharges of fill material generally include, without limitation: placement of fill that is necessary for the construction of any structure, or impoundment requiring rock, sand, dirt, or other material for its construction; site-development fills for recreational, industrial, commercial, residential, and other uses; causeways or road fills; dams and dikes; property protection or reclamation devices such as riprap, weirs, bulkheads, and revetments; levees or berms; fill for intake and outfall pipes and trenched utility lines; fill associated with the creation of ponds; and any other work involving the discharge of fill or dredged material. A DA permit is required whether the work is permanent or temporary. Waters of the U.S. include the area below the ordinary high water mark of stream channels, lakes or ponds connected to the tributary system, and wetlands adjacent to these waters (33 CFR § 328.3). Isolated waters and wetlands, as well as man-made channels, may be waters of the U.S. in certain circumstances, which must be determined on a case-by-case basis. CWA Section 301(a) prohibits discharges of dredged or fill material into waters of the United States, unless the work has been authorized by a Department of the Army permit under Section 404. Information about the USACE permitting process can be obtained online at http://www.nwo.usace.army.mil/Missions/RegulatoryProgram/Montana.

The mission of the USACE Regulatory Program is to protect the Nation's aquatic resources while allowing reasonable development through fair, flexible and balanced permit decisions. Under Section 404 of the Clean Water Act, we work to protect the biological, physical, and chemical integrity of the Nation's aquatic resources. Projects are evaluated on a case-by-case basis to determine the potential benefits and detriments that may occur as a result of the proposal.

Before a permit is issued or verified, the Corps must ensure that we've met all our obligations under any related federal and state laws. For all projects, the Corps will consult with other state and federal agencies and Native American tribes, as appropriate. USACE evaluation of a Section 10 and/or a Section 404 permit application involves multiple analyses; please see the attached document for additional information and resources for permitting.

Useful documents, links, and information about Jurisdictional Determinations, Pre-Application Meetings, Permit Exemptions, Nationwide Permits, Regional Permits, Individual Permits, and Permit Applications and Permit Resources are available on our webpage: <a href="http://www.nwo.usace.army.mil/Missions/RegulatoryProgram/Montana">http://www.nwo.usace.army.mil/Missions/RegulatoryProgram/Montana</a>.

Prior to applying for a DA permit, the project proposer may request a pre-application consultation meeting with USACE (virtual or in-person, on or off-site) to obtain information regarding the information needed, alternatives, and options for permitting

before an applicant makes irreversible commitments of resources (funds, detailed designs, materials, etc.). A pre-application meeting is strongly recommended if the proposal has substantial impacts to waters of the U.S., or if it is a large, unique, or controversial project.

USACE Section 10/404 permits do not cover other potential authorizations that are often required. Others may include state or local permits such as a 310 Permit, SPA 124 Permit, 318 Authorization or 401 Water Quality Certification, Navigable Rivers Land Use License, or Floodplain Permit. Local and state governments issue permits or other authorizations to ensure compliance with local and state laws and regulations. The Corps permitting program is in place to ensure your project is in compliance with federal laws and regulations.

Note that this letter is not a DA authorization to proceed. It only informs you of the need to obtain a DA permit if waters of the U.S. will be affected. If the final design includes the placement of fill material in any jurisdictional area described above, or otherwise requires authorization by a DA permit, please submit a Montana Joint Permit Application to this office prior to starting any work. After a review of the materials submitted, we will determine what type of permit, if any, will be required. If waters of the U.S. will not be affected by a jurisdictional activity a DA permit will not be required for the project.

Please refer to identification number **NWO-2019-00462-MTH** in any correspondence concerning this project. If you have any questions, please contact the Montana Regulatory Office by email at <a href="Montana.Reg@usace.army.mil">Montana.Reg@usace.army.mil</a>, or by telephone at (406) 441-1375.

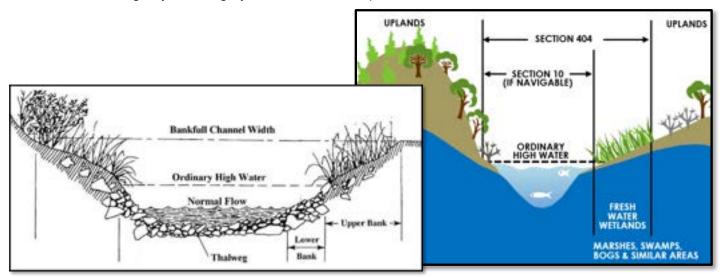
Sincerely,

Montana Regulatory Team

**Enclosure** 

The Omaha District, Regulatory Branch is committed to providing quality and timely service to our customers. In an effort to improve customer service, please take a moment to complete our Customer Service Survey found on our website at:

https://regulatory.ops.usace.army.mil/customer-service-survey/. Paper copies of the survey are also available upon request for those without Internet access.


# <u>U.S. Army Corps of Engineers – Omaha District, Montana</u> Additional Information and Resources for Permitting

1. <u>Geographic and Activity Jurisdiction</u>: The U.S. Army Corps of Engineers (USACE) Regulatory Program, administers and enforces **Section 10 of the Rivers and Harbors Act of 1899 (RHA)** and **Section 404 of the Clean Water Act (CWA).** 

Under **Section 10 of the RHA**, a permit is required to do **any work in, over or under** a navigable water of the United States or to do **any work that affects the course, location or condition** of the waterbody in such a manner as to impact on its navigable capacity. Navigable waters in Montana include the Missouri River, most of the Yellowstone River and a portion of the Kootenai River, their impoundments and side channels.

Under **Section 404 of the CWA**, a permit is required for the **discharge of dredged or fill material** into waters of the United States (WOTUS). WOTUS includes the area below the ordinary high water mark of river and stream channels, lakes or ponds connected to the tributary system, and wetlands adjacent to these waters. Isolated waters and wetlands, as well as man-made ditches and channels, may be WOTUS in certain circumstances, which must be determined by the Corps on a case-by-case basis.

There are some activities that have been determined to be exempt from USACE regulation. For example, discharges resulting from normal farming, silviculture, and ranching activities (plowing, seeding, cultivating, etc.) are generally not subject to regulation under Section 404 of the CWA. To be considered exempt, these activities must occur in the context of established (on-going) farming operations. You should obtain confirmation from the Corps to avoid a potential violation of federal law before conducting any discharge you believe is exempt.



- 2. <u>Pre-Application Meeting</u>: Applicants can request a pre-application consultation or meeting virtual or in-person, on or off-site. This is an optional step, but helpful in determining the information needed for permitting, additional authorizations that may be needed, alternatives, and options for permitting before an applicant makes irreversible commitments of resources (funds, detailed designs, materials, etc.). Send requests for Pre-App meetings to <u>Montana.Reg@usace.army.mil</u> and include information on point of contacts. location, and preliminary project details.
- 3. <u>Application Submission</u>: Applicants should submit their application package, including maps, plans and drawings to <u>Montana.Reg@usace.army.mil</u>. Submit complete, detailed, and thorough information regarding the project. Processing time cannot begin until the Corps receives complete application information, including proper drawings. We need to be able to locate the project (detailed location map) and easily determine and verify dimensions and position of the project (site plan and cross section drawings).

- 4. Aquatic Resource Inventory: The application package must include a delineation of waters of the United States and special aquatic sites, including wetlands or pool and riffle complexes, and other waters, such as lakes, ponds and ditches, and perennial, intermittent, and ephemeral streams, on the project site. Wetland delineations must be prepared in accordance with the current method required by USACE to include the use of the 1987 Wetland Delineation Manual and appropriate Regional Supplements. USACE can perform the delineation upon request; however, this may take time to schedule due to often high workloads in USACE District Regulatory offices. Therefore, delineations are typically performed by a consultant hired by the property owner and verified by USACE personnel.
- 5. Project Evaluations & Alternatives: USACE evaluation of a Section 10 and/or a Section 404 permit application involves multiple analyses, including (1) evaluating the proposal's impacts in accordance with the National Environmental Policy Act (NEPA) (33 CFR part 325), (2) determining whether the proposal is contrary to the public interest (33 CFR § 320.4), and (3) in the case of a Section 404 permit, determining whether the proposal complies with the Section 404(b)(1) Guidelines (Guidelines) (40 CFR part 230). If the proposal requires a Section 404 permit application, the Guidelines specifically require that "no discharge of dredged or fill material shall be permitted if there is a practicable alternative to the proposed discharge which would have less adverse impact on the aquatic ecosystem, so long as the alternative does not have other significant adverse environmental consequences" (40 CFR § 230.10(a)). Time and money spent on the proposal prior to applying for a Section 404 permit cannot be factored into the Corps' decision whether there is a less damaging practicable alternative to the proposal.
- 6. Endangered Species and Critical Habitat: The Endangered Species Act requires Federal agencies to consult with the U.S. Fish and Wildlife Service (Service) and the National Marine Fisheries Service, as appropriate, if an activity that requires Federal authorization (such as a USACE permit) may affect endangered or threatened species or critical habitat. For non-Federal permittees, if any listed species or designated critical habitat might be affected or is in the vicinity of the activity, or if the activity is located in designated critical habitat, the application must include the name(s) of those endangered or threatened species that might be affected by the proposed activity or utilize the designated critical habitat that might be affected by the proposed activity. The Service has developed an online system that allows users to find information about sensitive resources that may occur within the vicinity of a proposed project. The "Information, Planning and Conservation System," (IPaC), is located at: <a href="https://ipac.ecosphere.fws.gov/">https://ipac.ecosphere.fws.gov/</a>.
- 7. <u>Historic and Cultural Resources</u>: Section 106 of the National Historic Preservation Act (NHPA) requires the Corps to take into account the effects that activities authorized by Department of the Army permits are likely to have on historical properties listed in, or eligible for listing in, the National Register of Historic Places (NRHP). Any structure over fifty years of age is considered historic and is potentially eligible for listing on the NRHP unless it has been previously determined ineligible. State Historic Preservation Officers (SHPO) and Tribal Historic Preservation Officers (THPO) are provided the opportunity to review and comment on all individual permit activities and certain general permit activities. For non-Federal permittees, if the activity might have the potential to cause effects to a historic property listed on, determined to be eligible for listing on, or potentially eligible for listing on, the NRHP, the application must state which historic property might have the potential to be affected by the proposed activity or include a vicinity map indicating the location of the historic property. Inquiry with the Montana SHPO is recommended to determine the presence of any associated historic resources in the area. Contact information can be found at <a href="http://mhs.mt.gov/shpo">http://mhs.mt.gov/shpo</a>.
- 8. <u>Water Quality Certification</u>: Section 401 of the Clean Water Act requires any applicant for a permit for an activity that may result in the discharge of a pollutant into WOTUS to obtain a certification that the discharge will comply with applicable effluent limitations and water quality standards. Applications for water quality certifications are reviewed by states, Tribes, or the U.S. Environmental Protection Agency (EPA). Water quality certifications are required for USACE permits that authorize discharges of

dredged or fill materials into WOTUS. Some of the Nationwide Permits (NWP) or Regional General Permits (RGP) have WQC granted for them already; individual permits and other NWP/RGP will require individual certification. Contact our office to determine the appropriate Water Quality Agency for your project.

9. <u>Mitigation</u>: Mitigation consists of avoidance, minimization, and compensation. USACE requires that applicants consider and use all reasonable and practical measures to avoid and minimize impacts to aquatic resources. You are required to submit a mitigation plan/statement with an application if impacts will occur to 0.10 acre of wetlands and/or 0.03 acre of stream.

Compensatory mitigation is the restoration, establishment, enhancement, and in certain circumstances, preservation of aquatic resources to offset unavoidable adverse impacts. Compensatory mitigation is accomplished through purchase of credits from a mitigation bank or in-lieu fee program, or permitteeresponsible mitigation. During the application review process, the Corps will determine whether compensatory mitigation is necessary, and may require the applicant submit a plan for conducting proposed compensatory mitigation.

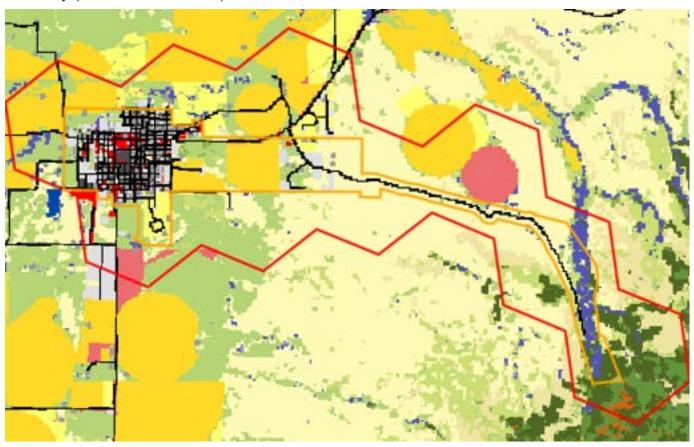
- 10. Activities Affecting Structures or Works Built by the United States: If any aspect of your proposed project is located within the vicinity of an existing USACE federally authorized Civil Works project (a "USACE project"), you may be required to seek permission from USACE pursuant to 33 U.S.C. 408 (Section 408) and/or real estate related permissions. Alterations/modifications to completed USACE projects requires a USACE permission pursuant to Section 408. In addition, real estate permissions may be necessary if the proposed project would affect United States real estate interests managed by USACE. For information on our Section 408 request process or to determine whether a Section 408 or real estate permission is required, please contact: Section408NWO@usace.army.mil
- 11. <u>United States Coast Guard (USCG)</u>: In Montana, the Missouri River, portions of the Kootenai River, and the majority of the Yellowstone River are considered navigable waters of the U.S. as determined by USACE. The state of Montana considers additional waterways to be navigable waterways. The USCG is the agency with the authority to regulate the construction, operation, and maintenance of bridges and causeways in or across navigable waters under Section 9 of the Rivers and Harbors Act. Aerial trams and conveyors, aqueducts, utility lines, overhead pipelines, and similar structures that are affixed to a bridge span over waters of the U.S., are themselves considered a bridge structure. If the proposed work involves bridging or crossing of a navigable water the work may be regulated by the USCG.

To determine USCG requirements, please contact:

Mr. Steven Fischer Commander, Thirteenth Coast Guard District (dpw) Federal Building 915 Second Avenue Seattle, Washington 98174-1067 (206) 220-7282 | Steven.M.Fischer3@uscg.mil

12. Other Federal, State, or Local Permits: A USACE Section 10/404 permit does not cover other potential authorizations that may be required. Others may include state or local permits such as a 310 Permit, SPA 124 Permit, 318 Authorization or 401 Water Quality Certification, Navigable Rivers Land Use License, or Floodplain Permit. Local and state governments issue permits or other authorizations to ensure compliance with local and state laws and regulations. The Corps permitting program is in place to ensure your project is in compliance with federal laws and regulations.

See the Montana Department of Natural Resources & Conservation – Stream Permitting website for details: http://dnrc.mt.gov/divisions/cardd/conservation-districts/the-310-law


# **Appendix C**

National Heritage Program Land Cover and Land Management Classifications



#### **Land Cover**

Summarized by: (Custom Area of Interest)





Shrubland, Steppe and Savanna Systems Sagebrush Steppe

#### Big Sagebrush Steppe

This widespread ecological system occurs throughout much of central Montana, and north and east onto the western fringe of the Great Plains. In central Montana, where this system occurs on both glaciated and non-glaciated landscapes, it differs slightly, with more summer rain than winter precipitation and more precipitation annually. Throughout its distribution, soils are typically deep and non-saline, often with a microphytic crust. This shrub-steppe is dominated by perennial grasses and forbs with greater than 25% cover. Overall shrub cover is less than 10 percent. In Montana and Wyoming, stands are more mesic, with more biomass of grass, and have less shrub diversity than stands farther to the west, and 50 to 90% of the occurrences are dominated by Wyoming big sagebrush with western wheatgrass (Pascopyrum smithii). Japanese brome (Bromus japonicus) and cheatgrass (Bromus tectorum) are indicators of disturbance, but cheatgrassis typically not as abundant as in the Intermountain West, possibly due to a colder climate. The natural fire regime of this ecological system maintains a patchy distribution of shrubs, preserving the steppe character. Shrubs may increase following heavy grazing and/or with fire suppression. In central and eastern Montana, complexes of prairie dog towns are common in this ecological system.

These areas used for the production of crops, such as corn, soybeans, small grains, sunflowers, vegetables, and cotton, typically on an annual cycle. Agricultural plant cover is variable depending on season and type of farming. Other areas include more stable land cover of orchards and



**Human Land Use Agriculture** 

#### Cultivated Crops

vineyards. **Grassland Systems** 



#### **Montane Grassland** Rocky Mountain Lower Montane, Foothill, and Valley Grassland

15% (863 Acres)

This grassland system of the northern Rocky Mountains is found at lower montane to foothill elevations in mountains and valleys throughout Montana. These grasslands are floristically similar to Big Sagebrush Steppe but are defined by shorter summers, colder winters, and young soils derived from recent glacial and alluvial material. They are found at elevations from 548 - 1,650 meters (1,800-5,413 feet). In the lower montane zone, they range from small meadows to large open parks surrounded by conifers; below the lower treeline, they occur as extensive foothill and valley grasslands. Soils are relatively deep, fine-textured, often with coarse fragments, and non-saline. Microphytic crust may be present in high-quality occurrences. This system is typified by cool-season perennial bunch grasses and forbs (>25%) cover, with a sparse shrub cover (<10%). Rough fescue (Festuca campestris) is dominant in the northwestern portion of the state and Idaho fescue (Festuca idahoensis) is dominant or co-dominant throughout the range of the system. Bluebunch wheatgrass (Pseudoroegneria spicata) occurs as a co-dominant throughout the range as well, especially on xeric sites. Western wheatgrass (Pascopyrum smithii) is consistently present, often with appreciable coverage (>10%) in lower elevation occurrences in western Montana and virtually always present, with relatively high coverages (>25%), on the edge of the Northwestern Great Plains region. Species diversity ranges from a high of more than 50 per 400 square meter plot on mesic sites to 15 (or fewer) on xeric and disturbed sites. Most occurrences have at least 25 vascular species present. Farmland conversion, noxious species invasion, fire suppression, heavy grazing and oil and gas development are major threats to this system.

No Image

6% (337 Acres)

**Human Land Use** Developed



County, city and or rural roads generally open to motor vehicles.



**Human Land Use Agriculture** 

5% (304 Acres)

Pasture/Hay These agriculture lands typically have perennial herbaceous cover (e.g. regularly-shaped plantings) used for livestock grazing or the production of hay. There are obvious signs of management such as irrigation and haying that distinguish it from natural grasslands. Identified CRP lands



## are included in this land cover type. Forest and Woodland Systems

Conifer-dominated forest and woodland (xeric-mesic)



In Montana, this ecological system occurs on the east side of the Continental Divide, north to about the McDonald Pass area, and along the Rocky Mountain Front. This system is associated with a dry to submesic continental climate regime with annual precipitation ranging from 51 to 102 centimeters (20-40 inches), with a maximum in winter or late spring. Winter snowpacks typically melt off in early spring at lower elevations. Elevations range from valley bottoms to 1,980 meters (6500 feet) in northern Montana and up to 2,286 meters (7500 feet) on warm aspects in southern Montana. It occurs on north-facing aspects in most areas, and south-facing aspects at higher elevations. This is a Douglas-fir (Pseudotsuga menziesii) dominated system without any maritime floristic composition. Fire disturbance intervals are as infrequent as 500 years, and as a result, individual trees and forests can attain great age on some sites (500 to 1,500 years). In Montana, this system occurs from lower montane to lower subalpine environments and is prevalent on calcareous substrates. Common understory shrubs include common ninebark (Physocarpus malvaceus), common juniper (Juniperus communis), Rocky Mountain juniper (Juniperus scopulorum), birch-leaf spiraea (Spiraea betulifolia), snowberry (Symphoricarpos species), creeping Oregon grape (Mahonia repens) and Canadian buffaloberry (Shepherdia canadensis). The Douglas-fir/pinegrass (Calamogrostis rubescens) type is the most ubiquitous association found within this system in Montana.



#### Shrubland, Steppe and Savanna Systems Sagebrush Steppe

#### **Montane Sagebrush Steppe**

This system dominates the montane and subalpine landscape of southwestern Montana from valley bottoms to subalpine ridges and is found as far north as Glacier National Park. It can also be seen in the island mountain ranges of the north-central and south-central portions of the state. It primarily occurs on deep-soiled to stony flats, ridges, nearly flat ridgetops, and mountain slopes. In general, this system occurs in areas of gentle topography, fine soils, subsurface moisture or mesic conditions, within zones of higher precipitation and areas of snow accumulation. It occurs on all slopes and aspects, variable substrates and all soil types. The shrub component of this system is generally dominated by mountain big sagebrush (Artemisia tridentata ssp. vaseyana). Other co-dominant shrubs include silver sagebrush (Artemisia cana ssp. viscidula), subalpine big sagebrush (Artemisia tridentata ssp. spiciformis), three tip sagebrush (Artemisia tripartita ssp. tripartita) and antelope bitterbrush (Purshia tridentata). Little sagebrush (Artemisia arbuscula ssp. arbuscula) shrublands are only found in southwestern Montana on sites with a perched water table. Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) sites may be included within this system if occurrences are at montane elevations, and are associated with montane graminoids such as Idaho fescue (Festuca idahoensis), spike fescue (Leucopoa kingii), or poverty oatgrass (Danthonia intermedia). In ares where sage has been eliminated by human activities like burning, disking or poisoning, other shrubs may be dominant, especially rubber rabbitbrush (Ericameria nauseosa), and green rabbitbrush (Chrysothamnus viscidiflorus). Because of the mesic site conditions, most occurrences support a diverse herbaceous undergrowth of grasses and forbs. Shrub canopy cover is extremely variable, ranging from 10 percent to as high as 40 or 50 percent.



#### **Recently Disturbed or Modified** Introduced Vegetation

# **Introduced Upland Vegetation - Annual and Biennial Forbland**

Acres)

Land cover is significantly altered/disturbed by introduced annual and biennial forbs. Natural vegetation types are no longer recognizable. Typical species that dominate these areas are knapweed, oxeye daisy, Canada thistle, leafy spurge, pepperweed, and yellow sweetclover.



# **Human Land Use**

### Developed



### **Developed, Open Space**

Vegetation (primarily grasses) planted in developed settings for recreation, erosion control, or aesthetic purposes. Impervious surfaces account for less than 20% of total cover. This category often includes highway and railway rights of way and graveled rural roads.



3% (189

Acres)

**Grassland Systems Montane Grassland** 

#### Rocky Mountain Subalpine-Montane Mesic Meadow

This system is restricted to sites from lower montane to subalpine elevations where finely textured soils, snow deposition, or windswept conditions limit tree establishment. Many occurrences are small patches, and are often found in mosaics within woodlands, dense shrublands, or just below alpine communities. Elevations range from 600 to2,011 meters (2,000-6,600 feet) in the northern Rocky Mountains and up to 2,286- 2,682 meters (7,500-8,800 feet) in the mountains of southwestern Montana. This system occurs on gentle to moderate-gradient slopes and in relatively moist habitats. Soils are typically seasonally moist to saturated in the spring, but dry out later in the growing season. At montane elevations, soils are usually clays or silt loams, and some occurrences may have inclusions of hydric soils in low, depressional areas. At subalpine elevations, soils are derived a variety of parent materials, and are usually rocky or gravelly with good aeration and drainage, but with a well developed organic layer. Some occurrences are more heavily dominated by grasses, while others are more dominated by forbs. Common grasses include tufted hairgrass (Deschampsia caespitosa), showy oniongrass (Melica spectabilis), mountain brome (Bromus carinatus), blue wildrye (Elymus glaucus), awned sedge (Carex atherodes), and small wing sedge (Carex microptera). Forb dominated meadows usually comprise a wide species diversity which differs from montane to subalpine elevations. Shrubs such as shrubby cinquefoil (Dasiphora fruticosa ssp. floribunda) and snowberry (Symphoricarpos species) are occasional but not abundant. This system differs from the Rocky Mountain Alpine Montane Wet Meadow system in that it soils dry out by mid-summer.



#### Wetland and Riparian Systems Floodplain and Riparian



#### Rocky Mountain Lower Montane-Foothill Riparian Woodland and Shrubland

This ecological system is found throughout the Rocky Mountain and Colorado Plateau regions. In Montana, it ranges from approximately 945 to 2,042 meters (3,100 to 6,700 feet), characterristically occuring as a mosaic of multiple communities that are tree-dominated with a diverse shrub component. It is dependent on a natural hydrologic regime, especially annual to episodic flooding. Occurrences are found within the flood zone of rivers, on islands, sand or cobble bars, and on immediate streambanks. It can form large, wide occurrences on midchannel islands in larger rivers or narrow bands on small, rocky canyon tributaries and well-drained benches. It is also typically found in backwater channels and other perennially wet but less scoured sites, such as floodplains swales and irrigation ditches. In some locations, occurrences extend into moderately high intermountain basins where the adjacent vegetation is sage steppe. Dominant trees may include boxelder maple (Acer negundo), narrowleaf cottonwood (Populus angustifolia), Plains cottonwood (Populus deltoides), Douglas-fir (Pseudotsuga menziesii), peachleaf willow (Salix amygdaloides), or Rocky Mountain juniper (Juniperus scopulorum). Dominant shrubs include Rocky Mountain maple (Acer glabrum), thinleaf alder (Alnus incana), river birch (Betula occidentalis), redoiser dogwood (Cornus sericea), hawthorne (Crataegus spp.), chokecherry (Prunus virginiana), skunkbush sumac (Rhus trilobata), Drummond's willow (Salix drummondiana), sandbar willow (Salix exigua), Pacific willow (Salix lucida), rose (Rosa species), silver buffaloberry (Shepherdia argentea), or snowberry (Symphoricarpos species). Exotic trees of Russian olive (Elaeagnus angustifolia) and saltcedar (Tamarix species) may invade some stands in southeastern and south-central Montana.



**Human Land Use** Developed

#### **Low Intensity Residential**

Forest and Woodland Systems

Includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20-50% of total cover. These areas most commonly include single-family housing units in rural and suburban areas. Paved roadways may be classified into this category.



Conifer-dominated forest and woodland (xeric-mesic)

**Rocky Mountain Lodgepole Pine Forest** 

% (105 Acrès)

This forested system is widespread in upper montane to subalpine zones of the Montana Rocky Mountains, and east into island ranges of north-central Montana and the Bighorn and Beartooth ranges of south-central Montana. These are montane to subalpine forests where the dominance of lodgepole pine (Pinus contorta) is related to fire history and topoedaphic conditions. In Montana, elevation ranges from 975 to 2,743 meters (3,200-9000 feet). These forests occur on flats to slopes of all degrees and aspect, as well as valley bottoms. Fire is frequent, and stand-replacing fires are common. Following stand-replacing fires, lodgepole pinewill rapidly colonize and develop into dense, even-aged stands. Most forests in this ecological system occur as early- to mid-successional forests persisting for 50-200 years on warmer, lower elevation forests, and 150-400 years in subalpine forests. They generally occur on dry to intermediate sites with a wide seasonal range of temperatures and long precipitation-free periods in summer. Snowfall is heavy and supplies the major source of soil water used for growth in early summer. Vigorous stands occur where the precipitation exceeds 533 millimeters (21 inches). These lodgepole forests are typically associated with rock types weathering to acidic substrates, such as granite and rhyolite. In west-central Montana ranges such the Big Belts and the Rocky Mountain Front, these forests are found on limestone substrates. These systems are especially well developed on the broad ridges and high valleys near and east of the Continental Divide. Succession proceeds at different rates, moving relatively quickly on lowelevation, mesic sites and particularly slowly in high-elevation forests such as those along the Continental Divide in Montana.

#### **Additional Limited Land Cover**

1% (60 Acres) Major Roads

1% (50 Acres) Commercial / Industrial

1% (31 Acres) High Intensity Residential

<1% (21 Acres) Rocky Mountain Montane-Foothill Deciduous Shrubland

<1% (15 Acres) Rocky Mountain Ponderosa Pine Woodland and Savanna

<1% (11 Acres) Insect-Killed Forest

<1% (11 Acres) Aspen Forest and Woodland

<1% (3 Acres) Alpine-Montane Wet Meadow

<1% (3 Acres) Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland

<1% (2 Acres) Open Water

<1% (2 Acres) Rocky Mountain Subalpine-Upper Montane Grassland

<1% (1 Acres) Rocky Mountain Subalpine Mesic Spruce-Fir Forest and Woodland

<1% (O Acres) Aspen and Mixed Conifer Forest

<1% (0 Acres) Emergent Marsh

# **Introduction to Land Cover**

Land Use/Land Cover is one of 15 Montana Spatial Data Infrastructure framework layers considered vital for making statewide maps of Montana and understanding its geography. The layer records all Montana natural vegetation, land cover and land use, classified from satellite and aerial imagery, mapped at a scale of 1:100,000, and interpreted with supporting ground-level data. The baseline map is adapted from the Northwest ReGAP (NWGAP) project land cover classification, which used 30m resolution multi-spectral Landsat imagery acquired between 1999 and 2001. Vegetation classes were drawn from the Ecological System Classification developed by NatureServe (Comer et al. 2003). The land cover classes were developed by Anderson et al. (1976). The NWGAP effort encompasses 12 map zones. Montana overlaps seven of these zones. The two NWGAP teams responsible for the initial land cover mapping effort in Montana were Sanborn and NWGAP at the University of Idaho. Both Sanborn and NWGAP employed a similar modeling approach in which Classification and Regression Tree (CART) models were applied to Landsat ETM+ scenes. The Spatial Analysis Lab within the Montana Natural Heritage Program was responsible for developing a seamless Montana land cover map with a consistent statewide legend from these two separate products. Additionally, the Montana land cover layer incorporates several other land cover and land use products (e.g., MSDI Structures and Transportation themes and the Montana Department of Revenue Final Land Unit classification) and reclassifications based on plot-level data and the latest NAIP imagery to improve accuracy and enhance the usability of the theme. Updates are done as partner support and funding allow, or when other MSDI datasets can be incorporated. Recent updates include fire perimeters and agricultural land use (annually), energy developments such as wind, oil and gas installations (2014), roads, structures and other impervious surfaces (various years): and local updates/improvements to specific ecological systems (e.g., central Montana grassland and sagebrush ecosystems). Current and previous versions of the Land Use/Land Cover layer with full metadata are available for download at the Montana State Library's Geographic Information Clearinghouse

Within the report area you have requested, land cover is summarized by acres of Level 1, Level 2, and Level 3 Ecological Systems.

#### Literature Cited

Anderson, J.R. E.E. Hardy, J.T. Roach, and R.E. Witmer. 1976. A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964.


Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological systems of the United States: A working classification of U.S. terrestrial systems. NatureServe, Arlington, VA.



#### Latitude Longitude 46.51014 -110.79556 46.56431 -110.92652

# **Land Management**

Summarized by: (Custom Area of Interest)



| Land Management Summary                                                     |                   |        |                   |                                     |
|-----------------------------------------------------------------------------|-------------------|--------|-------------------|-------------------------------------|
|                                                                             | Ownership         | Tribal | Easements         | Other Boundaries (possible overlap) |
| <sup></sup> ■ □ Public Lands                                                | 411 Acres (7%)    |        |                   |                                     |
| ■ 🛅 Federal                                                                 | 275 Acres (5%)    |        |                   |                                     |
| ■ □ US Forest Service                                                       | 275 Acres (5%)    |        |                   |                                     |
| USFS Owned                                                                  | 275 Acres (5%)    |        |                   |                                     |
| ■ 🛅 USFS Ranger Districts                                                   |                   |        |                   | 334 Acres                           |
| Helena-Lewis & Clark National Forest, White Sulphur Springs Ranger District |                   |        |                   | 334 Acres                           |
| ■ 🛅 USFS National Forest Boundaries                                         |                   |        |                   | 334 Acres                           |
| Helena-Lewis & Clark National Forest                                        |                   |        |                   | 334 Acres                           |
| <b>■ </b>                                                                   | 31 Acres (1%)     |        |                   |                                     |
| ■ Montana State Trust Lands                                                 | 31 Acres (1%)     |        |                   |                                     |
| MT State Trust Owned                                                        | 31 Acres (1%)     |        |                   |                                     |
| <b>⊞ i</b> Local                                                            | 105 Acres (2%)    |        |                   |                                     |
| ■ Local Government                                                          | 105 Acres (2%)    |        |                   |                                     |
| Local Government Owned                                                      | 105 Acres (2%)    |        |                   |                                     |
| ■ 🛅 Conservation Easements                                                  |                   |        | 2,788 Acres (48%) |                                     |
| ■    Drivate                                                                |                   |        | 2,788 Acres (48%) |                                     |
| Montana Land Reliance                                                       |                   |        | 2,788 Acres (48%) |                                     |
| Private Lands or Unknown Ownership                                          | 2,554 Acres (44%) |        |                   |                                     |

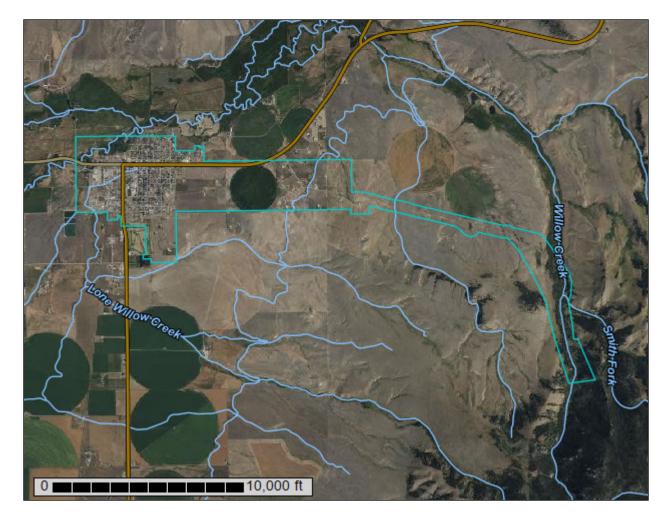
# **Introduction to Land Management**

Within the report area you have requested, land management information is summarized by acres of federal, state, and local government lands, tribal reservation boundaries, private conservation lands, and federal, state, local, and private conservation easements. Acreage for "Owned", "Tribal", or "Easement" categories represents non-overlapping areas that may be totaled. However, "Other Boundaries" represents managed areas such as National Forest boundaries containing private inholdings and other mixed ownership which may cause boundaries to overlap (e.g. a wilderness area within a forest). Therefore, acreages may not total in a straight-forward manner.

Because information on land stewardship is critical to effective land management, the Montana Natural Heritage Program (MTNHP) began compiling ownership and management data in 1997. The goal of the Montana Land Management Database is to manage a single, statewide digital data set that incorporates information from both public and private entities. The database assembles information on public lands, private conservation lands, and conservation easements held by state and federal agencies and land trusts and is updated on a regular basis. Since 2011, the Information Management group in the Montana State Library's Digital Library Division has led the Montana Land Management Database in partnership with the MTNHP.

Public and private conservation land polygons are attributed with the name of the entity that owns it. The data are derived from the statewide Montana Cadastral Parcel layer Conservation easement data shows land parcels on which a public agency or qualified land trust has placed a conservation easement in cooperation with the land owner. The dataset contains no information about ownership or status of the mineral estate. For questions about the dataset or to report errors, please contact the Montana Natural Heritage Program at (406) 444-5363 or <a href="mailto:mtnhp@mt.gov">mtnhp@mt.gov</a>. You can download various components of the Land Management Database and view associated metadata at the Montana State Library's GIS Data List at the following links:

Public Lands
Conservation Easements
Private Conservation Lands
Managed Areas


Map features in the Montana Land Management Database or summaries provided in this report are not intended as a legal depiction of public or private surface land ownership boundaries and should not be used in place of a survey conducted by a licensed land surveyor. Similarly, map features do not imply public access to any lands. The Montana Natural Heritage Program makes no representations or warranties whatsoever with respect to the accuracy or completeness of this data and assumes no responsibility for the suitability of the data for a particular purpose. The Montana Natural Heritage Program will not be liable for any damages incurred as a result of errors displayed here. Consumers of this information should review or consult the primary data and information sources to ascertain the viability of the information for their purposes.

# **Appendix D**NRCS Soils Report



**NRCS** 

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Lewis and Clark National Forest Area, Montana, and Meagher County Area, Montana



# **Preface**

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# **Contents**

| Preface                                                           |      |
|-------------------------------------------------------------------|------|
| How Soil Surveys Are Made                                         |      |
| Soil Map                                                          | 9    |
| Soil Map                                                          | 10   |
| Legend                                                            | 11   |
| Map Unit Legend                                                   |      |
| Map Unit Descriptions                                             |      |
| Lewis and Clark National Forest Area, Montana                     |      |
| 138E—Surdal-Poin complex, 10 to 35 percent slopes, stony          |      |
| 501B—Mannixlee, rarely flooded-Clunton, frequently flooded-       |      |
| Meadowcreek complex, 0 to 4 percent slopes                        | .19  |
| 1164G—Cowcoulee, stony-Ettienridge families, complex, 35 to 70    |      |
| percent slopes                                                    | 21   |
| 1168E—Lake Creek, very stony-Elve, extremely stony-Comad, rubbly  |      |
| families, complex, 8 to 35 percent slopes                         | 24   |
| 1268F—Tigeron, rubbly-Targhee, very bouldery-Como, very stony     | . 47 |
| families, complex, 35 to 60 percent slopes                        | 27   |
| Meagher County Area, Montana                                      |      |
| 44E—Tolbert channery loam, 8 to 35 percent slopes                 |      |
| 70F—Vershal-Castner-Rock outcrop complex, 25 to 60 percent slopes |      |
| 138E—Bairspring-Poin complex, 10 to 35 percent slopes, stony      |      |
|                                                                   |      |
| 170E—Cheadle-Copenhaver-Sebud complex, 15 to 35 percent slopes    |      |
| 171F—Bairspring-Woodhall-Poin complex, 20 to 60 percent slopes    |      |
| 201B—Bigsandy loam, 0 to 4 percent slopes                         |      |
| 202A—Fairberg-Villmeagher complex, 0 to 2 percent slopes          |      |
| 245C—Reedwest gravelly loam, 2 to 8 percent slopes                |      |
| 254B—Meagher gravelly loam, 1 to 4 percent slopes                 |      |
| 274C—Perma gravelly loam, 2 to 8 percent slopes                   | . 46 |
| 340E—Duckcreek-Houlihan-Nieman, stony complex, 15 to 45 percent   |      |
| slopes                                                            |      |
| 371D—Sixteenmile-Krakon-Breeton complex, 4 to 15 percent slopes   |      |
| 409A—Meadowcreek loam, 0 to 2 percent slopes                      |      |
| 445B—Fairfield gravelly loam, 1 to 4 percent slopes               |      |
| 445C—Reedwest-Roundor-Cabba complex, 2 to 8 percent slopes        |      |
| 463A—Utica-Binna complex, cool, 0 to 2 percent slopes             | . 56 |
| 501B—Mannixlee-Clunton, frequently flooded-Meadowcreek complex,   |      |
| 0 to 4 percent slopes                                             |      |
| 541C—Fairfield-Kiev complex, 2 to 8 percent slopes                | . 60 |
| 548D—Shawmut gravelly loam, 8 to 15 percent slopes                | 62   |
| 563A—Binna-Utica complex, cool, 0 to 2 percent slopes             | . 63 |
| 658E—Reedwest-Bacbuster-Cabba complex, 8 to 35 percent slopes     |      |
| 670F—Castner-Crampton complex, 25 to 60 percent slopes            |      |
| 704A—Villsprings silt loam, 0 to 2 percent slopes                 |      |
| 748C—Shawmut stony loam, 4 to 8 percent slopes                    |      |

| 954C—Meagher cobbly loam, 2 to 8 percent slopes, stony         | 71 |
|----------------------------------------------------------------|----|
| 1164G—Cowcoulee, stony-Ettienridge families, complex, 35 to 70 |    |
| percent slopes                                                 | 72 |
| M-W—Sewage Lagoon                                              | 75 |
| Soil Information for All Uses                                  | 76 |
| Suitabilities and Limitations for Use                          | 76 |
| Land Classifications                                           | 76 |
| Farmland Classification                                        | 76 |
| References                                                     | 84 |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

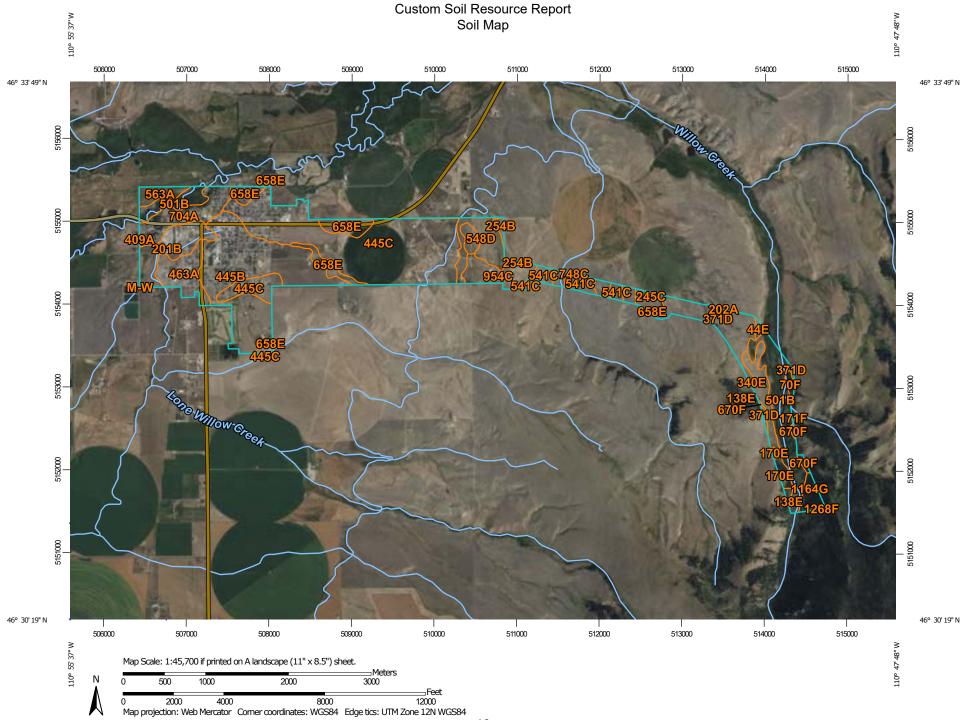
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



#### MAP LEGEND

#### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

#### **Special Point Features**

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

**Gravelly Spot** 

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area



Stony Spot Very Stony Spot



Wet Spot



Other



Special Line Features

#### **Water Features**

Streams and Canals

#### Transportation

---

Rails

Interstate Highways

**US Routes** 



Major Roads



Local Roads

#### Background

Aerial Photography

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lewis and Clark National Forest Area,

Montana

Survey Area Data: Version 15, Aug 26, 2022

Soil Survey Area: Meagher County Area, Montana Survey Area Data: Version 22, Aug 30, 2022

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Aug 9, 2022—Aug 19, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

# **MAP LEGEND**

## **MAP INFORMATION**

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# **Map Unit Legend**

| Map Unit Symbol                | Map Unit Name                                                                                                 | Acres in AOI | Percent of AOI |
|--------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|----------------|
| 138E                           | Surdal-Poin complex, 10 to 35 percent slopes, stony                                                           | 3.4          | 0.2%           |
| 501B                           | Mannixlee, rarely flooded-<br>Clunton, frequently flooded-<br>Meadowcreek complex, 0 to<br>4 percent slopes   | 9.1          | 0.6%           |
| 1164G                          | Cowcoulee, stony-Ettienridge families, complex, 35 to 70 percent slopes                                       | 16.3         | 1.0%           |
| 1168E                          | Lake Creek, very stony-Elve,<br>extremely stony-Comad,<br>rubbly families, complex, 8 to<br>35 percent slopes | 0.1          | 0.0%           |
| 1268F                          | Tigeron, rubbly-Targhee, very bouldery-Como, very stony families, complex, 35 to 60 percent slopes            | 0.2          | 0.0%           |
| Subtotals for Soil Survey Area |                                                                                                               | 29.1         | 1.8%           |
| Totals for Area of Interest    |                                                                                                               | 1,591.6      | 100.0%         |

| Map Unit Symbol | Map Unit Name                                                       | Acres in AOI | Percent of AOI |
|-----------------|---------------------------------------------------------------------|--------------|----------------|
| 44E             | Tolbert channery loam, 8 to 35 percent slopes                       | 3.6          | 0.2%           |
| 70F             | Vershal-Castner-Rock outcrop<br>complex, 25 to 60 percent<br>slopes | 6.6          | 0.4%           |
| 138E            | Bairspring-Poin complex, 10 to 35 percent slopes, stony             | 11.5         | 0.7%           |
| 170E            | Cheadle-Copenhaver-Sebud complex, 15 to 35 percent slopes           | 1.7          | 0.1%           |
| 171F            | Bairspring-Woodhall-Poin<br>complex, 20 to 60 percent<br>slopes     | 0.1          | 0.0%           |
| 201B            | Bigsandy loam, 0 to 4 percent slopes                                | 77.3         | 4.9%           |
| 202A            | Fairberg-Villmeagher complex, 0 to 2 percent slopes                 | 0.0          | 0.0%           |
| 245C            | Reedwest gravelly loam, 2 to 8 percent slopes                       | 19.4         | 1.2%           |
| 254B            | Meagher gravelly loam, 1 to 4 percent slopes                        | 21.5         | 1.4%           |
| 274C            | Perma gravelly loam, 2 to 8 percent slopes                          | 41.4         | 2.6%           |

| Map Unit Symbol                | Map Unit Name                                                                    | Acres in AOI | Percent of AOI |
|--------------------------------|----------------------------------------------------------------------------------|--------------|----------------|
| 340E                           | Duckcreek-Houlihan-Nieman,<br>stony complex, 15 to 45<br>percent slopes          | 0.8          | 0.1%           |
| 371D                           | Sixteenmile-Krakon-Breeton<br>complex, 4 to 15 percent<br>slopes                 | 88.7         | 5.6%           |
| 409A                           | Meadowcreek loam, 0 to 2 percent slopes                                          | 0.1          | 0.0%           |
| 445B                           | Fairfield gravelly loam, 1 to 4 percent slopes                                   | 297.5        | 18.7%          |
| 445C                           | Reedwest-Roundor-Cabba complex, 2 to 8 percent slopes                            | 438.4        | 27.5%          |
| 463A                           | Utica-Binna complex, cool, 0 to 2 percent slopes                                 | 63.9         | 4.0%           |
| 501B                           | Mannixlee-Clunton, frequently flooded-Meadowcreek complex, 0 to 4 percent slopes | 141.6        | 8.9%           |
| 541C                           | Fairfield-Kiev complex, 2 to 8 percent slopes                                    | 37.6         | 2.4%           |
| 548D                           | Shawmut gravelly loam, 8 to 15 percent slopes                                    | 59.8         | 3.8%           |
| 563A                           | Binna-Utica complex, cool, 0 to 2 percent slopes                                 | 22.6         | 1.4%           |
| 658E                           | Reedwest-Bacbuster-Cabba complex, 8 to 35 percent slopes                         | 80.2         | 5.0%           |
| 670F                           | Castner-Crampton complex, 25 to 60 percent slopes                                | 5.7          | 0.4%           |
| 704A                           | Villsprings silt loam, 0 to 2 percent slopes                                     | 75.4         | 4.7%           |
| 748C                           | Shawmut stony loam, 4 to 8 percent slopes                                        | 6.5          | 0.4%           |
| 954C                           | Meagher cobbly loam, 2 to 8 percent slopes, stony                                | 55.8         | 3.5%           |
| 1164G                          | Cowcoulee, stony-Ettienridge families, complex, 35 to 70 percent slopes          | 4.7          | 0.3%           |
| M-W                            | Sewage Lagoon                                                                    | 0.0          | 0.0%           |
| Subtotals for Soil Survey Area |                                                                                  | 1,562.4      | 98.2%          |
| Totals for Area of Interest    |                                                                                  | 1,591.6      | 100.0%         |

# **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps.

The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## Lewis and Clark National Forest Area, Montana

## 138E—Surdal-Poin complex, 10 to 35 percent slopes, stony

#### **Map Unit Setting**

National map unit symbol: 2l9w8 Elevation: 6,000 to 6,500 feet

Mean annual precipitation: 18 to 24 inches Mean annual air temperature: 36 to 38 degrees F

Frost-free period: 50 to 70 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Bairspring, stony, and similar soils: 55 percent Poin, stony, and similar soils: 35 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Bairspring, Stony**

#### Setting

Landform: Hillslopes
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from rhyolite

#### **Typical profile**

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 4 inches: gravelly loam

AB - 4 to 9 inches: very cobbly loam

Bw - 9 to 20 inches: very cobbly loam

BC - 20 to 28 inches: extremely cobbly loam

R - 28 to 59 inches: bedrock

#### Properties and qualities

Slope: 10 to 35 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.2 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group Other vegetative classification: Douglas-fir/snowberry (PK310)

Hydric soil rating: No

#### **Description of Poin, Stony**

#### Setting

Landform: Hillslopes
Down-slope shape: Linear
Across-slope shape: Convex

Parent material: Colluvium over residuum weathered from rhyolite

#### **Typical profile**

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 4 inches: cobbly loam

Bw1 - 4 to 11 inches: extremely cobbly loam Bw2 - 11 to 18 inches: extremely cobbly loam

R - 18 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 10 to 25 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: F043BP903MT - Shallow Cool Woodland Group Other vegetative classification: Douglas-fir/Idaho fescue (PK220)

Hydric soil rating: No

#### **Minor Components**

#### **Echemoor**

Percent of map unit: 10 percent

Landform: Hillslopes

Down-slope shape: Concave, linear

Across-slope shape: Linear

Other vegetative classification: Douglas-fir/snowberry (PK310)

Hydric soil rating: No

# 501B—Mannixlee, rarely flooded-Clunton, frequently flooded-Meadowcreek complex, 0 to 4 percent slopes

#### Map Unit Setting

National map unit symbol: 219xq Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 45 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Mannixlee and similar soils: 35 percent Clunton and similar soils: 30 percent Meadowcreek and similar soils: 15 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Mannixlee**

#### Setting

Landform: Stream terraces, flood-plain steps

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from igneous, metamorphic and sedimentary

rock

#### **Typical profile**

Oi - 0 to 2 inches: peat
A1 - 2 to 9 inches: loam
A2 - 9 to 25 inches: clay loam
Bw1 - 25 to 45 inches: silt loam
Bw2 - 45 to 52 inches: sandy loam

2Cg - 52 to 59 inches: extremely gravelly loamy coarse sand

#### **Properties and qualities**

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.21

to 0.71 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: RareNone Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 9.9 inches)

#### Interpretive groups

Land capability classification (irrigated): 4w

Land capability classification (nonirrigated): 4w

Hvdrologic Soil Group: C/D

Ecological site: R043BP801MT - Bottomland Group

Other vegetative classification: yellow willow c.t. (HP315), black cottonwood/

redosier dogwood c.t. (HP202)

Hydric soil rating: Yes

#### **Description of Clunton**

#### Setting

Landform: Flood-plain steps, flood plains

Down-slope shape: Linear

Across-slope shape: Linear, concave

Parent material: Alluvium

#### **Typical profile**

Oa - 0 to 4 inches: muck Ag - 4 to 18 inches: loam

Cg1 - 18 to 30 inches: clay loam Cg2 - 30 to 36 inches: silty clay loam Cg3 - 36 to 42 inches: sandy loam

2Cg4 - 42 to 50 inches: gravelly sandy loam 2Cg5 - 50 to 57 inches: gravelly loamy sand

2Cg6 - 57 to 64 inches: silt loam

#### **Properties and qualities**

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.21

to 0.71 in/hr)

Depth to water table: About 0 to 12 inches Frequency of flooding: FrequentNone

Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 10.6 inches)

#### Interpretive groups

Land capability classification (irrigated): 5w Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: C/D

Ecological site: R043BP801MT - Bottomland Group

Other vegetative classification: quaking aspen/Kentucky bluegrass c.t. (HP218)

Hydric soil rating: Yes

#### **Description of Meadowcreek**

#### Setting

Landform: Stream terraces
Down-slope shape: Linear
Across-slope shape: Concave

Parent material: Alluvium derived from sedimentary rock

#### Typical profile

A1 - 0 to 10 inches: loam
A2 - 10 to 15 inches: silt loam
Bg - 15 to 31 inches: loam

2C - 31 to 59 inches: very gravelly sand

#### **Properties and qualities**

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.71 to 2.13 in/hr)

Depth to water table: About 24 to 39 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 6.7 inches)

#### Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C

Ecological site: R043BP801MT - Bottomland Group

Hydric soil rating: No

## **Minor Components**

#### Lamoose

Percent of map unit: 10 percent Landform: Stream terraces Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R044BY080MT - Riparian Meadow (RM) LRU 01 Subset Y

Hydric soil rating: No

#### **Enbar**

Percent of map unit: 5 percent

Landform: Stream terraces, fan remnants

Down-slope shape: Linear Across-slope shape: Linear

Other vegetative classification: quaking aspen/Kentucky bluegrass c.t. (HP218)

Hydric soil rating: No

#### Water

Percent of map unit: 5 percent Hydric soil rating: Unranked

# 1164G—Cowcoulee, stony-Ettienridge families, complex, 35 to 70 percent slopes

#### **Map Unit Setting**

National map unit symbol: 2lbbd Elevation: 5,250 to 7,300 feet

Mean annual precipitation: 18 to 24 inches Mean annual air temperature: 34 to 37 degrees F

Frost-free period: 40 to 60 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Cowcoulee, stony, and similar soils: 45 percent

Ettienridge and similar soils: 35 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Cowcoulee, Stony**

#### Setting

Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from limestone

#### Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 6 inches: silt loam

Bt - 6 to 11 inches: gravelly silty clay loam
Btk - 11 to 23 inches: very gravelly clay loam
Bk - 23 to 33 inches: very gravelly loam

R - 33 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 35 to 70 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 25 percent

Available water supply, 0 to 60 inches: Low (about 4.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group

Other vegetative classification: Douglas-fir/heartleaf arnica (PK370), Douglas-fir/ninebark-pinegrass phase (PK262), Douglas-fir/snowberry-snowberry phase

(PK313)

Hydric soil rating: No

#### **Description of Ettienridge**

#### Setting

Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from limestone

#### **Typical profile**

Oi - 0 to 3 inches: slightly decomposed plant material

A - 3 to 8 inches: gravelly loam

Bk1 - 8 to 17 inches: very gravelly loam Bk2 - 17 to 29 inches: very gravelly loam

R - 29 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 35 to 70 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 60 percent

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group

Other vegetative classification: Douglas-fir/twinflower-snowberry phase (PK291), Douglas-fir/common juniper (PK360), Douglas-fir/snowberry-snowberry phase

(PK313)

Hydric soil rating: No

#### **Minor Components**

#### Checkerboard, very stony

Percent of map unit: 10 percent Landform: Mountain slopes Down-slope shape: Convex Across-slope shape: Linear

Other vegetative classification: Douglas-fir/common juniper (PK360), Douglas-fir/

kinnikinnick (PK350) Hydric soil rating: No

#### Levengood

Percent of map unit: 5 percent Landform: Mountain slopes Down-slope shape: Concave Across-slope shape: Linear

Other vegetative classification: Douglas-fir/ninebark-pinegrass phase (PK262), Douglas-fir/twinflower-snowberry phase (PK291), Douglas-fir/bluebunch

wheatgrass (PK210) Hydric soil rating: No

#### **Rock outcrop**

Percent of map unit: 5 percent

Hydric soil rating: No

# 1168E—Lake Creek, very stony-Elve, extremely stony-Comad, rubbly families, complex, 8 to 35 percent slopes

#### Map Unit Setting

National map unit symbol: 2r6xt Elevation: 5,410 to 6,890 feet

Mean annual precipitation: 19 to 24 inches Mean annual air temperature: 34 to 37 degrees F

Frost-free period: 40 to 60 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Lake creek, very stony, and similar soils: 35 percent Elve, extremely stony, and similar soils: 25 percent Comad, rubbly, and similar soils: 15 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Lake Creek, Very Stony**

#### Setting

Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Convex

Parent material: Colluvium derived from igneous and metamorphic rock

## **Typical profile**

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 4 inches: cobbly loam E - 4 to 12 inches: cobbly loam

Bt1 - 12 to 22 inches: very cobbly clay loam

Bt2 - 22 to 35 inches: extremely cobbly sandy clay loam

R - 35 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 8 to 35 percent

Surface area covered with cobbles, stones or boulders: 1.5 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.7 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group

Other vegetative classification: Douglas-fir/twinflower-blue huckleberry phase

(PK293), Douglas-fir/pinegrass-pinegrass phase (PK323)

Hydric soil rating: No

#### **Description of Elve, Extremely Stony**

#### Setting

Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium derived from igneous and metamorphic rock

#### **Typical profile**

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 6 inches: gravelly sandy loam
E - 6 to 14 inches: very cobbly sandy loam
Bw - 14 to 33 inches: very cobbly sandy loam
BC - 33 to 59 inches: extremely cobbly sandy loam

#### **Properties and qualities**

Slope: 8 to 35 percent

Surface area covered with cobbles, stones or boulders: 9.0 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.71 to 2.13 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: B

Ecological site: F043BP910MT - Upland Cool Woodland Group

Other vegetative classification: Douglas-fir/common juniper (PK360), Douglas-

fir/elk sedge (PK330) Hydric soil rating: No

#### **Description of Comad, Rubbly**

#### Setting

Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium derived from igneous and metamorphic rock

#### Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

E - 2 to 8 inches: very cobbly loam

E and Bt - 8 to 26 inches: very cobbly sandy loam C - 26 to 38 inches: very cobbly loamy coarse sand

R - 38 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 8 to 35 percent

Surface area covered with cobbles, stones or boulders: 32.0 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.8 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group Other vegetative classification: Douglas-fir/common juniper (PK360)

Hydric soil rating: No

## **Minor Components**

#### Sebud, very stony

Percent of map unit: 8 percent Landform: Mountain slopes Down-slope shape: Convex Across-slope shape: Concave

Other vegetative classification: Douglas-fir/pinegrass-pinegrass phase (PK323)

Hydric soil rating: No

#### Caseypeak, extremely stony

Percent of map unit: 7 percent Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear

Other vegetative classification: Douglas-fir/common juniper (PK360), Douglas-fir/

kinnikinnick (PK350) Hydric soil rating: No

#### Rubble land

Percent of map unit: 5 percent

Hydric soil rating: No

#### Finn, extremely stony

Percent of map unit: 3 percent Landform: Drainageways Down-slope shape: Concave Across-slope shape: Concave

Other vegetative classification: spruce/common horsetail (PK410)

Hydric soil rating: Yes

#### **Rock outcrop**

Percent of map unit: 2 percent

Hydric soil rating: No

# 1268F—Tigeron, rubbly-Targhee, very bouldery-Como, very stony families, complex, 35 to 60 percent slopes

#### **Map Unit Setting**

National map unit symbol: 2r6xx Elevation: 6,400 to 7,710 feet

Mean annual precipitation: 25 to 32 inches Mean annual air temperature: 34 to 37 degrees F

Frost-free period: 30 to 50 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Tigeron, rubbly, and similar soils: 30 percent

Targhee, very bouldery, and similar soils: 25 percent Como, very stony, and similar soils: 15 percent

Rock outcrop: 10 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Tigeron, Rubbly**

#### Setting

Landform: Mountain slopes Down-slope shape: Concave Across-slope shape: Linear

Parent material: Colluvium derived from igneous and metamorphic rock

#### **Typical profile**

Oi - 0 to 2 inches: slightly decomposed plant material

E1 - 2 to 7 inches: cobbly sandy loam
E2 - 7 to 13 inches: very cobbly sandy loam
E and Bt - 13 to 18 inches: very cobbly sandy loam
Bt - 18 to 34 inches: very cobbly sandy clay loam
BC - 34 to 59 inches: very cobbly sandy loam

#### **Properties and qualities**

Slope: 35 to 60 percent

Surface area covered with cobbles, stones or boulders: 32.0 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.71 to 2.13 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.5 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: B

Ecological site: F043BP909MT - Upland Cold Woodland Group

Other vegetative classification: subalpine fir/blue huckleberry (PK720), subalpine

fir/elk sedge (PK790) Hydric soil rating: No

#### **Description of Targhee, Very Bouldery**

#### Setting

Landform: Mountain slopes Down-slope shape: Convex Across-slope shape: Convex

Parent material: Colluvium derived from igneous and metamorphic rock

#### **Typical profile**

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 8 inches: gravelly loam

Bw - 8 to 20 inches: very gravelly sandy loam C1 - 20 to 28 inches: very gravelly sandy loam C2 - 28 to 35 inches: very gravelly loamy sand

R - 35 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 35 to 60 percent

Surface area covered with cobbles, stones or boulders: 1.5 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: F043BP909MT - Upland Cold Woodland Group

Other vegetative classification: subalpine fir/blue huckleberry (PK720), subalpine

fir/grouse whortleberry-pinegrass phase (PK731)

Hydric soil rating: No

#### **Description of Como, Very Stony**

#### Setting

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium derived from igneous and metamorphic rock

#### Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 7 inches: very gravelly sandy loam

Bw - 7 to 18 inches: very gravelly sandy loam BC - 18 to 28 inches: very cobbly loamy sand C - 28 to 59 inches: extremely cobbly loamy sand

#### **Properties and qualities**

Slope: 35 to 60 percent

Surface area covered with cobbles, stones or boulders: 1.5 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): High (2.13 to 7.09

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: F043BP909MT - Upland Cold Woodland Group

Other vegetative classification: subalpine fir/grouse whortleberry-grouse

whortleberry phase (PK732)

Hydric soil rating: No

#### **Description of Rock Outcrop**

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

#### **Minor Components**

#### Cowood, very rubbly

Percent of map unit: 10 percent Landform: Structural benches Down-slope shape: Convex Across-slope shape: Convex

Other vegetative classification: subalpine fir/grouse whortleberry-grouse

whortleberry phase (PK732)

Hydric soil rating: No

#### Rubble land

Percent of map unit: 7 percent

Hydric soil rating: No

#### Redfish, occasionally flooded, very bouldery

Percent of map unit: 3 percent Landform: Drainageways Down-slope shape: Linear Across-slope shape: Concave

Other vegetative classification: spruce/common horsetail (PK410)

Hydric soil rating: Yes

# **Meagher County Area, Montana**

## 44E—Tolbert channery loam, 8 to 35 percent slopes

#### **Map Unit Setting**

National map unit symbol: 4z19 Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Tolbert and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Tolbert**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from argillite

#### **Typical profile**

A - 0 to 4 inches: channery loam BA - 4 to 7 inches: channery loam

Bt - 7 to 16 inches: very channery clay loam

R - 16 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 8 to 35 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Very low (about 2.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

Hydric soil rating: No

#### **Minor Components**

#### **Absarook**

Percent of map unit: 8 percent Landform: Valley floors Down-slope shape: Linear

Across-slope shape: Linear

Ecological site: R043BP819MT - Upland Sagebrush Shrubland Group

Hydric soil rating: No

#### **Rock outcrop**

Percent of map unit: 2 percent Hydric soil rating: Unranked

## 70F—Vershal-Castner-Rock outcrop complex, 25 to 60 percent slopes

#### **Map Unit Setting**

National map unit symbol: n81d Elevation: 5.300 to 6.300 feet

Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Vershal and similar soils: 45 percent Castner and similar soils: 35 percent

Rock outcrop: 15 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Vershal**

#### Setting

Landform: Escarpments

Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Nose slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Channery residuum weathered from sedimentary rock

#### Typical profile

A1 - 0 to 4 inches: very channery loam
A2 - 4 to 8 inches: extremely channery loam

R - 8 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 25 to 60 percent

Depth to restrictive feature: 5 to 10 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Very low (about 0.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R043BP810MT - Shallow Grassland Group

Hydric soil rating: No

#### **Description of Castner**

#### Setting

Landform: Escarpments

Landform position (two-dimensional): Backslope, footslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Channery residuum weathered from sedimentary rock

#### **Typical profile**

A - 0 to 5 inches: channery loam
Bw - 5 to 8 inches: very channery loam
Bk - 8 to 15 inches: very channery loam

R - 15 to 59 inches: bedrock

#### Properties and qualities

Slope: 25 to 60 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Very low (about 1.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R043BP810MT - Shallow Grassland Group

Hydric soil rating: No

#### **Description of Rock Outcrop**

#### Setting

Landform: Escarpments

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Free face

Parent material: Sedimentary rock

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: Unranked

#### **Minor Components**

#### Reedwest

Percent of map unit: 4 percent Landform: Escarpments

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Crest, side slope

Down-slope shape: Linear, concave Across-slope shape: Concave

Ecological site: R043BP819MT - Upland Sagebrush Shrubland Group

Hydric soil rating: No

#### Meadowcreek

Percent of map unit: 1 percent Landform: Drainageways Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R043BP801MT - Bottomland Group

Hydric soil rating: No

# 138E—Bairspring-Poin complex, 10 to 35 percent slopes, stony

#### **Map Unit Setting**

National map unit symbol: 1hf55 Elevation: 6,000 to 6,500 feet

Mean annual precipitation: 18 to 24 inches Mean annual air temperature: 36 to 38 degrees F

Frost-free period: 50 to 70 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Bairspring, stony, and similar soils: 55 percent Poin, stony, and similar soils: 35 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Bairspring, Stony**

#### **Setting**

Landform: Hillslopes Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from rhyolite

#### **Typical profile**

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 4 inches: gravelly loam

AB - 4 to 9 inches: very cobbly loam
Bw - 9 to 20 inches: very cobbly loam
BC - 20 to 28 inches: extremely cobbly loam

R - 28 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 10 to 35 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.2 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group Other vegetative classification: Douglas-fir/snowberry (PK310)

Hydric soil rating: No

#### **Description of Poin, Stony**

#### Setting

Landform: Hillslopes
Down-slope shape: Linear
Across-slope shape: Convex

Parent material: Colluvium over residuum weathered from rhyolite

#### Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 4 inches: cobbly loam

Bw1 - 4 to 11 inches: extremely cobbly loam Bw2 - 11 to 18 inches: extremely cobbly loam

R - 18 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 10 to 25 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: F043BP903MT - Shallow Cool Woodland Group

Other vegetative classification: Douglas-fir/Idaho fescue (PK220)

Hydric soil rating: No

#### **Minor Components**

#### **Echemoor**

Percent of map unit: 10 percent

Landform: Hillslopes

Down-slope shape: Concave, linear

Across-slope shape: Linear

Other vegetative classification: Douglas-fir/snowberry (PK310)

Hydric soil rating: No

# 170E—Cheadle-Copenhaver-Sebud complex, 15 to 35 percent slopes

## **Map Unit Setting**

National map unit symbol: nrxh Elevation: 5,400 to 6,490 feet

Mean annual precipitation: 16 to 19 inches
Mean annual air temperature: 36 to 38 degrees F

Frost-free period: 50 to 70 days

Farmland classification: Not prime farmland

## **Map Unit Composition**

Cheadle and similar soils: 35 percent Copenhaver and similar soils: 25 percent Sebud and similar soils: 20 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Cheadle**

#### Setting

Landform: Hills, escarpments

Down-slope shape: Linear, convex

Across-slope shape: Convex, linear

Parent material: Colluvium over residuum weathered from siltstone

## **Typical profile**

A1 - 0 to 6 inches: channery loam

A2 - 6 to 11 inches: extremely channery loam Bk - 11 to 19 inches: very channery loam

R - 19 to 59 inches: bedrock

## **Properties and qualities**

Slope: 20 to 35 percent

Depth to restrictive feature: 10 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Very low (about 1.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R043BP823MT - Shallow Alpine Group

Hydric soil rating: No

## **Description of Copenhaver**

#### Setting

Landform: Hills, escarpments Down-slope shape: Linear

Across-slope shape: Convex, linear

Parent material: Colluvium over residuum weathered from siltstone

## **Typical profile**

A - 0 to 5 inches: channery loam

Bt - 5 to 13 inches: very channery clay loam

R - 13 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 15 to 20 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Very low (about 1.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R043BP823MT - Shallow Alpine Group

Hydric soil rating: No

## **Description of Sebud**

## Setting

Landform: Hills, swales

Down-slope shape: Linear, concave Across-slope shape: Linear, concave

Parent material: Colluvium derived from siltstone

## **Typical profile**

A - 0 to 13 inches: gravelly loam

Bw - 13 to 59 inches: very gravelly loam

#### **Properties and qualities**

Slope: 15 to 20 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.71 to 2.13 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R043BP821MT - Upland Alpine Group

Hydric soil rating: No

# **Minor Components**

## **Dalys**

Percent of map unit: 10 percent Landform: Hills, escarpments Down-slope shape: Linear Across-slope shape: Convex

Ecological site: R043BP811MT - Shallow Sagebrush Shrubland Group

Hydric soil rating: No

## **Skisams**

Percent of map unit: 7 percent Landform: Hills, escarpments Down-slope shape: Linear Across-slope shape: Convex

Ecological site: R043BP812MT - Shallow Shrubland Group

Hydric soil rating: No

#### **Rock outcrop**

Percent of map unit: 3 percent

Hydric soil rating: No

# 171F—Bairspring-Woodhall-Poin complex, 20 to 60 percent slopes

# **Map Unit Setting**

National map unit symbol: 1hfhy Elevation: 5,800 to 6,400 feet

Mean annual precipitation: 18 to 24 inches Mean annual air temperature: 36 to 38 degrees F

Frost-free period: 50 to 70 days

Farmland classification: Not prime farmland

## **Map Unit Composition**

Bairspring and similar soils: 45 percent Woodhall and similar soils: 25 percent Poin and similar soils: 20 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

# **Description of Bairspring**

## Setting

Landform: Hillslopes
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from siltstone

## **Typical profile**

A - 0 to 4 inches: gravelly loam

Bw - 4 to 18 inches: very gravelly loam

BC - 18 to 23 inches: extremely gravelly sandy loam

R - 23 to 59 inches: bedrock

## Properties and qualities

Slope: 20 to 40 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 2.5 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group Other vegetative classification: Douglas-fir/Idaho fescue (PK220)

Hydric soil rating: No

#### **Description of Woodhall**

# Setting

Landform: Hillslopes
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from siltstone

#### Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 4 inches: gravelly loam

Bt - 4 to 14 inches: very gravelly loam

C - 14 to 24 inches: extremely cobbly loam

R - 24 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 20 to 50 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 2.3 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group Other vegetative classification: Douglas-fir/elk sedge (PK330)

Hydric soil rating: No

## **Description of Poin**

#### Setting

Landform: Hillslopes
Down-slope shape: Convex
Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from siltstone

## **Typical profile**

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 7 inches: very channery sandy loam
Bw - 7 to 13 inches: very channery sandy loam
C - 13 to 16 inches: extremely channery sandy loam

R - 16 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 20 to 60 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: F043BP903MT - Shallow Cool Woodland Group Other vegetative classification: Douglas-fir/Idaho fescue (PK220)

Hydric soil rating: No

#### **Minor Components**

#### Hardhart

Percent of map unit: 10 percent

Landform: Hillslopes
Down-slope shape: Linear
Across-slope shape: Linear

Other vegetative classification: Douglas-fir/snowberry (PK310)

Hydric soil rating: No

# 201B—Bigsandy loam, 0 to 4 percent slopes

## **Map Unit Setting**

National map unit symbol: 4z04 Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches

Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Bigsandy and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Bigsandy**

#### Setting

Landform: Flood plains
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

#### Typical profile

A - 0 to 3 inches: loam

C1 - 3 to 11 inches: silty clay loam
C2 - 11 to 14 inches: fine sandy loam
Cg1 - 14 to 46 inches: silty clay loam
Cg2 - 46 to 59 inches: fine sandy loam

#### **Properties and qualities**

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 12 to 24 inches Frequency of flooding: NoneOccasional

Frequency of ponding: Rare

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Slightly saline to moderately saline (4.0 to 8.0 mmhos/cm)

Sodium adsorption ratio, maximum: 13.0

Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

## Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: B/D

Ecological site: R044BP813MT - Subirrigated Saline-Sodic Grassland

Hydric soil rating: Yes

#### **Minor Components**

## Lepner

Percent of map unit: 10 percent

Landform: Swales

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

# 202A—Fairberg-Villmeagher complex, 0 to 2 percent slopes

# **Map Unit Setting**

National map unit symbol: 4z05 Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches
Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### Map Unit Composition

Fairberg and similar soils: 65 percent Villmeagher and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Fairberg**

#### Setting

Landform: Flood plains
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

# **Typical profile**

A - 0 to 8 inches: silt loam
Bk - 8 to 30 inches: silt loam

Bkg1 - 30 to 45 inches: silty clay loam 2Bkg2 - 45 to 59 inches: gravelly sand

## **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: NoneRare Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

## Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C

Ecological site: R044BP815MT - Subirrigated Grassland

Hydric soil rating: No

## **Description of Villmeagher**

#### Setting

Landform: Flood plains
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Alluvium

# **Typical profile**

Akg - 0 to 7 inches: silt loam

Bkg1 - 7 to 40 inches: silt loam

Bkg2 - 40 to 59 inches: silt loam

## **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: NoneRare Frequency of ponding: None

Calcium carbonate, maximum content: 20 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: High (about 10.6 inches)

#### Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: B/D

Ecological site: R044BP815MT - Subirrigated Grassland

Hydric soil rating: Yes

# 245C—Reedwest gravelly loam, 2 to 8 percent slopes

## **Map Unit Setting**

National map unit symbol: 4z09 Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: All areas are prime farmland

## **Map Unit Composition**

Reedwest and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Reedwest**

# Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from sedimentary rock

#### Typical profile

A - 0 to 8 inches: gravelly loam
Bt - 8 to 17 inches: loam
Bk - 17 to 36 inches: loam
Cr - 36 to 59 inches: bedrock

## **Properties and qualities**

Slope: 2 to 8 percent

Depth to restrictive feature: 20 to 39 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.00 to 0.28 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 20 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 5.7 inches)

# Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: R044BB032MT - Loamy (Lo) LRU 01 Subset B

#### **Minor Components**

#### Martinsdale

Percent of map unit: 10 percent

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Ecological site: R044BB032MT - Loamy (Lo) LRU 01 Subset B

Hydric soil rating: No

# 254B—Meagher gravelly loam, 1 to 4 percent slopes

#### **Map Unit Setting**

National map unit symbol: 4z0f Elevation: 4,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches
Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Farmland of statewide importance

## **Map Unit Composition**

Meagher and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Meagher**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

#### Typical profile

A - 0 to 6 inches: gravelly loam

Bt - 6 to 15 inches: gravelly clay loam

Bk1 - 15 to 29 inches: gravelly loam

2Bk2 - 29 to 59 inches: very gravelly loam

# **Properties and qualities**

Slope: 1 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.0 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R044BP818MT - Upland Grassland

Hydric soil rating: No

## **Minor Components**

#### Martinsdale

Percent of map unit: 10 percent

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Ecological site: R044BC032MT - Loamy (Lo) LRU 01 Subset C

Hydric soil rating: No

# 274C—Perma gravelly loam, 2 to 8 percent slopes

#### **Map Unit Setting**

National map unit symbol: 4z0m Elevation: 3,500 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Farmland of statewide importance

#### **Map Unit Composition**

Perma and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Perma**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from shale and siltstone

## **Typical profile**

A - 0 to 12 inches: gravelly loam

Bw - 12 to 36 inches: very gravelly sandy loam BC - 36 to 59 inches: extremely gravelly loamy sand

#### **Properties and qualities**

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 4.4 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

Hydric soil rating: No

## **Minor Components**

#### Sawicki

Percent of map unit: 10 percent

Landform: Valley floors
Down-slope shape: Convex
Across-slope shape: Convex

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

Hydric soil rating: No

# 340E—Duckcreek-Houlihan-Nieman, stony complex, 15 to 45 percent slopes

#### Map Unit Setting

National map unit symbol: pdnw Elevation: 5.600 to 6.500 feet

Mean annual precipitation: 18 to 22 inches
Mean annual air temperature: 36 to 38 degrees F

Frost-free period: 50 to 70 days

Farmland classification: Not prime farmland

# **Map Unit Composition**

Duckcreek and similar soils: 40 percent Houlihan and similar soils: 35 percent Nieman, stony, and similar soils: 20 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

# **Description of Duckcreek**

# Setting

Landform: Hillslopes

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Residuum weathered from mudstone

#### Typical profile

A - 0 to 6 inches: clay loam

Bt - 6 to 20 inches: clay loam

Bk - 20 to 36 inches: clay loam

Cr - 36 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 15 to 35 percent

Depth to restrictive feature: 20 to 39 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: R043BP820MT - Upland Shrubland Group

Hydric soil rating: No

## **Description of Houlihan**

## Setting

Landform: Swales

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loamy alluvium derived from sandstone and shale

#### Typical profile

A - 0 to 32 inches: loam

Bw - 32 to 59 inches: gravelly loam

#### **Properties and qualities**

Slope: 15 to 30 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: High (about 11.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R043BP821MT - Upland Alpine Group

Hydric soil rating: No

## **Description of Nieman, Stony**

## Setting

Landform: Scarp slopes

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Nose slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from igneous and sedimentary rock

#### **Typical profile**

A - 0 to 7 inches: very cobbly loam

Bt - 7 to 16 inches: very cobbly clay loam

R - 16 to 59 inches: bedrock

#### Properties and qualities

Slope: 15 to 45 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R043BP823MT - Shallow Alpine Group

Hydric soil rating: No

#### **Minor Components**

## **Rock outcrop**

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Nose slope

Hydric soil rating: Unranked

## Redlodge

Percent of map unit: 2 percent

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Ecological site: R043BP815MT - Subirrigated Grassland Group

Hydric soil rating: Yes

# 371D—Sixteenmile-Krakon-Breeton complex, 4 to 15 percent slopes

# Map Unit Setting

National map unit symbol: 1hfhs Elevation: 5,200 to 5,800 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

## **Map Unit Composition**

Sixteenmile and similar soils: 75 percent Breeton and similar soils: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Sixteenmile**

## Setting

Landform: Plains

Down-slope shape: Linear

Across-slope shape: Convex, linear

Parent material: Slope alluvium over residuum weathered from siltstone

# **Typical profile**

A - 0 to 2 inches: channery sandy loam

Bw - 2 to 8 inches: very channery sandy loam

Cr - 8 to 10 inches: bedrock R - 10 to 59 inches: bedrock

## **Properties and qualities**

Slope: 4 to 15 percent

Depth to restrictive feature: 2 to 10 inches to paralithic bedrock; 10 to 20 inches to

lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.00 to 0.28 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 0.7 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R043BP811MT - Shallow Sagebrush Shrubland Group

#### **Description of Breeton**

#### Setting

Landform: Swales

Down-slope shape: Linear Across-slope shape: Concave

Parent material: Slope alluvium over residuum weathered from siltstone

#### **Typical profile**

A - 0 to 24 inches: coarse sandy loam

Bw - 24 to 40 inches: gravelly coarse sandy loam BC - 40 to 59 inches: gravelly coarse sandy loam

## **Properties and qualities**

Slope: 4 to 12 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): High (2.13 to 7.09

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: R043BP817MT - Subirrigated Shrubland Group

Hydric soil rating: No

# 409A—Meadowcreek loam, 0 to 2 percent slopes

#### Map Unit Setting

National map unit symbol: 4z12 Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 12 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Prime farmland if irrigated

#### **Map Unit Composition**

Meadowcreek and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Meadowcreek**

#### Setting

Landform: Flood-plain steps

Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

#### Typical profile

A1 - 0 to 10 inches: loam
A2 - 10 to 15 inches: silt loam
Bg - 15 to 31 inches: loam

2C - 31 to 59 inches: very gravelly sand

# Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 24 to 42 inches

Frequency of flooding: NoneRare Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 6.7 inches)

## Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C

Ecological site: R044BP815MT - Subirrigated Grassland

Hydric soil rating: No

# **Minor Components**

## **Fairway**

Percent of map unit: 5 percent Landform: Flood-plain steps Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R044BP817MT - Subirrigated Shrubland

Hydric soil rating: No

# **Swampcreek**

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Concave

Hydric soil rating: Yes

# 445B—Fairfield gravelly loam, 1 to 4 percent slopes

# **Map Unit Setting**

National map unit symbol: 4z17

Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches
Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Prime farmland if irrigated

# Map Unit Composition

Fairfield and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Fairfield**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

# **Typical profile**

A - 0 to 6 inches: gravelly loam

Bt - 6 to 10 inches: gravelly clay loam

Bk - 10 to 59 inches: gravelly clay loam

## Properties and qualities

Slope: 1 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

## Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: R044BP818MT - Upland Grassland

Hydric soil rating: No

#### **Minor Components**

## Martinsdale

Percent of map unit: 10 percent

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Ecological site: R044BC032MT - Loamy (Lo) LRU 01 Subset C

# 445C—Reedwest-Roundor-Cabba complex, 2 to 8 percent slopes

# **Map Unit Setting**

National map unit symbol: 2pqkb Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

## Map Unit Composition

Reedwest and similar soils: 45 percent Roundor and similar soils: 40 percent Cabba and similar soils: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Reedwest**

## Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from shale

#### Typical profile

A - 0 to 8 inches: loam

Bt - 8 to 17 inches: loam

Bk - 17 to 36 inches: loam

Cr - 36 to 59 inches: bedrock

# **Properties and qualities**

Slope: 2 to 8 percent

Depth to restrictive feature: 20 to 39 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.00 to 0.28 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 20 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 6.0 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: R044BB032MT - Loamy (Lo) LRU 01 Subset B

#### **Description of Roundor**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Concave

Parent material: Residuum weathered from calcareous shale

## Typical profile

A - 0 to 6 inches: loam

Bw - 6 to 11 inches: clay loam

Bk - 11 to 29 inches: clay loam

Cr - 29 to 59 inches: bedrock

## Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: 20 to 39 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.00 to 0.28 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 5.1 inches)

## Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: R044BB032MT - Loamy (Lo) LRU 01 Subset B

Hydric soil rating: No

## **Description of Cabba**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from calcareous shale

# Typical profile

A - 0 to 3 inches: loam
Bk - 3 to 12 inches: clay loam
Cr - 12 to 59 inches: bedrock

#### Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: 10 to 20 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Available water supply, 0 to 60 inches: Very low (about 1.9 inches)

#### Interpretive groups

Land capability classification (irrigated): 7e Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R044BB136MT - Shallow Loamy (SwLo) LRU 01 Subset B

Hydric soil rating: No

# 463A—Utica-Binna complex, cool, 0 to 2 percent slopes

## **Map Unit Setting**

National map unit symbol: 4z1f Elevation: 4,500 to 5,000 feet

Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 39 to 43 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

*Utica, cool, and similar soils:* 70 percent *Binna, cool, and similar soils:* 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Utica, Cool**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from limestone

#### Typical profile

A - 0 to 6 inches: gravelly loam

Bk - 6 to 19 inches: very gravelly sandy loam 2C - 19 to 72 inches: very gravelly loamy sand

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 60 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.2 inches)

#### Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: B

Ecological site: R044BA036MT - Droughty (Dr) LRU 01 Subset A

Hydric soil rating: No

#### **Description of Binna, Cool**

# Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from limestone

## Typical profile

A - 0 to 9 inches: loam

Bk - 9 to 29 inches: gravelly loam

2C - 29 to 59 inches: very gravelly loamy sand

## Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 5.4 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R044BA030MT - Limy (Ly) LRU 01 Subset A

Hydric soil rating: No

# 501B—Mannixlee-Clunton, frequently flooded-Meadowcreek complex, 0 to 4 percent slopes

#### **Map Unit Setting**

National map unit symbol: 4z1h Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 45 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Mannixlee and similar soils: 35 percent Clunton and similar soils: 30 percent Meadowcreek and similar soils: 15 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Mannixlee**

## Setting

Landform: Flood-plain steps, stream terraces

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from igneous, metamorphic and sedimentary

rock

## **Typical profile**

Oi - 0 to 2 inches: peat
A1 - 2 to 9 inches: loam
A2 - 9 to 25 inches: clay loam
Bw1 - 25 to 45 inches: silt loam
Bw2 - 45 to 52 inches: sandy loam

2Cg - 52 to 59 inches: extremely gravelly loamy coarse sand

#### **Properties and qualities**

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.21

to 0.71 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: NoneRare Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 9.9 inches)

#### Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C/D

Ecological site: R043BP801MT - Bottomland Group

Other vegetative classification: black cottonwood/redosier dogwood c.t. (HP202),

yellow willow c.t. (HP315)

Hydric soil rating: Yes

## **Description of Clunton**

#### Setting

Landform: Flood-plain steps, flood plains

Down-slope shape: Linear

Across-slope shape: Linear, concave

Parent material: Alluvium

#### Typical profile

Oa - 0 to 4 inches: muck Ag - 4 to 18 inches: loam

Cg1 - 18 to 30 inches: clay loam

Cg2 - 30 to 36 inches: silty clay loam
Cg3 - 36 to 42 inches: sandy loam

2Cg4 - 42 to 50 inches: gravelly sandy loam 2Cg5 - 50 to 57 inches: gravelly loamy sand

2Cg6 - 57 to 64 inches: silt loam

## **Properties and qualities**

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.21

to 0.71 in/hr)

Depth to water table: About 0 to 12 inches Frequency of flooding: NoneFrequent

Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 10.6 inches)

## Interpretive groups

Land capability classification (irrigated): 5w Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: C/D

Ecological site: R043BP801MT - Bottomland Group

Other vegetative classification: quaking aspen/Kentucky bluegrass c.t. (HP218)

Hydric soil rating: Yes

#### **Description of Meadowcreek**

#### Setting

Landform: Stream terraces
Down-slope shape: Linear
Across-slope shape: Concave

Parent material: Alluvium derived from sedimentary rock

#### Typical profile

A1 - 0 to 10 inches: loam
A2 - 10 to 15 inches: silt loam
Bg - 15 to 31 inches: loam

2C - 31 to 59 inches: very gravelly sand

# Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.71 to 2.13 in/hr)

Depth to water table: About 24 to 39 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 6.7 inches)

#### Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C

Ecological site: R043BP801MT - Bottomland Group

Hydric soil rating: No

## **Minor Components**

#### Lamoose

Percent of map unit: 10 percent Landform: Stream terraces Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R044BY080MT - Riparian Meadow (RM) LRU 01 Subset Y

Hydric soil rating: No

#### Water

Percent of map unit: 5 percent Hydric soil rating: Unranked

#### Enbar

Percent of map unit: 5 percent

Landform: Fan remnants, stream terraces

Down-slope shape: Linear Across-slope shape: Linear

Other vegetative classification: quaking aspen/Kentucky bluegrass c.t. (HP218)

Hydric soil rating: No

# 541C—Fairfield-Kiev complex, 2 to 8 percent slopes

## **Map Unit Setting**

National map unit symbol: 1ncbq Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Farmland of statewide importance

## **Map Unit Composition**

Fairfield and similar soils: 60 percent Kiev and similar soils: 40 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Fairfield**

#### Setting

Landform: Fan remnants
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

#### Typical profile

A - 0 to 6 inches: gravelly loam

Bt - 6 to 10 inches: gravelly clay loam
Bk - 10 to 59 inches: gravelly clay loam

#### **Properties and qualities**

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

## Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

Hydric soil rating: No

## **Description of Kiev**

#### Setting

Landform: Fan remnants
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

#### Typical profile

A - 0 to 7 inches: loam

Bk1 - 7 to 38 inches: gravelly loam Bk2 - 38 to 59 inches: gravelly loam

#### **Properties and qualities**

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.2 inches)

## Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

# 548D—Shawmut gravelly loam, 8 to 15 percent slopes

# **Map Unit Setting**

National map unit symbol: 4z1p Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

## **Map Unit Composition**

Shawmut and similar soils: 90 percent *Minor components:* 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Shawmut**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

#### Typical profile

A - 0 to 3 inches: gravelly loam

Bt - 3 to 9 inches: gravelly clay loam

Bk1 - 9 to 24 inches: very gravelly loam

Bk2 - 24 to 59 inches: extremely gravelly loam

#### **Properties and qualities**

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 5.1 inches)

# Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R044BP818MT - Upland Grassland

#### **Minor Components**

#### Reedwest

Percent of map unit: 10 percent

Landform: Valley floors Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R044BC032MT - Loamy (Lo) LRU 01 Subset C

Hydric soil rating: No

# 563A—Binna-Utica complex, cool, 0 to 2 percent slopes

#### **Map Unit Setting**

National map unit symbol: 4z1v Elevation: 4,500 to 6,000 feet

Mean annual precipitation: 10 to 19 inches
Mean annual air temperature: 39 to 43 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Binna, cool, and similar soils: 75 percent Utica, cool, and similar soils: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Binna, Cool**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from limestone

#### Typical profile

A - 0 to 9 inches: loam

Bk - 9 to 29 inches: gravelly loam

2C - 29 to 59 inches: very gravelly loamy sand

## **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 5.4 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R044BA030MT - Limy (Ly) LRU 01 Subset A

Hydric soil rating: No

## **Description of Utica, Cool**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from limestone

## Typical profile

A - 0 to 6 inches: gravelly loam

Bk - 6 to 19 inches: very gravelly sandy loam 2C - 19 to 72 inches: very gravelly loamy sand

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 60 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.2 inches)

#### Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: B

Ecological site: R044BA134MT - Shallow to Gravel (SwGr) LRU 01 Subset A

Hydric soil rating: No

## 658E—Reedwest-Bacbuster-Cabba complex, 8 to 35 percent slopes

#### Map Unit Setting

National map unit symbol: 4z28 Elevation: 4,800 to 6,300 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Reedwest and similar soils: 40 percent Bacbuster and similar soils: 35 percent Cabba and similar soils: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Reedwest**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from sedimentary rock

# **Typical profile**

A - 0 to 8 inches: loam Bt - 8 to 17 inches: loam Bk - 17 to 36 inches: loam Cr - 36 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 8 to 35 percent

Depth to restrictive feature: 20 to 39 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.00 to 0.28 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 20 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 6.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

Hydric soil rating: No

#### **Description of Bacbuster**

## Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from sedimentary rock

# **Typical profile**

A - 0 to 10 inches: clay loam

Btk - 10 to 39 inches: silty clay

Cr - 39 to 59 inches: bedrock

#### Properties and qualities

Slope: 8 to 35 percent

Depth to restrictive feature: 20 to 39 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

Hydric soil rating: No

# **Description of Cabba**

#### Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from sedimentary rock

## Typical profile

A - 0 to 3 inches: loam

Bk - 3 to 12 inches: clay loam

Cr - 12 to 59 inches: bedrock

## **Properties and qualities**

Slope: 8 to 35 percent

Depth to restrictive feature: 10 to 20 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Available water supply, 0 to 60 inches: Very low (about 1.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R044BB136MT - Shallow Loamy (SwLo) LRU 01 Subset B

# 670F—Castner-Crampton complex, 25 to 60 percent slopes

#### **Map Unit Setting**

National map unit symbol: 1hfhw Elevation: 5,200 to 5,800 feet

Mean annual precipitation: 15 to 19 inches
Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

# **Map Unit Composition**

Castner and similar soils: 55 percent Crampton and similar soils: 30 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Castner**

## Setting

Landform: Hillslopes
Down-slope shape: Linear
Across-slope shape: Convex

Parent material: Colluvium over residuum weathered from siltstone

#### Typical profile

A - 0 to 5 inches: channery loam
Bw - 5 to 8 inches: very channery loam
Bk - 8 to 15 inches: very channery loam

R - 15 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 25 to 60 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Available water supply, 0 to 60 inches: Very low (about 1.7 inches)

# Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: F043BP904MT - Shallow Warm Woodland Group

#### **Description of Crampton**

#### Setting

Landform: Hillslopes
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from siltstone

#### **Typical profile**

A1 - 0 to 2 inches: loam

A2 - 2 to 5 inches: channery loam
Bt1 - 5 to 9 inches: channery loam
Bt2 - 9 to 13 inches: very channery loam
Bt3 - 13 to 28 inches: very channery clay loam

Cr - 28 to 59 inches: bedrock

#### **Properties and qualities**

Slope: 25 to 60 percent

Depth to restrictive feature: 20 to 39 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.00 to 0.28 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.3 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group

Other vegetative classification: Douglas-fir/bluebunch wheatgrass (PK210)

Hydric soil rating: No

#### **Minor Components**

#### **Rock outcrop**

Percent of map unit: 8 percent Hydric soil rating: Unranked

#### **Vigilante**

Percent of map unit: 7 percent

Landform: Hillslopes
Down-slope shape: Convex
Across-slope shape: Convex

Other vegetative classification: Douglas-fir/Idaho fescue (PK220), Douglas-fir/

bluebunch wheatgrass (PK210)

# 704A—Villsprings silt loam, 0 to 2 percent slopes

## Map Unit Setting

National map unit symbol: 4z2c Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

## **Map Unit Composition**

Villsprings and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

# **Description of Villsprings**

#### Setting

Landform: Alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

#### **Typical profile**

Oi - 0 to 4 inches: slightly decomposed plant material

Ag - 4 to 9 inches: silt loam

Bkg1 - 9 to 19 inches: silty clay loam

Bkg2 - 19 to 32 inches: loam

2Bkg3 - 32 to 36 inches: very gravelly loam 3C - 36 to 59 inches: very gravelly sand

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: NoneRare Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.1 inches)

# Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C/D

Ecological site: R044BP815MT - Subirrigated Grassland

Hydric soil rating: Yes

## **Minor Components**

#### **Fairsmith**

Percent of map unit: 10 percent Landform: Flood-plain steps Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R044BP817MT - Subirrigated Shrubland

Hydric soil rating: No

# 748C—Shawmut stony loam, 4 to 8 percent slopes

## **Map Unit Setting**

National map unit symbol: 2kvnq Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches
Mean annual air temperature: 39 to 43 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

# **Map Unit Composition**

Shawmut and similar soils: 90 percent *Minor components*: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Shawmut**

## Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

#### Typical profile

A - 0 to 3 inches: stony loam

Bt - 3 to 9 inches: gravelly clay loam
Bk1 - 9 to 24 inches: very gravelly loam
Bk2 - 24 to 59 inches: very gravelly loam

#### **Properties and qualities**

Slope: 4 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 30 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

## Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R046XN255MT - Stony (St) RRU 46-N 13-19 PZ

Hydric soil rating: No

## **Minor Components**

#### Meagher

Percent of map unit: 10 percent

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Ecological site: R044BB032MT - Loamy (Lo) LRU 01 Subset B

Hydric soil rating: No

# 954C—Meagher cobbly loam, 2 to 8 percent slopes, stony

## Map Unit Setting

National map unit symbol: 4z2y Elevation: 5,000 to 6,000 feet

Mean annual precipitation: 15 to 19 inches
Mean annual air temperature: 39 to 42 degrees F

Frost-free period: 70 to 90 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Meagher, stony, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Meagher, Stony**

## Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

#### Typical profile

A - 0 to 7 inches: cobbly loam

Bt - 7 to 14 inches: gravelly clay loam

Bk - 14 to 59 inches: very gravelly clay loam

# Properties and qualities

Slope: 2 to 8 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 35 percent

Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.0 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

Hydric soil rating: No

## **Minor Components**

#### Martinsdale

Percent of map unit: 10 percent

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear

Ecological site: R044BC032MT - Loamy (Lo) LRU 01 Subset C

Hydric soil rating: No

#### **Shawmut**

Percent of map unit: 5 percent Landform: Valley floors Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R044BP819MT - Upland Sagebrush Shrubland

Hydric soil rating: No

# 1164G—Cowcoulee, stony-Ettienridge families, complex, 35 to 70 percent slopes

#### Map Unit Setting

National map unit symbol: 2lbbd Elevation: 5,250 to 7,300 feet

Mean annual precipitation: 18 to 24 inches Mean annual air temperature: 34 to 37 degrees F

Frost-free period: 40 to 60 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Cowcoulee, stony, and similar soils: 45 percent

Ettienridge and similar soils: 35 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Cowcoulee, Stony**

#### Setting

Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from limestone

#### Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 6 inches: silt loam

Bt - 6 to 11 inches: gravelly silty clay loam
Btk - 11 to 23 inches: very gravelly clay loam
Bk - 23 to 33 inches: very gravelly loam

R - 33 to 59 inches: bedrock

## **Properties and qualities**

Slope: 35 to 70 percent

Surface area covered with cobbles, stones or boulders: 0.1 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 25 percent

Available water supply, 0 to 60 inches: Low (about 4.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group

Other vegetative classification: Douglas-fir/ninebark-pinegrass phase (PK262), Douglas-fir/snowberry-snowberry phase (PK313), Douglas-fir/heartleaf arnica

(PK370)

Hydric soil rating: No

#### **Description of Ettienridge**

#### Setting

Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium over residuum weathered from limestone

#### Typical profile

Oi - 0 to 3 inches: slightly decomposed plant material

A - 3 to 8 inches: gravelly loam

Bk1 - 8 to 17 inches: very gravelly loam Bk2 - 17 to 29 inches: very gravelly loam

R - 29 to 59 inches: bedrock

#### Properties and qualities

Slope: 35 to 70 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 60 percent

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: F043BP910MT - Upland Cool Woodland Group

Other vegetative classification: Douglas-fir/snowberry-snowberry phase (PK313), Douglas-fir/twinflower-snowberry phase (PK291), Douglas-fir/common juniper

(PK360)

Hydric soil rating: No

#### **Minor Components**

#### Checkerboard, very stony

Percent of map unit: 10 percent Landform: Mountain slopes Down-slope shape: Convex Across-slope shape: Linear

Other vegetative classification: Douglas-fir/common juniper (PK360), Douglas-fir/

kinnikinnick (PK350) Hydric soil rating: No

#### Rock outcrop

Percent of map unit: 5 percent

Hydric soil rating: No

#### Levengood

Percent of map unit: 5 percent Landform: Mountain slopes Down-slope shape: Concave Across-slope shape: Linear

Other vegetative classification: Douglas-fir/ninebark-pinegrass phase (PK262), Douglas-fir/twinflower-snowberry phase (PK291), Douglas-fir/bluebunch

wheatgrass (PK210) Hydric soil rating: No

# M-W—Sewage Lagoon

# **Map Unit Composition**

Water, miscellaneous: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

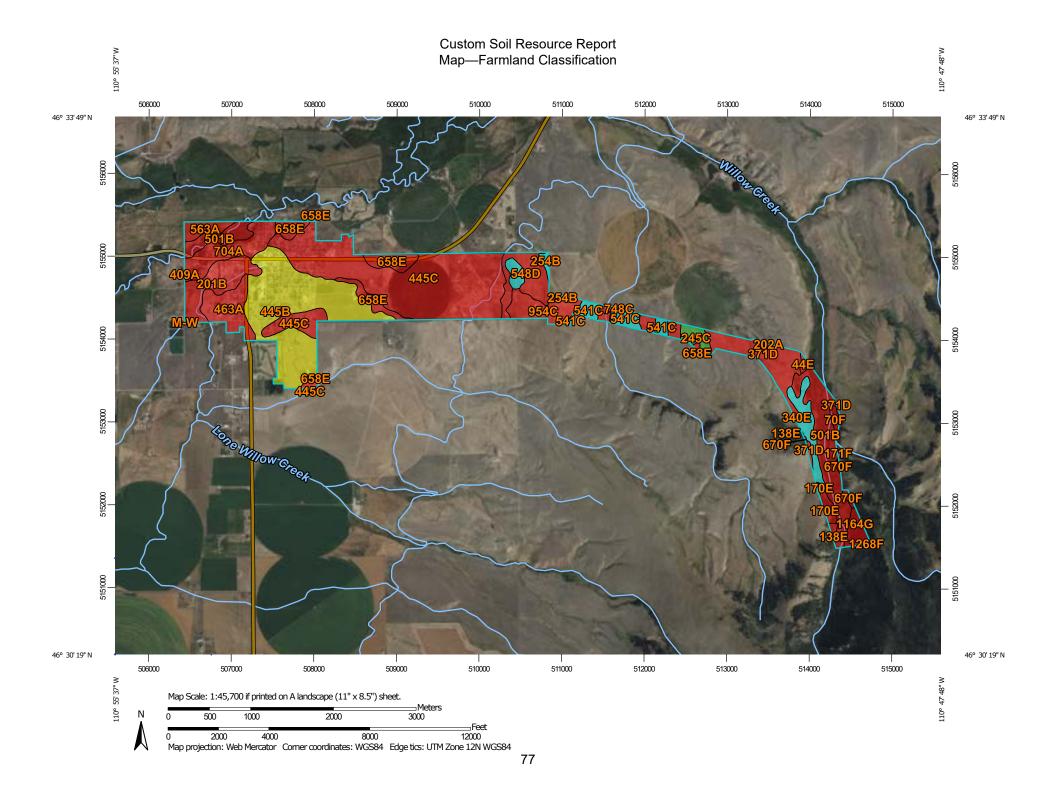
# **Description of Water, Miscellaneous**

# Interpretive groups

Land capability classification (irrigated): 8 Hydric soil rating: Unranked

# Soil Information for All Uses

# Suitabilities and Limitations for Use


The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.

# Land Classifications

Land Classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

## **Farmland Classification**

Farmland classification identifies map units as prime farmland, farmland of statewide importance, farmland of local importance, or unique farmland. It identifies the location and extent of the soils that are best suited to food, feed, fiber, forage, and oilseed crops. NRCS policy and procedures on prime and unique farmlands are published in the "Federal Register," Vol. 43, No. 21, January 31, 1978.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAP LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area of Interest (AOI)  Area of Interest (AOI)  Soils  Soil Rating Polygons  Not prime farmland  All areas are prime farmland  Prime farmland if drained  Prime farmland if protected from flooding or not frequently flooded during the growing season  Prime farmland if irrigated  Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season  Prime farmland if irrigated and drained  Prime farmland if irrigated and drained  Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season | Prime farmland if subsoiled, completely removing the root inhibiting soil layer  Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60  Prime farmland if irrigated and reclaimed of excess salts and sodium  Farmland of statewide importance  Farmland of statewide importance, if drained  Farmland of statewide importance, if protected from flooding or not frequently flooded during the growing season  Farmland of statewide importance, if irrigated | Farmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing season  Farmland of statewide importance, if irrigated and drained  Farmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the growing season  Farmland of statewide importance, if subsoiled, completely removing the root inhibiting soil layer  Farmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60 | Farmland of statewide importance, if irrigated and reclaimed of excess salts and sodium  Farmland of statewide importance, if drained or either protected from flooding or not frequently flooded during the growing season  Farmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing season  Farmland of statewide importance, if warm enough Farmland of statewide importance, if warm enough Farmland of statewide importance, if thawed  Farmland of local importance, if irrigated | Farmland of unique importance  Not rated or not available  Soil Rating Lines  Not prime farmland  All areas are prime farmland  Prime farmland if drained  Prime farmland if protected from flooding or not frequently floode during the growing season  Prime farmland if irrigated  Prime farmland if drained and either protected from flooding or not frequently floode during the growing season  Prime farmland if irrigated and drained  Prime farmland if irrigated and drained  Prime farmland if irrigated and either protected from flooding or not frequently floode during the growing season |

| , and | Prime farmland if<br>subsoiled, completely<br>removing the root<br>inhibiting soil layer                                | ~~   | Farmland of statewide importance, if drained and either protected from flooding or not frequently        | ~~  | Farmland of statewide importance, if irrigated and reclaimed of excess salts and sodium                                         | ***      | Farmland of unique importance Not rated or not available                                                                       | Prime farmland if<br>subsoiled, completely<br>removing the root<br>inhibiting soil layer                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| ~     | Prime farmland if irrigated<br>and the product of I (soil<br>erodibility) x C (climate<br>factor) does not exceed<br>60 | ~    | flooded during the<br>growing season<br>Farmland of statewide<br>importance, if irrigated<br>and drained | *** | Farmland of statewide<br>importance, if drained or<br>either protected from<br>flooding or not frequently<br>flooded during the | Soil Rat | ing Points  Not prime farmland  All areas are prime farmland                                                                   | Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60                  |
| ,~~   | Prime farmland if irrigated and reclaimed of excess salts and sodium                                                    | ~    | Farmland of statewide importance, if irrigated and either protected from flooding or not frequently      | ~   | growing season Farmland of statewide importance, if warm enough, and either                                                     |          | Prime farmland if drained  Prime farmland if protected from flooding or                                                        | Prime farmland if irrigated and reclaimed of excess salts and sodium                                                         |
| ~     | Farmland of statewide importance Farmland of statewide                                                                  |      | flooded during the growing season                                                                        |     | drained or either protected from flooding or                                                                                    |          | not frequently flooded during the growing season                                                                               | Farmland of statewide importance                                                                                             |
| ~     | importance, if drained Farmland of statewide                                                                            | 30.0 | Farmland of statewide<br>importance, if subsoiled,<br>completely removing the                            |     | not frequently flooded<br>during the growing<br>season                                                                          |          | Prime farmland if irrigated                                                                                                    | Farmland of statewide importance, if drained                                                                                 |
|       | importance, if protected<br>from flooding or not<br>frequently flooded during<br>the growing season                     | ~    | root inhibiting soil layer Farmland of statewide importance, if irrigated and the product of I (soil     | ~   | Farmland of statewide<br>importance, if warm<br>enough<br>Farmland of statewide                                                 |          | Prime farmland if drained<br>and either protected from<br>flooding or not frequently<br>flooded during the                     | Farmland of statewide<br>importance, if protected<br>from flooding or not<br>frequently flooded during<br>the growing season |
| ,***  | Farmland of statewide importance, if irrigated                                                                          |      | erodibility) x C (climate factor) does not exceed 60                                                     | ~   | importance, if thawed Farmland of local importance                                                                              |          | growing season Prime farmland if irrigated and drained                                                                         | Farmland of statewide importance, if irrigated                                                                               |
|       |                                                                                                                         |      |                                                                                                          | ~   | Farmland of local importance, if irrigated                                                                                      |          | Prime farmland if irrigated<br>and either protected from<br>flooding or not frequently<br>flooded during the<br>growing season |                                                                                                                              |
|       |                                                                                                                         |      |                                                                                                          |     |                                                                                                                                 |          |                                                                                                                                |                                                                                                                              |
|       |                                                                                                                         |      |                                                                                                          |     |                                                                                                                                 |          |                                                                                                                                |                                                                                                                              |
|       |                                                                                                                         |      |                                                                                                          |     |                                                                                                                                 |          |                                                                                                                                |                                                                                                                              |
|       |                                                                                                                         |      |                                                                                                          |     |                                                                                                                                 |          |                                                                                                                                |                                                                                                                              |
|       |                                                                                                                         |      |                                                                                                          |     |                                                                                                                                 |          |                                                                                                                                |                                                                                                                              |

- Farmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing season

  Farmland of statewide importance, if irrigated and drained

  Farmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the
  - growing season

    Farmland of statewide importance, if subsoiled, completely removing the root inhibiting soil layer
  - Farmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60

- Farmland of statewide importance, if irrigated and reclaimed of excess salts and sodium
- Farmland of statewide importance, if drained or either protected from flooding or not frequently flooded during the growing season
- Farmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing season
- Farmland of statewide importance, if warm enough
- Farmland of statewide importance, if thawed
- Farmland of local importance
- Farmland of local importance, if irrigated

- Farmland of unique importance
- Not rated or not available

#### Water Features

Streams and Canals

#### Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

#### Background

2

Aerial Photography

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lewis and Clark National Forest Area,

Montana

Survey Area Data: Version 15, Aug 26, 2022

Soil Survey Area: Meagher County Area, Montana Survey Area Data: Version 22, Aug 30, 2022

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 9, 2022—Aug 19, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# **Table—Farmland Classification**

| Map unit symbol          | Map unit name                                                                                                      | Rating             | Acres in AOI | Percent of AOI |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------|--------------|----------------|
| 138E                     | Surdal-Poin complex, 10<br>to 35 percent slopes,<br>stony                                                          | Not prime farmland | 3.4          | 0.2%           |
| 501B                     | Mannixlee, rarely flooded-Clunton, frequently flooded-Meadowcreek complex, 0 to 4 percent slopes                   | Not prime farmland | 9.1          | 0.6%           |
| 1164G                    | Cowcoulee, stony-<br>Ettienridge families,<br>complex, 35 to 70<br>percent slopes                                  | Not prime farmland | 16.3         | 1.0%           |
| 1168E                    | Lake Creek, very stony-<br>Elve, extremely stony-<br>Comad, rubbly<br>families, complex, 8 to<br>35 percent slopes | Not prime farmland | 0.1          | 0.0%           |
| 1268F                    | Tigeron, rubbly-Targhee,<br>very bouldery-Como,<br>very stony families,<br>complex, 35 to 60<br>percent slopes     | Not prime farmland | 0.2          | 0.0%           |
| Subtotals for Soil Surv  | rey Area                                                                                                           | 29.1               | 1.8%         |                |
| Totals for Area of Inter | est                                                                                                                | 1,591.6            | 100.0%       |                |

| Map unit symbol | Map unit name                                                       | Rating                       | Acres in AOI | Percent of AOI |
|-----------------|---------------------------------------------------------------------|------------------------------|--------------|----------------|
| 44E             | Tolbert channery loam, 8 to 35 percent slopes                       | Not prime farmland           | 3.6          | 0.2%           |
| 70F             | Vershal-Castner-Rock<br>outcrop complex, 25 to<br>60 percent slopes | Not prime farmland           | 6.6          | 0.4%           |
| 138E            | Bairspring-Poin complex,<br>10 to 35 percent<br>slopes, stony       | Not prime farmland           | 11.5         | 0.7%           |
| 170E            | Cheadle-Copenhaver-<br>Sebud complex, 15 to<br>35 percent slopes    | Not prime farmland           | 1.7          | 0.1%           |
| 171F            | Bairspring-Woodhall-<br>Poin complex, 20 to 60<br>percent slopes    | Not prime farmland           | 0.1          | 0.0%           |
| 201B            | Bigsandy loam, 0 to 4 percent slopes                                | Not prime farmland           | 77.3         | 4.9%           |
| 202A            | Fairberg-Villmeagher complex, 0 to 2 percent slopes                 | Not prime farmland           | 0.0          | 0.0%           |
| 245C            | Reedwest gravelly loam,<br>2 to 8 percent slopes                    | All areas are prime farmland | 19.4         | 1.2%           |

| Map unit symbol                                        | Map unit name                                                                                 | Rating                           | Acres in AOI | Percent of AOI |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|--------------|----------------|
| 254B                                                   | Meagher gravelly loam, 1 to 4 percent slopes                                                  | Farmland of statewide importance | 21.5         | 1.4%           |
| 274C                                                   | Perma gravelly loam, 2 to 8 percent slopes                                                    | Farmland of statewide importance | 41.4         | 2.6%           |
| 340E                                                   | Duckcreek-Houlihan-<br>Nieman, stony<br>complex, 15 to 45<br>percent slopes                   | Not prime farmland               | 0.8          | 0.1%           |
| 371D                                                   | Sixteenmile-Krakon-<br>Breeton complex, 4 to<br>15 percent slopes                             | Not prime farmland               | 88.7         | 5.6%           |
| 409A                                                   | Meadowcreek loam, 0 to 2 percent slopes                                                       | Prime farmland if irrigated      | 0.1          | 0.0%           |
| 445B                                                   | Fairfield gravelly loam, 1 to 4 percent slopes                                                | Prime farmland if irrigated      | 297.5        | 18.7%          |
| 445C                                                   | Reedwest-Roundor-<br>Cabba complex, 2 to 8<br>percent slopes                                  | Not prime farmland               | 438.4        | 27.5%          |
| 463A                                                   | Utica-Binna complex,<br>cool, 0 to 2 percent<br>slopes                                        | Not prime farmland               | 63.9         | 4.0%           |
| 501B                                                   | Mannixlee-Clunton,<br>frequently flooded-<br>Meadowcreek<br>complex, 0 to 4<br>percent slopes | Not prime farmland               | 141.6        | 8.9%           |
| 541C                                                   | Fairfield-Kiev complex, 2 to 8 percent slopes                                                 | Farmland of statewide importance | 37.6         | 2.4%           |
| 548D                                                   | Shawmut gravelly loam,<br>8 to 15 percent slopes                                              | Not prime farmland               | 59.8         | 3.8%           |
| 563A                                                   | Binna-Utica complex,<br>cool, 0 to 2 percent<br>slopes                                        | Not prime farmland               | 22.6         | 1.4%           |
| 658E                                                   | Reedwest-Bacbuster-<br>Cabba complex, 8 to<br>35 percent slopes                               | Not prime farmland               | 80.2         | 5.0%           |
| 670F                                                   | Castner-Crampton<br>complex, 25 to 60<br>percent slopes                                       | Not prime farmland               | 5.7          | 0.4%           |
| 704A                                                   | Villsprings silt loam, 0 to 2 percent slopes                                                  | Not prime farmland               | 75.4         | 4.7%           |
| 748C                                                   | Shawmut stony loam, 4 to 8 percent slopes                                                     | Not prime farmland               | 6.5          | 0.4%           |
| 954C Meagher cobbly loam, 2 to 8 percent slopes, stony |                                                                                               | Not prime farmland               | 55.8         | 3.5%           |
| 1164G                                                  | Cowcoulee, stony-<br>Ettienridge families,<br>complex, 35 to 70<br>percent slopes             | Not prime farmland               | 4.7          | 0.3%           |
| M-W                                                    | Sewage Lagoon                                                                                 | Not prime farmland               | 0.0          | 0.0%           |
| Subtotals for Soil Surv                                | rey Area                                                                                      |                                  | 1,562.4      | 98.2%          |

| Map unit symbol            | Map unit name | Rating | Acres in AOI | Percent of AOI |  |  |  |
|----------------------------|---------------|--------|--------------|----------------|--|--|--|
| Totals for Area of Interes | st            |        | 1,591.6      | 100.0%         |  |  |  |

# Rating Options—Farmland Classification

Aggregation Method: No Aggregation Necessary

Tie-break Rule: Lower

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053624

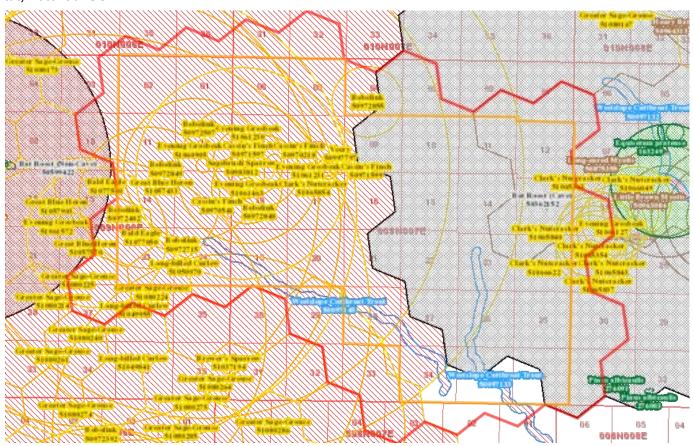
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

# **Appendix E**

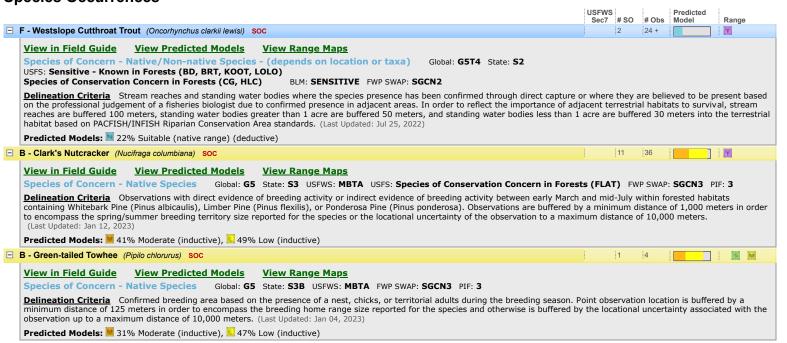
**Biological Resource Data** 



Legend Model Icons Habitat Icons Num Obs Range Icons Count of obs with Suitable (native range) Common Native / Year-round 'good precision' (<=1000m) Optimal Suitability Summer Winter Moderate Suitability + indicates Low Suitability Migratory additional 'poor precision obs (1001m-III Suitable (introduced range) Non-native Historical 10,000m)




# **Native Species**


Summarized by: 23prvt0217 (Custom Area of Interest)

Filtered by:

Native Species reports are filtered for Species with MT Status = Species of Concern, Special Status, Important Animal Habitat, Potential SOC



## **Species Occurrences**





□ M - Long-eared Myotis (Myotis evotis) SOC

<u>View in Field Guide</u> <u>View Predicted Models</u> <u>View Range Maps</u>

Species of Concern - Native Species Global: G5 State: S3

Delineation Criteria Confirmed area of occupancy based on the documented presence (mistnet captures, definitively identified acoustic recordings, and definitively identified roosting individuals) of adults or juveniles. Point observation location is buffered by a minimum distance of 1,000 meters in order to encompass the average distances traveled from capture locations to roosts and between roosts in western Montana, Alberta, and Oregon and otherwise buffered by the locational uncertainty associated with the observation up to a maximum distance of 10,000 meters. When cave locations are involved, point observations are mapped in the center of a one-square mile hexagon to protect the exact location of the cave entrance as per the Federal Cave Resource Protection Act and associated regulations (U.S. Code Title 16 Chapter 63, Code of Federal Regulations Title 43 Subtitle A Part 37). The outer edges of the hexagon are then buffered by a distance of 1,000 meters and otherwise by the locational uncertainty associated with the observation up to a maximum distance of 10,000 meters. All of the one-square mile hexagons intersecting this buffered area are presented as the Species Occurrence record. (Last Updated: Jul 20, 2022)

**Predicted Models:** 96% Low (inductive)

□ O - Bat Roost (Cave) (Bat Roost (Cave)) IAH

View in Field Guide

Important Animal Habitat - Native Species Global: GNR State: SNR

Delineation Criteria Confirmed occupancy of a cave based on the documented presence of adults or juveniles of any bat species. Point observation locations are mapped in the center of a one-square mile hexagon to protect the exact location of the cave entrance as per the Federal Cave Resource Protection Act and associated regulations (U.S. Code Title 16 Chapter 63, Code of Federal Regulations Title 43 Subtitle A Part 37). The outer edges of the hexagon are then buffered by a distance of 4,500 meters in order to encompass the 95% confidence interval for nightly foraging distance reported for Townsend's Big-eared Bat (a resident Montana bat Species of Concern) and otherwise by the locational uncertainty associated with the observation up to a maximum distance of 10,000 meters. All of the one-square mile hexagons intersecting this buffered area are presented as the Species Occurrence record. (Last Updated: Sep 05, 2017)

□ O - Bat Roost (Non-Cave) (Bat Roost (Non-Cave)) IAH

View in Field Guide

Important Animal Habitat - Native Species Global: GNR State: SNR

Delineation Criteria Confirmed area of occupancy based on the documented presence of adults or juveniles of any bat species at non-cave natural roost sites (e.g. rock outcrops, trees), below ground human created roost sites (e.g., bridges, buildings). Point observation locations are buffered by a distance of 4,500 meters in order to encompass the 95% confidence interval for nightly foraging distance reported for TownsendâC™S Big-eared Bat (a resident Montana bat Species of Concern) and otherwise by the locational uncertainty associated with the observation up to a maximum distance of 10,000 meters. (Last Updated: Oct 22, 2019)







# **Native Species**

Summarized by: 23prvt0217 (Custom Area of Interest)

Filtered by:

Native Species reports are filtered for Species with MT Status = Species of Concern, Special Status, Important Animal Habitat, Potential SOC

## Other Observed Species



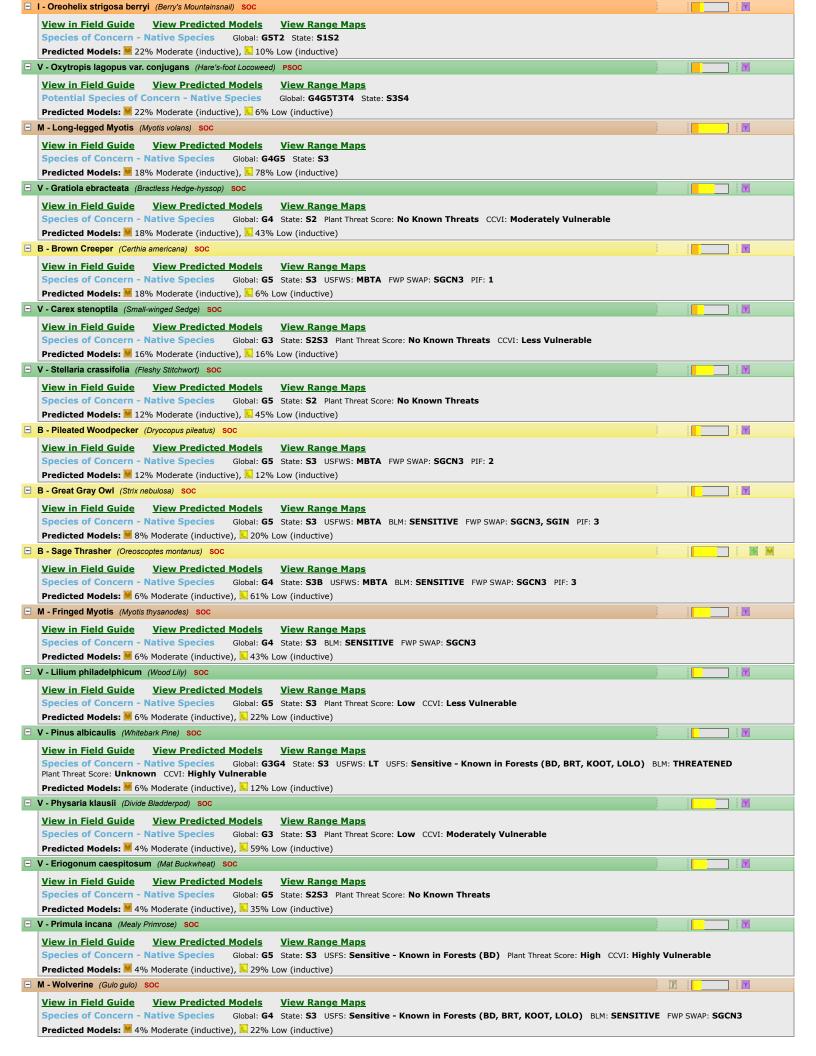




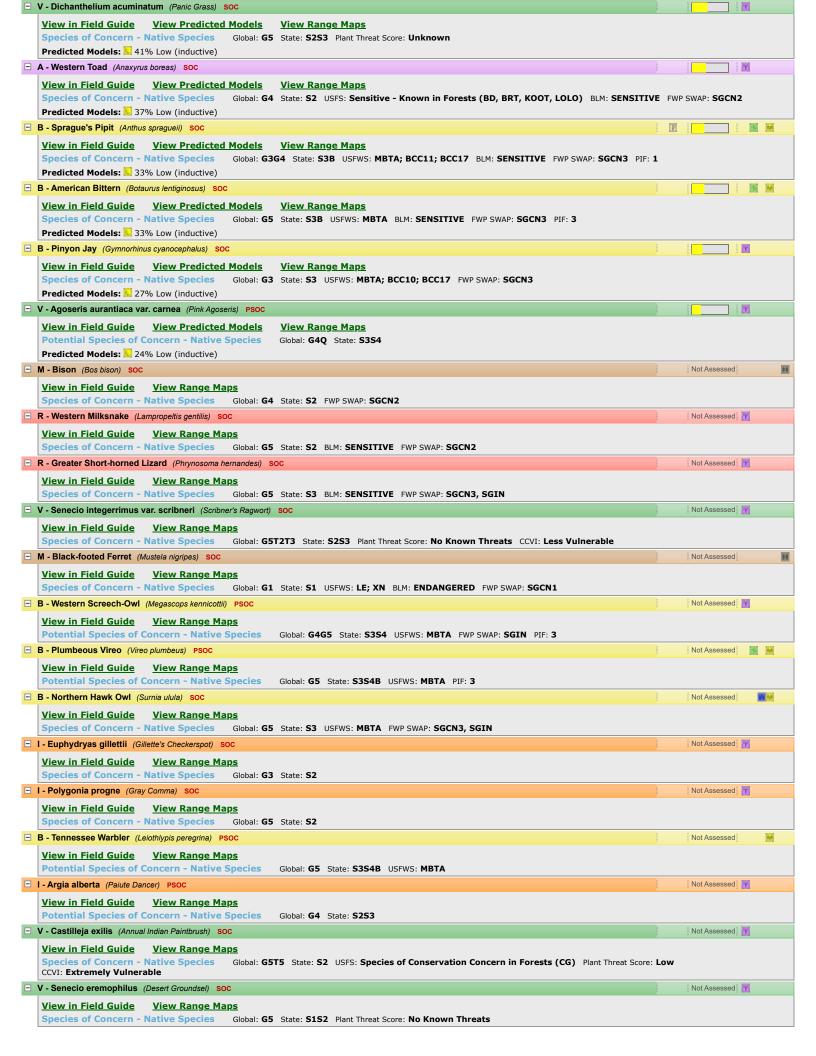




# **Native Species**


Summarized by: 23prvt0217 (Custom Area of Interest)

Filtered by:


Native Species reports are filtered for Species with MT Status = Species of Concern, Special Status, Important Animal Habitat, Potential SOC

# **Other Potential Species**









| B - Alder Flycatcher (Empio                       | onax alnorum) SOC                          |                    |                                                                                  | Not Assessed                            |     |
|---------------------------------------------------|--------------------------------------------|--------------------|----------------------------------------------------------------------------------|-----------------------------------------|-----|
| View in Field Guide                               | View Range Maps                            | Civil COR          | HOTA THE COMP                                                                    |                                         |     |
| Species of Concern - N  B - Hooded Merganser (Log |                                            | State: S3B         | USFWS: MBTA FWP SWAP: SGCN3                                                      | Not Assessed                            | -   |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
|                                                   |                                            | Global: <b>G5</b>  | State: S4 USFWS: MBTA FWP SWAP: SGIN PIF: 2                                      |                                         |     |
| B - Trumpeter Swan (Cygnu                         | s buccinator) SOC                          |                    |                                                                                  | Not Assessed                            | W   |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
| Species of Concern - N                            |                                            | State: <b>S3</b> U | SFWS: MBTA USFS: Sensitive - Known in Forests (BD) BLM: SENSITIVE FWP SW/        |                                         |     |
| I - Argia emma (Emma's Dan                        |                                            |                    |                                                                                  | Not Assessed 🔐                          |     |
| View in Field Guide Potential Species of Co       | View Range Maps<br>oncern - Native Species | Global: <b>G5</b>  | State: <b>5355</b>                                                               |                                         |     |
| I - Argia vivida (Vivid Dancer                    |                                            | Global. G5         | Julie . 5555                                                                     | Not Assessed                            |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
| <del></del>                                       |                                            | Global: <b>G5</b>  | State: <b>S3S5</b>                                                               |                                         |     |
| I - Colias gigantea (Giant Su                     | Ilphur) PSOC                               |                    |                                                                                  | Not Assessed                            |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
|                                                   |                                            | Global: <b>G5</b>  | State: S3                                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |     |
| I - Somatochlora minor (Od                        |                                            |                    |                                                                                  | Not Assessed 1                          |     |
| View in Field Guide Potential Species of Co       | View Range Maps<br>oncern - Native Species | Global: <b>G5</b>  | State: <b>S2S4</b>                                                               |                                         |     |
| I - Aeshna juncea (Sedge Da                       |                                            |                    |                                                                                  | Not Assessed                            |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
|                                                   |                                            | Global: <b>G5</b>  | State: <b>S3S5</b>                                                               |                                         |     |
| I - Enallagma clausum (Alka                       | ali Bluet) PSOC                            |                    |                                                                                  | Not Assessed 1                          |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
|                                                   |                                            | Global: <b>G5</b>  | State: <b>5254</b>                                                               | i Not Access di                         |     |
| I - Leucorrhinia borealis (B                      |                                            |                    |                                                                                  | Not Assessed 1                          |     |
| View in Field Guide Species of Concern - N        | View Range Maps Native Species Global: G5  | State: S1          |                                                                                  |                                         |     |
| I - Rhionaeschna californic                       |                                            |                    |                                                                                  | Not Assessed                            |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
| <b>Potential Species of Co</b>                    | oncern - Native Species                    | Global: <b>G5</b>  | State: <b>S3S5</b>                                                               |                                         |     |
| I - Sympetrum madidum (R                          | Red-veined Meadowhawk) PSOC                |                    |                                                                                  | Not Assessed 🚻                          |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
|                                                   |                                            | Global: <b>G5</b>  | State: \$2\$3                                                                    | ! NI-A Adi                              | 100 |
| B - Black-and-white Warble                        | ,                                          |                    |                                                                                  | Not Assessed                            | M   |
| View in Field Guide Potential Species of Co       | View Range Maps<br>oncern - Native Species | Global: <b>G5</b>  | State: S4B USFWS: MBTA                                                           |                                         |     |
| I - Aeshna constricta (Lance                      |                                            |                    |                                                                                  | Not Assessed                            |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
| <b>Potential Species of Co</b>                    | oncern - Native Species                    | Global: <b>G5</b>  | State: S1S3                                                                      |                                         |     |
| I - Aeshna eremita (Lake Da                       | rner) PSOC                                 |                    |                                                                                  | Not Assessed                            | ×   |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
|                                                   |                                            | Global: <b>G5</b>  | State: S3S4                                                                      | Not Access to                           |     |
| I - Rhionaeschna multicolo                        |                                            |                    |                                                                                  | Not Assessed                            |     |
| View in Field Guide Potential Species of Co       | View Range Maps<br>oncern - Native Species | Global: <b>G5</b>  | State: <b>S2S4</b>                                                               |                                         |     |
|                                                   | laris (Mountain Emerald) PSOC              |                    |                                                                                  | Not Assessed 1                          |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
|                                                   |                                            | Global: <b>G5</b>  | State: S3S5                                                                      |                                         |     |
| V - Braya humilis (Low Bray                       | a) SOC                                     |                    |                                                                                  | Not Assessed                            |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
| Species of Concern - N<br>CCVI: Highly Vulnerable | lative Species Global: G5                  | State: <b>S2</b> U | SFS: Species of Conservation Concern in Forests (HLC) Plant Threat Score: Unknow | vn                                      |     |
| B - Black Rosy-Finch (Leuc                        | osticte atrata) SOC                        |                    |                                                                                  | Not Assessed                            | M   |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
| Species of Concern - N                            |                                            | State: <b>S2</b> U | SFWS: MBTA; BCC10 FWP SWAP: SGCN2, SGIN PIF: 2                                   |                                         |     |
| B - Forster's Tern (Sterna fo                     | rsteri) SOC                                |                    |                                                                                  | Not Assessed                            | H   |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |
| Species of Concern - N                            |                                            | State: S3B         | USFWS: MBTA BLM: SENSITIVE FWP SWAP: SGCN3 PIF: 2                                | 1                                       |     |
| B - Clark's Grebe (Aechmop                        |                                            |                    |                                                                                  | Not Assessed                            | M   |
| View in Field Guide Species of Concern - N        | View Range Maps Native Species Global: 65  | State: C2D         | HISEMS: MRTA: RCC10: RCC11 EMD CWAD: CCCN2 DIE: 2                                |                                         |     |
| B - Horned Grebe (Podiceps                        |                                            | State: 33B         | USFWS: MBTA; BCC10; BCC11 FWP SWAP: SGCN3 PIF: 3                                 | Not Assessed                            | M   |
| Transaction (Fourteeps                            |                                            |                    |                                                                                  |                                         |     |
| View in Field Guide                               | View Range Maps                            |                    |                                                                                  |                                         |     |





# **Structured Surveys**

# Summarized by: 23prvt0217 (Custom Area of Interest)

The Montana Natural Heritage Program (MTNHP) records information on the locations where more than 80 different types of well-defined repeatable survey protocols capable of detecting an animal species or suite of animal species have been conducted by state, federal, tribal, university, or private consulting biologists. Examples of structured survey protocols tracked by MTNHP include: visual encounter and dip net surveys for pond breeding amphibians, point counts for birds, call playback surveys for selected bird species, visual surveys of migrating raptors, kick net stream reach surveys for macroinvertebrates, visual encounter cover object surveys for terrestrial mollusks, bat acoustic or mist net surveys, pitfall and/or snap trap surveys for small terrestrial mammals, track or camera trap surveys for large mammals, and trap surveys for turtles. Whenever possible, photographs of survey locations are stored in MTNHP databases.

MTNHP does not typically manage information on structured surveys for plants; surveys for invasive species may be a future exception.

Within the report area you have requested, structured surveys are summarized by the number of each type of structured survey protocol that has been conducted, the number of species detections/observations resulting from these surveys, and the most recent year a survey has been conducted.

| B-Bald Eagle Nest (Bald Eagle Nest Survey)                                                 | Survey Count: 6  | Obs Count: 3   | Recent Survey: 2014 |
|--------------------------------------------------------------------------------------------|------------------|----------------|---------------------|
| B-Colonial-nesting Waterbirds (Colonial-nesting Waterbird Surveys)                         | Survey Count: 1  | Obs Count: 1   | Recent Survey: 2011 |
| B-Point Count (Bird Point Count)                                                           | Survey Count: 48 | Obs Count: 297 | Recent Survey: 2004 |
| E-Eastern Heath Snail (Eastern Heath Snail Survey)                                         | Survey Count: 4  | Obs Count:     | Recent Survey: 2012 |
| E-Noxious Weed, Road-based (Noxious Weed Road-based Visual Surveys)                        | Survey Count: 15 | Obs Count: 54  | Recent Survey: 2003 |
| F-Fish Electrofishing (Fish Electrofishing Surveys)                                        | Survey Count: 13 | Obs Count: 15  | Recent Survey: 2010 |
| F-Fish Other Survey (Fish Other Survey (FWP Survey Type))                                  | Survey Count: 1  | Obs Count: 1   | Recent Survey: 1973 |
| I-Aquatic Invert Lotic Dipnet (Invertebrate Lotic Site Dipnet and Visual Encounter Survey) | Survey Count: 1  | Obs Count: 18  | Recent Survey: 1998 |
| I-Mosquito Traps (Montana Mosquito Surveillance Project)                                   | Survey Count: 2  | Obs Count: 10  | Recent Survey: 2015 |
| I-Mussel (Stream Mussel Survey)                                                            | Survey Count: 3  | Obs Count:     | Recent Survey: 2008 |
| M-Bat Hibernacula (Bat Roost (Hibernacula) Survey)                                         | Survey Count: 5  | Obs Count:     | Recent Survey: 2013 |
| M-Bat Roost (Active Season) (Bat Roost (Active Season) Survey)                             | Survey Count: 2  | Obs Count: 2   | Recent Survey: 2017 |
| P-USFS ECODATA Plot (USFS ECODATA Ecological Inventory Survey Plot)                        | Survey Count: 8  | Obs Count: 223 | Recent Survey: 1991 |



#### Legend Nodel Icons Habitat Icons Range Icons Num Obs Count of obs with Suitable (native range) Common Non-native 'good precision (<=1000m) Optimal Suitability Moderate Suitability + indicates Low Suitability additional 'poor precision' obs (1001m-10,000m) Suitable (introduced range)



# **Invasive and Pest Species**

Summarized by: 23prvt0217 (Custom Area of Interest)





| <b>=</b> I | - Mecinus janthiniformis (Dalmatian Toadflax Stem-boring Weevil) BIOCNTRL      |  |
|------------|--------------------------------------------------------------------------------|--|
|            | <u>View in Field Guide</u> <u>View Predicted Models</u> <u>View Range Maps</u> |  |
|            | Biocontrol Species - Non-native Species Global: GNR State: SNA                 |  |
|            | Predicted Models: 37% Moderate (inductive), 55% Low (inductive)                |  |
| <b>=</b> I | - Aphthona nigriscutis (Black Dot Leafy Spurge Flea Beetle) BIOCNTRL           |  |
|            | View in Field Guide View Predicted Models View Range Maps                      |  |
|            | Biocontrol Species - Non-native Species Global: GNR State: SNA                 |  |
|            | Predicted Models: 18% Moderate (inductive), 22% Low (inductive)                |  |
| ⊟ ī        | - Oberea erythrocephala (Red-headed Leafy Spurge Stem Borer) BIOCNTRL          |  |
|            | <u>View in Field Guide                                    </u>                 |  |
|            | Biocontrol Species - Non-native Species Global: GNR State: SNA                 |  |
|            | Predicted Models: 47% Low (inductive)                                          |  |

# **Introduction to Montana Natural Heritage Program**





P.O. Box 201800 • 1515 East Sixth Avenue • Helena, MT 59620-1800 • fax 406.444.0266 • phone 406.444.5363 • mtnhp.org

#### Introduction

The Montana Natural Heritage Program (MTNHP) is Montana's source for reliable and objective information on Montana's native species and habitats, emphasizing those of conservation concern. MTNHP was created by the Montana legislature in 1983 as part of the Natural Resource Information System (NRIS) at the Montana State Library (MSL). MTNHP is "a program of information acquisition, storage, and retrieval for data relating to the flora, fauna, and biological community types of Montana" (MCA 90-15-102). MTNHP's activities are guided by statute as well as through ongoing interaction with, and feedback from, principal data source agencies such as Montana Fish, Wildlife, and Parks, the Montana Department of Environmental Quality, the Montana Department of Natural Resources and Conservation, the Montana University System, the US Forest Service, and the US Bureau of Land Management. Since the first staff was hired in 1985, the Program has logged a long record of success, and developed into a highly respected, service-oriented program. MTNHP is widely recognized as one of the most advanced and effective of over 80 natural heritage programs throughout the Western Hemisphere.

#### Vision

Our vision is that public agencies, the private sector, the education sector, and the general public will trust and rely upon MTNHP as the source for information and expertise on Montana's species and habitats, especially those of conservation concern. We strive to provide easy access to our information in order for users to save time and money, speed environmental reviews, and inform decision making.

## Core Values

- We endeavor to be a single statewide source of accurate and up-to-date information on Montana's plants, animals, and aquatic and terrestrial biological communities.
- We actively listen to our data users and work responsively to meet their information and training needs.
- We strive to provide neutral, trusted, timely, and equitable service to all of our information users.
- We make every effort to be transparent to our data users in setting work priorities and providing data products.

#### CONFIDENTIALITY

All information requests made to the Montana Natural Heritage Program are considered library records and are protected from disclosure by the Montana Library Records Confidentiality Act (MCA 22-1-11).

# INFORMATION MANAGED

Information managed at the Montana Natural Heritage Program is botanical, zoological, and ecological information that describes the distribution (e.g., observations, structured surveys, range polygons, predicted habitat suitability models), conservation status (e.g., global and state conservation status ranks, including threats), and other supporting information (e.g., accounts and references) on the biology and ecology of species and biological communities.

# **Data Use Terms and Conditions**

- Montana Natural Heritage Program (MTNHP) products and services are based on biological data and the objective
  interpretation of those data by professional scientists. MTNHP does not advocate any particular philosophy of natural
  resource protection, management, development, or public policy.
- MTNHP has no natural resource management or regulatory authority. Products, statements, and services from
  MTNHP are intended to inform parties as to the state of scientific knowledge about certain natural resources, and to
  further develop that knowledge. The information is not intended as natural resource management guidelines or
  prescriptions or a determination of environmental impacts. MTNHP recommends consultation with appropriate
  state, federal, and tribal resource management agencies and authorities in the area where your project is located.
- Information on the status and spatial distribution of biological resources produced by MTNHP are intended to inform
  parties of the state-wide status, known occurrence, or the likelihood of the presence of those resources. These
  products are not intended to substitute for field-collected data, nor are they intended to be the sole basis for
  natural resource management decisions.
- MTNHP does not portray its data as exhaustive or comprehensive inventories of rare species or biological
  communities. Field verification of the absence or presence of sensitive species and biological communities will
  always be an important obligation of users of our data.
- MTNHP responds equally to all requests for products and services, regardless of the purpose or identity of the requester.
- Because MTNHP constantly updates and revises its databases with new data and information, products will become
  outdated over time. Interested parties are encouraged to obtain the most current information possible from MTNHP,
  rather than using older products. We add, review, update, and delete records on a daily basis. Consequently, we
  strongly advise that you update your MTNHP data sets at a minimum of every four months for most applications of
  our information.
- MTNHP data require a certain degree of biological expertise for proper analysis, interpretation, and application. Our staff is available to advise you on questions regarding the interpretation or appropriate use of the data that we provide. See Contact Information for MTNHP Staff
- The information provided to you by MTNHP may include sensitive data that if publicly released might jeopardize the
  welfare of threatened, endangered, or sensitive species or biological communities. This information is intended for
  distribution or use only within your department, agency, or business. Subcontractors may have access to the data
  during the course of any given project, but should not be given a copy for their use on subsequent, unrelated work.
- MTNHP data are made freely available. Duplication of hard-copy or digital MTNHP products with the intent to sell is
  prohibited without written consent by MTNHP. Should you be asked by individuals outside your organization for the
  type of data that we provide, please refer them to MTNHP.
- MTNHP and appropriate staff members should be appropriately acknowledged as an information source in any thirdparty product involving MTNHP data, reports, papers, publications, or in maps that incorporate MTNHP graphic elements.
- Sources of our data include museum specimens, published and unpublished scientific literature, field surveys by state
  and federal agencies and private contractors, and reports from knowledgeable individuals. MTNHP actively solicits
  and encourages additions, corrections and updates, new observations or collections, and comments on any of the
  data we provide.
- MTNHP staff and contractors do not enter or cross privately-owned lands without express permission from the landowner. However, the program cannot guarantee that information provided to us by others was obtained under adherence to this policy.

# **Suggested Contacts for Natural Resource Management Agencies**

As required by Montana statute (MCA 90-15), the Montana Natural Heritage Program works with state, federal, tribal, nongovernmental organizations, and private partners to ensure that the latest animal and plant distribution and status information is incorporated into our databases so that it can be used to inform a variety of permitting and planning processes and management decisions. We encourage you to contact state, federal, and tribal resource management agencies in the area where your project is located and review the permitting overviews by the Montana Department of Environmental Quality, the Montana Department of Natural Resources and Conservation and the Index of Environmental Permits for Montana for guidelines relevant to your efforts. In particular, we encourage you to contact the Montana Department of Fish, Wildlife, and Parks for the latest data and management information regarding hunted and high-profile management species and to use the U.S. Fish and Wildlife Service's Information Planning and Consultation (IPAC) website regarding U.S. Endangered Species Act listed Threatened, Endangered, or Candidate species.

For your convenience, we have compiled a list of relevant agency contacts and links below:

#### Montana Fish, Wildlife, and Parks

| Fish Species             | Zachary Shattuck <u>zshattuck@mt.gov</u> (406) 444-1231 |                         |                          |                                    |  |  |  |
|--------------------------|---------------------------------------------------------|-------------------------|--------------------------|------------------------------------|--|--|--|
|                          | or                                                      |                         |                          |                                    |  |  |  |
|                          | Eric Roberts                                            | eroberts@mt.go          | ov (406) 444-5334        |                                    |  |  |  |
| American Bison           |                                                         |                         |                          |                                    |  |  |  |
| Black-footed Ferret      |                                                         |                         |                          |                                    |  |  |  |
| Black-tailed Prairie Dog |                                                         |                         |                          |                                    |  |  |  |
| Bald Eagle               |                                                         |                         |                          |                                    |  |  |  |
| Golden Eagle             | Kristian Smu                                            | cker <u>KSmucker@</u>   | omt.gov (406) 444-       | 5209                               |  |  |  |
| Common Loon              |                                                         |                         |                          |                                    |  |  |  |
| Least Tern               |                                                         |                         |                          |                                    |  |  |  |
| Piping Plover            |                                                         |                         |                          |                                    |  |  |  |
| Whooping Crane           |                                                         |                         |                          |                                    |  |  |  |
| Grizzly Bear             |                                                         |                         |                          |                                    |  |  |  |
| Greater Sage Grouse      |                                                         |                         |                          |                                    |  |  |  |
| Trumpeter Swan           | Brian Wakeli                                            | ng <u>Brian.Wakeli</u>  | <u>ng@mt.gov</u> (406) 4 | 44-3940                            |  |  |  |
| Big Game                 |                                                         |                         |                          |                                    |  |  |  |
| Upland Game Birds        |                                                         |                         |                          |                                    |  |  |  |
| Furbearers               |                                                         |                         |                          |                                    |  |  |  |
| Managed Terrestrial Game | Smith Wells -                                           | - MFWP Data An          | alyst smith.wells@       | mt.gov (406) 444-3759              |  |  |  |
| and Nongame Animal Data  |                                                         |                         |                          |                                    |  |  |  |
| Fisheries Data           |                                                         |                         |                          | t.gov (406) 444-5365               |  |  |  |
| Wildlife and Fisheries   |                                                         |                         |                          | eandscientificpermits/scientific   |  |  |  |
| Scientific Collector's   |                                                         |                         |                          | t.gov (406) 444-2612               |  |  |  |
| Permits                  | Kim Wedde f                                             | or Fisheries <u>kim</u> | .wedde@mt.gov (4         | 106) 444-5594                      |  |  |  |
| Fish and Wildlife        | Charlie Sperr                                           | y <u>CSperry@mt.</u> g  | gov (406) 444-3888       |                                    |  |  |  |
| Recommendations for      | See https://fw                                          | p.mt.gov/conser         | vation/living-with-wil   | Idlife/subdivision-recommendations |  |  |  |
| Subdivision Development  |                                                         |                         |                          |                                    |  |  |  |
| Regional Contacts        | Region 1                                                | (Kalispell)             | (406) 752-5501           | fwprg12@mt.gov                     |  |  |  |
|                          | Region 2                                                | (Missoula)              | (406) 542-5500           | fwprg22@mt.gov                     |  |  |  |
| 4 0                      | Region 3                                                | (Bozeman)               | (406) 577-7900           | fwprg3@mt.gov                      |  |  |  |
|                          | Region 4                                                | (Great Falls)           | (406) 454-5840           | fwprg42@mt.gov                     |  |  |  |
| 5 7                      | Region 5                                                | (Billings)              | (406) 247-2940           | fwprg52@mt.gov                     |  |  |  |
| 1 3 2 5                  | Region 6                                                | (Glasgow)               | (406) 228-3700           | fwprg62@mt.gov                     |  |  |  |
| Married .                | Region 7                                                | (Miles City)            | (406) 234-0900           | fwprg72@mt.gov                     |  |  |  |

## **Montana Department of Agriculture**

General Contact Information: https://agr.mt.gov/About/Office-Locations/Office-Locations-and-Field-Offices

Noxious Weeds: <a href="https://agr.mt.gov/Noxious-Weeds">https://agr.mt.gov/Noxious-Weeds</a>

## **Montana Department of Environmental Quality**

Permitting and Operator Assistance for all Environmental Permits: https://deq.mt.gov/Permitting

# **Montana Department of Natural Resources and Conservation**

Overview of, and contacts for, licenses and permits for state lands, water, and forested lands: <a href="http://dnrc.mt.gov/licenses-and-permits">http://dnrc.mt.gov/licenses-and-permits</a>

Stream Permitting (310 permits) and an overview of various water and stream related permits (e.g., Stream Protection Act 124, Federal Clean Water Act 404, Federal Rivers and Harbors Act Section 10, Short-term Water Quality Standard for Turbidity 318 Authorization, etc.).

http://dnrc.mt.gov/divisions/cardd/conservation-districts/the-310-law

Flood and Fire Resources: <a href="http://dnrc.mt.gov/flood-and-fire">http://dnrc.mt.gov/flood-and-fire</a>

#### **Bureau of Land Management**



| Billings   | (406) 896-5013 |
|------------|----------------|
| Butte      | (406) 533-7600 |
| Dillon     | (406) 683-8000 |
| Glasgow    | (406) 228-3750 |
| Havre      | (406) 262-2820 |
| Lewistown  | (406) 538-1900 |
| Malta      | (406) 654-5100 |
| Miles City | (406) 233-2800 |
| Missoula   | (406) 329-3914 |

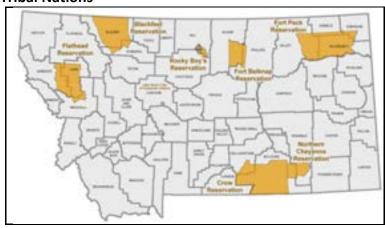
#### **United States Army Corps of Engineers**

Montana Regulatory Office for federal permits related to construction in water and wetlands https://www.nwo.usace.army.mil/Missions/Regulatory-Program/Montana/ (406) 441-1375

# **United States Environmental Protection Agency**

Environmental information, notices, permitting, and contacts <a href="https://www.epa.gov/mt">https://www.epa.gov/mt</a> Gateway to state resource locators <a href="https://www.envcap.org/srl/index.php">https://www.envcap.org/srl/index.php</a>

#### **United States Fish and Wildlife Service**


Information Planning and Conservation (IPAC) website: <a href="https://ecos.fws.gov/ipac/">https://ecos.fws.gov/ipac/</a>

Montana Ecological Services Field Office: <a href="https://www.fws.gov/montanafieldoffice/">https://www.fws.gov/montanafieldoffice/</a> (406) 449-5225

# **United States Forest Service**

| Regional Office – Missoula, Montana Contacts |                 |                          |                |  |  |  |  |
|----------------------------------------------|-----------------|--------------------------|----------------|--|--|--|--|
| Wildlife Program Leader                      | Tammy Fletcher  | tammy.fletcher2@usda.gov | (406) 329-3086 |  |  |  |  |
| Wildlife Ecologist                           | Cara Staab      | cara.staab@usda.gov      | (406) 329-3677 |  |  |  |  |
| Fish Program Leader                          | Scott Spaulding | scott.spaulding@usda.gov | (406) 329-3287 |  |  |  |  |
| Fish Ecologist                               | Cameron Thomas  | cameron.thomas@usda.gov  | (406) 329-3087 |  |  |  |  |
| TES Program                                  | Lydia Allen     | lydia.allen@usda.gov     | (406) 329-3558 |  |  |  |  |
| Interagency Grizzly Bear Coordinator         | Scott Jackson   | scott.jackson@usda.gov   | (406) 329-3664 |  |  |  |  |
| Acting Regional Botanist                     | Amanda Hendrix  | amanda.hendrix@usda.gov  | (651) 447-3016 |  |  |  |  |
| Regional Vegetation Ecologist                | Mary Manning    | marry.manning@usda.gov   | (406) 329-3304 |  |  |  |  |
| Invasive Species Program Manager             | Michelle Cox    | michelle.cox2@usda.gov   | (406) 329-3669 |  |  |  |  |

#### **Tribal Nations**



Assiniboine & Gros Ventre Tribes – Fort Belknap Reservation

Assiniboine & Sioux Tribes – Fort Peck Reservation

Blackfeet Tribe - Blackfeet Reservation

Chippewa Creek Tribe - Rocky Boy's Reservation

Crow Tribe - Crow Reservation

Little Shell Chippewa Tribe

Northern Cheyenne Tribe – Northern Cheyenne Reservation

Salish & Kootenai Tribes - Flathead Reservation

#### Natural Heritage Programs and Conservation Data Centers in Surrounding States and Provinces

Alberta Conservation Information Management System

**British Columbia Conservation Data Centre** 

Idaho Natural Heritage Program

North Dakota Natural Heritage Program

Saskatchewan Conservation Data Centre

South Dakota Natural Heritage Program

Wyoming Natural Diversity Database

# **Invasive Species Management Contacts and Information**

#### **Aquatic Invasive Species**

Montana Fish, Wildlife, and Parks Aquatic Invasive Species staff

Montana Department of Natural Resources and Conservation's Aquatic Invasive Species Grant Program

Montana Invasive Species Council (MISC)

Upper Columbia Conservation Commission (UC3)

# Noxious Weeds

Montana Weed Control Association Contacts Webpage

Montana Biological Weed Control Coordination Project

Montana Department of Agriculture - Noxious Weeds

Montana Weed Control Association

Montana Fish, Wildlife, and Parks - Noxious Weeds

Montana State University Integrated Pest Management Extension

**Integrated Noxious Weed Management after Wildfires** 

Fire Management and Invasive Plants

# **Introduction to Native Species**

Within the report area you have requested, separate summaries are provided for: (1) Species Occurrences (SO) for plant and animal Species of Concern, Special Status Species (SSS), Important Animal Habitat (IAH) and some Potential Plant Species of Concern; (2) other observed non Species of Concern or Species of Concern without suitable documentation to create Species Occurrence polygons; and (3) other non-documented species that are potentially present based on their range, predicted suitable habitat model output, or presence of associated habitats. Each of these summaries provides the following information when present for a species: (1) the number of Species Occurrences and associated delineation criteria for construction of these polygons that have long been used for considerations of documented Species of Concern in environmental reviews; (2) the number of observations of each species; (3) the geographic range polygons for each species that the report area overlaps; (4) predicted relative habitat suitability classes that are present if a predicted suitable habitat model has been created; (5) the percent of the report area that is mapped as commonly associated or occasionally associated habitat as listed for each species in the Montana Field Guide; and (6) a variety of conservation status ranks and links to species accounts in the Montana Field Guide. Details on each of these information categories are included under relevant section headers below or are defined on our Species Status Codes page. In presenting this information, the Montana Natural Heritage Program (MTNHP) is working towards assisting the user with rapidly determining what species have been documented and what species are potentially present in the report area. We remind users that this information is likely incomplete as surveys to document native and introduced species are lacking in many areas of the state, information on introduced species has only been tracked relatively recently, the MTNHP's staff and resources are restricted by budgets, and information is constantly being added and updated in our databases. Thus, field verification by professional biologists of the absence or presence of species and biological communities will always be an important obligation of users of our data.

If you are aware of observation datasets that the MTNHP is missing, please report them to the Program Botanist <a href="mailto:apipp@mt.gov">apipp@mt.gov</a> or Senior Zoologist <a href="mailto:dbachen@mt.gov">dbachen@mt.gov</a>. If you have animal observations that you would like to contribute, you can submit them to our <a href="mailto:Animal Observation Entry Tool">Animal Observation Entry Tool</a> You can also submit plant and animal observations via Excel spreadsheets posted at <a href="mailto:https://mtnhp.org/observations.asp">https://mtnhp.org/observations.asp</a> or via the <a href="mailto:Montana Natural">Montana Natural</a> Heritage Observations project in iNaturalist

#### **Observations**

The MTNHP manages information on several million animal and plant observations that have been reported by professional biologists and private citizens from across Montana. The majority of these observations are submitted in digital format from standardized databases associated with research or monitoring efforts and spreadsheets of incidental observations submitted by professional biologists and amateur naturalists. At a minimum, accepted observation records must contain a credible species identification (i.e. appropriate geographic range, date, and habitat and, if species are difficult to identify, a photograph and/or notes on key identifying features), a date or date range, observer name, locational information (ideally with latitude and longitude in decimal degrees), notes on numbers observed, and species behavior or habitat use (e.g., is the observation likely associated with reproduction). Bird records are also required to have information associated with date-appropriate breeding or overwintering status of the species observed. MTNHP reviews observation records to ensure that they are mapped correctly, occur within date ranges when the species is known to be present or detectable, occur within the known seasonal geographic range of the species, and occur in appropriate habitats. MTNHP also assigns each record a locational uncertainty value in meters to indicate the spatial precision associated with the record's mapped coordinates. Only records with locational uncertainty values of 10,000 meters or less are included in environmental summary reports and number summaries are only provided for records with locational uncertainty values of 1,000 meters or less.

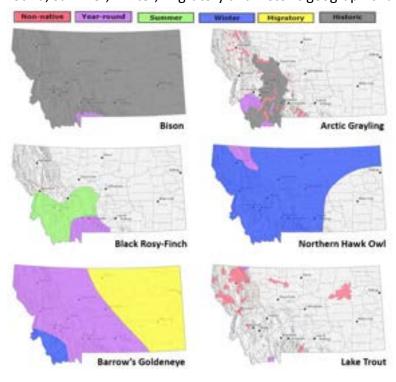
#### **Species Occurrences**

The MTNHP evaluates plant and animal observation records for species of higher conservation concern to determine whether they are worthy of inclusion in the <u>Species Occurrence</u> (SO) layer for use in environmental reviews; observations not worthy of inclusion in this layer include long distance dispersal events, migrants observed away from key migratory stopover habitats, and winter observations. An SO is a polygon depicting what is known about a species occupancy from direct observation with a defined level of locational uncertainty and any inference that can be made about adjacent habitat use from the latest peer-reviewed science. If an observation can be associated with a map feature that can be tracked (e.g., a wetland boundary for a wetland associated plant) then this polygon feature is used to represent the SO. Areas that can be inferred as probable occupied habitat based on direct observation of a species location and what is known about the foraging area or home range size of the species may be incorporated into the SO. Species Occurrences generally belong to one of the following categories:

#### **Plant Species Occurrences**

A documented location of a specimen collection or observed plant population. In some instances, adjacent, spatially separated clusters are considered subpopulations and are grouped as one occurrence (e.g., the subpopulations occur in ecologically similar habitats, and their spatial proximity likely allows them to interbreed). Tabular information for multiple observations at the same SO location is generally linked to a single polygon. Plant SO's are only created for Species of Concern and Potential Species of Concern.

#### **Animal Species Occurrences**


The location of a verified observation or specimen record typically known or assumed to represent a breeding population or a portion of a breeding population. Animal SO's are generally: (1) buffers of terrestrial point observations based on documented species' home range sizes; (2) buffers of stream segments to encompass occupied streams and immediate adjacent riparian habitats; (3) polygonal features encompassing known or likely breeding populations (e.g., a wetland for some amphibians or a forested portion of a mountain range for some wide ranging carnivores); or (4) combinations of the above. Tabular information for multiple observations at the same SO location is generally linked to a single polygon. Species Occurrence polygons may encompass some unsuitable habitat in some instances in order to avoid heavy data processing associated with clipping out habitats that are readily assessed as unsuitable by the data user (e.g., a point buffer of a terrestrial species may overlap into a portion of a lake that is obviously inappropriate habitat for the species). Animal SO's are only created for Species of Concern and Special Status Species (e.g., Bald Eagle).

#### Other Occurrence Polygons

These include significant biological features not included in the above categories, such as Important Animal Habitats like bird rookeries and bat roosts, and peatlands or other wetland and riparian communities that support diverse plant and animal communities.

#### **Geographic Range Polygons**

Geographic range polygons are still under development for most plant and invertebrate species. Native year-round, summer, winter, migratory and historic geographic range polygons as well as polygons for introduced



populations have been defined for most vertebrate animal species for which there are enough observations, surveys, and knowledge of appropriate seasonal habitat use to define them (see examples to left). These native or introduced range polygons bound the extent of known or likely occupied habitats for non-migratory and relative sedentary species and the regular extent of known or likely occupied habitats for migratory and long-distance dispersing species; polygons may include unsuitable intervening habitats. For most species, a single polygon can represent the year-round or seasonal range, but breeding ranges of some colonial nesting water birds and some introduced species are represented more patchily when supported by data. Some ranges are mapped more broadly than actual distributions in order to be visible on statewide maps (e.g., fish).

#### **Predicted Suitable Habitat Models**

Predicted habitat suitability models have been created for plant and animal Species of Concern and are undergoing development for non-Species of Concern. For species for which models have been completed, the environmental summary report includes simple rule-based associations with streams for aquatic species and seasonal habitats for game species as well as mathematically complex Maximum Entropy models (Phillips et al. 2006, Ecological Modeling 190:231-259) constructed from a variety of statewide biotic and abiotic layers and presence only data for individual species for most terrestrial species. For the Maximum Entropy models, we reclassified 90 x 90-meter continuous model output into suitability classes (unsuitable, low, moderate, and optimal) then aggregated that into the one square mile hexagons used in the environmental summary report; this is the finest spatial scale we suggest using this information in management decisions and survey planning. Full model write ups for individual species that discuss model goals, inputs, outputs, and evaluation in much greater detail are posted on the MTNHP's Predicted Suitable Habitat Models webpage. Evaluations of predictive accuracy and specific limitations are included with the metadata for models of individual species. Model outputs should not be used in place of on-the-ground surveys for species. Instead model outputs should be used in conjunction with habitat evaluations to determine the need for on-the-ground surveys for species. We suggest that the percentage of predicted optimal and moderate suitable habitat within the report area be used in conjunction with geographic range polygons and the percentage of commonly associated habitats to generate lists of potential species that may occupy broader landscapes for the purposes of landscape-level planning.

#### **Associated Habitats**

Within the boundary of the intersected hexagons, we provide the approximate percentage of commonly or occasionally associated habitat for vertebrate animal species that regularly breed, overwinter, or migrate through the state; a detailed list of commonly and occasionally associated habitats is provided in individual species accounts in the Montana Field Guide We assigned common or occasional use of each of the ecological

systems mapped in Montana by: (1) using personal knowledge and reviewing literature that summarizes the breeding, overwintering, or migratory habitat requirements of each species; (2) evaluating structural characteristics and distribution of each ecological system relative to the species' range and habitat requirements; (3) examining the observation records for each species in the state-wide point observation database associated with each ecological system; and (4) calculating the percentage of observations associated with each ecological system relative to the percent of Montana covered by each ecological system to get a measure of numbers of observations versus availability of habitat. Species that breed in Montana were only evaluated for breeding habitat use, species that only overwinter in Montana were only evaluated for overwintering habitat use, and species that only migrate through Montana were only evaluated for migratory habitat use. In general, species were listed as associated with an ecological system if structural characteristics of used habitat documented in the literature were present in the ecological system or large numbers of point observations were associated with the ecological system. However, species were not listed as associated with an ecological system if there was no support in the literature for use of structural characteristics in an ecological system, even if point observations were associated with that system. Common versus occasional association with an ecological system was assigned based on the degree to which the structural characteristics of an ecological system matched the preferred structural habitat characteristics for each species as represented in the scientific literature. The percentage of observations associated with each ecological system relative to the percent of Montana covered by each ecological system was also used to guide assignment of common versus occasional association.

We suggest that the percentage of commonly associated habitat within the report area be used in conjunction with geographic range polygons and the percentage of predicted optimal and moderate suitable habitat from predictive models to generate lists of potential species that may occupy broader landscapes for the purposes of landscape-level planning. Users of this information should be aware that land cover mapping accuracy is particularly problematic when the systems occur as small patches or where the land cover types have been altered over the past decade. Thus, particular caution should be used when using the associations in assessments of smaller areas (e.g., evaluations of public land survey sections).

#### **Introduction to Invasive and Pest Species**

Within the report area you have requested, separate summaries are provided for: Aquatic Invasive Species, Noxious Weeds, Agricultural Pests, Forest Pests, and Biocontrol species that have been documented or potentially occur there based on the predicted suitability of habitat. Definitions for each of these invasive and pest species categories can be found on our <u>Species Status Codes</u> page.

Each of these summaries provides the following information when present for a species: (1) the number of observations of each species; (2) the geographic range polygons for each species, if developed, that the report area overlaps; (3) predicted relative habitat suitability classes that are present if a predicted suitable habitat model has been created; (4) the percent of the report area that is mapped as commonly associated or occasionally associated habitat as listed for each species in the Montana Field Guide; and (5) links to species accounts in the Montana Field Guide. Details on each of these information categories are included under relevant section headers under the Introduction to Native Species above or are defined on our Species Status Codes page. In presenting this information, the Montana Natural Heritage Program (MTNHP) is working towards assisting the user with rapidly determining what invasive and pest species have been documented and what species are potentially present in the report area. We remind users that this information is likely incomplete as surveys to document introduced species are lacking in many areas of the state, information on introduced species has only been tracked relatively recently, the MTNHP's staff and resources are limited, and information is constantly being added and updated in our databases. Thus, field verification by professional biologists of the absence or presence of species will always be an important obligation of users of our data.

If you are aware of observation or survey datasets for invasive or pest species that the MTNHP is missing, please report them to the Program Coordinator <a href="mailto:bmaxell@mt.gov">bmaxell@mt.gov</a> Program Botanist <a href="mailto:apipp@mt.gov">apipp@mt.gov</a> or Senior Zoologist <a href="mailto:dbachen@mt.gov">dbachen@mt.gov</a>. If you have observations that you would like to contribute, you can submit animal observations using our online data entry system at <a href="mailto:mtnhp.org/AddObs">mtnhp.org/AddObs</a> or via Excel spreadsheets posted at <a href="mtnhp.org/observations.asp">mtnhp.org/observations.asp</a>

#### **Additional Information Resources**

| MTNHP Staff | Contact | Information |
|-------------|---------|-------------|
|-------------|---------|-------------|

Montana Field Guide

MTNHP Species of Concern Report - Animals and Plants

MTNHP Species Status Codes - Explanation

MTNHP Predicted Suitable Habitat Models (for select Animals and Plants)

MTNHP Request Information page

**Montana Cadastral** 

**Montana Code Annotated** 

Montana Fisheries Information System

Montana Fish, Wildlife, and Parks Subdivision Recommendations

Montana GIS Data Layers

Montana GIS Data Bundler

Montana Greater Sage-Grouse Project Submittal Site

Montana Ground Water Information Center

Montana Index of Environmental Permits, 21st Edition (2018)

Montana Environmental Policy Act (MEPA)

Montana Environmental Policy Act Analysis Resource List

Laws, Treaties, Regulations, and Agreements on Animals and Plants

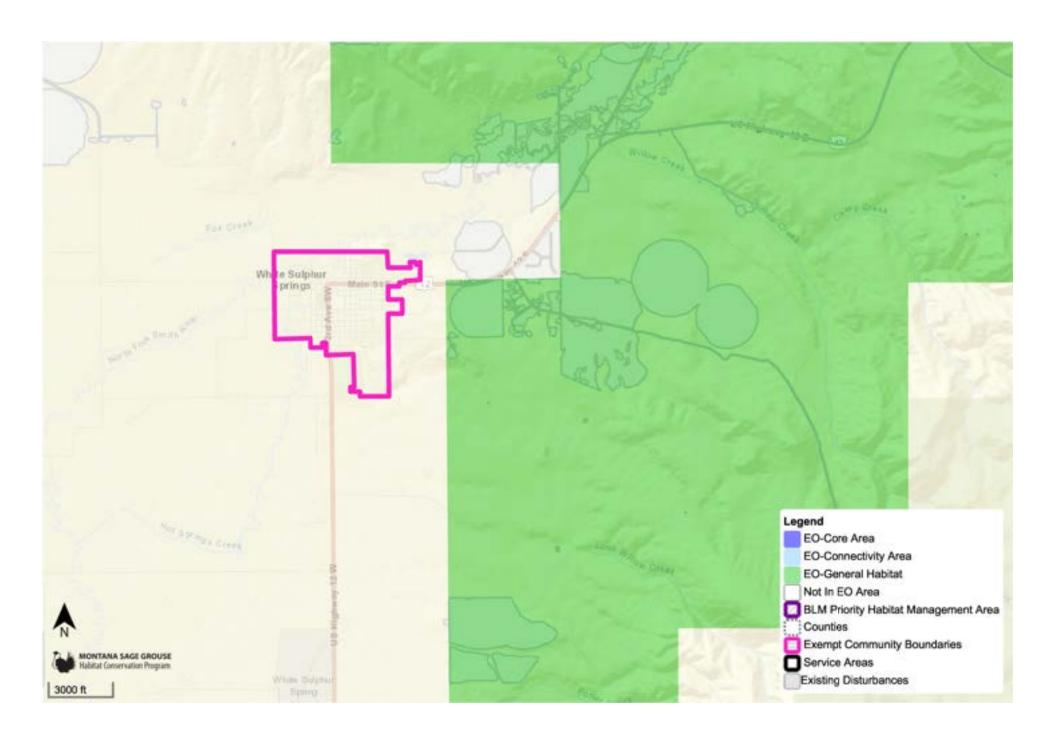
Montana Spatial Data Infrastructure Layers

Montana State Historic Preservation Office Review and Compliance

Montana Stream Permitting: a guide for conservation district supervisors and others

Montana Water Information System

Montana Web Map Services


**National Environmental Policy Act** 

Penalties for Misuse of Fish and Wildlife Location Data (MCA 87-6-222)

U.S. Fish and Wildlife Service Information for Planning and Consultation (Section 7 Consultation)

**Web Soil Survey Tool** 

10/18/22, 3:13 PM Program Map



# IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

#### Location

Meagher County, Montana



#### Local office

Montana Ecological Services Field Office

**4** (406) 449-5225

**(406)** 449-5339

585 Shephard Way Suite 1



# Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species<sup>1</sup> and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries<sup>2</sup>).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).

2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

#### **Mammals**

NAME STATUS

Canada Lynx Lynx canadensis

Threatened

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/3652

North American Wolverine Gulo gulo luscus

**Proposed Threatened** 

Wherever found

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/5123

#### Insects

NAME STATUS

Monarch Butterfly Danaus plexippus

Candidate

Wherever found

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/9743

# Conifers and Cycads

NAME STATUS

Whitebark Pine Pinus albicaulis

Threatened

Wherever found

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/1748

#### Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

There are no critical habitats at this location.

# Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act<sup>1</sup> and the Bald and Golden Eagle Protection Act<sup>2</sup>.

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern <a href="https://www.fws.gov/program/migratory-birds/species">https://www.fws.gov/program/migratory-birds/species</a>
- Measures for avoiding and minimizing impacts to birds
   <u>https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds</u>
- Nationwide conservation measures for birds
   <a href="https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf">https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf</a>

The birds listed below are birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the E-bird data mapping tool (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME BREEDING SEASON

#### Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

Breeds Jan 1 to Aug 31

#### **Bobolink** Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

#### Cassin's Finch Carpodacus cassinii

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/9462">https://ecos.fws.gov/ecp/species/9462</a>

Breeds May 15 to Jul 15

#### **Evening Grosbeak** Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Aug 10

#### Franklin's Gull Leucophaeus pipixcan

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

#### Golden Eagle Aquila chrysaetos

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

Breeds Jan 1 to Aug 31

# Olive-sided Flycatcher Contopus cooperi

https://ecos.fws.gov/ecp/species/1680

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/3914">https://ecos.fws.gov/ecp/species/3914</a>

Breeds May 20 to Aug 31

#### Rufous Hummingbird selasphorus rufus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/8002">https://ecos.fws.gov/ecp/species/8002</a>

Breeds Apr 15 to Jul 15

# **Probability of Presence Summary**

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

#### Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

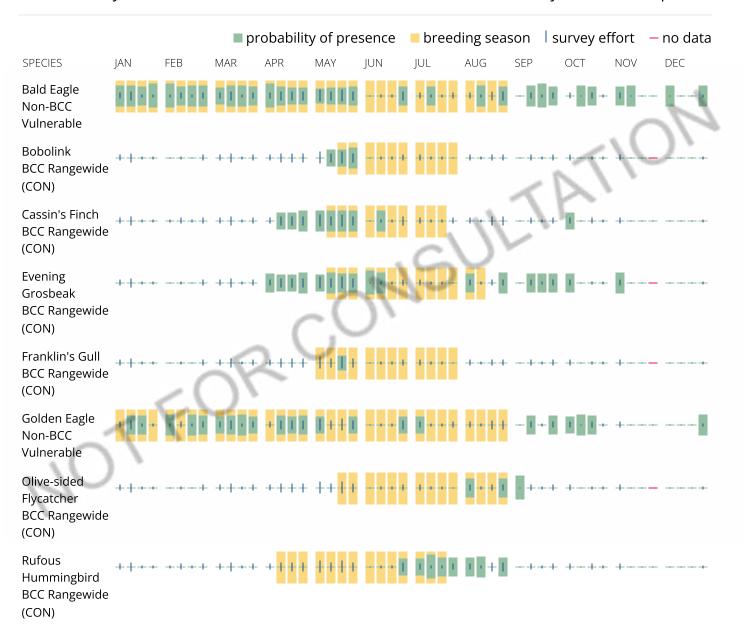
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

#### Breeding Season (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

#### Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.

#### No Data (-)

A week is marked as having no data if there were no survey events for that week.

#### **Survey Timeframe**

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.



Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure.

To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

# What does IPaC use to generate the list of migratory birds that potentially occur in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>Rapid Avian Information Locator (RAIL) Tool</u>.

# What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

#### How do I know if a bird is breeding, wintering or migrating in my area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may query your location using the RAIL Tool and look at the range maps provided for birds in your area at the bottom of the profiles provided for each bird in your results. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

#### What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands):
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in

offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

#### Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

#### What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

#### Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

### **Facilities**

# National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

There are no refuge lands at this location.

#### Fish hatcheries

There are no fish hatcheries at this location.

# Wetlands in the National Wetlands Inventory (NWI)

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

#### Wetland information is not available at this time

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

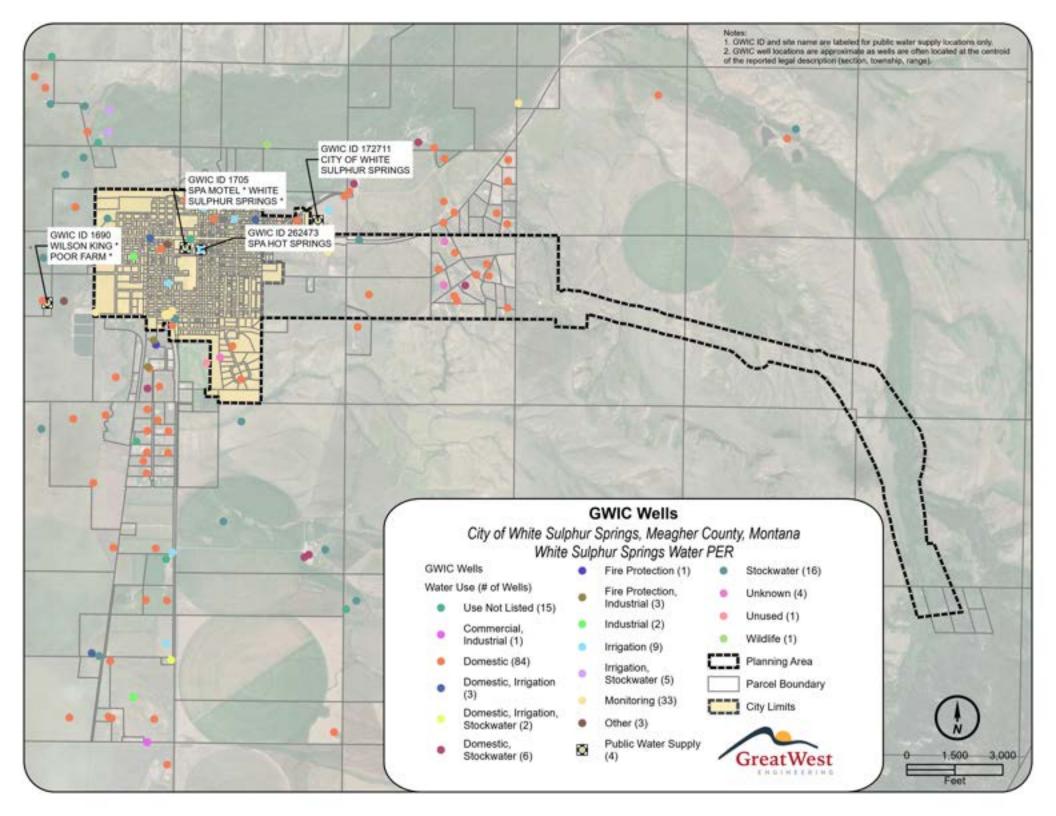
#### **Data limitations**

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

#### Data exclusions


Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

#### **Data precautions**

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate Federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

# **Appendix F**

**Ground Water Information Center Summary**of Area Wells



| GWICID SITE NAME                                              | LATITUDE                   | LONGITUDE                    | GEOMETH  | OD DATUM LATL  | DATE LATLO           | ALTITUDE     | METHOD ALT | DATUM ALTI | DATE ALTIT | TOWNSHIP   | RANGE      | SECTION QSECTION   | COUNTY STATE             |
|---------------------------------------------------------------|----------------------------|------------------------------|----------|----------------|----------------------|--------------|------------|------------|------------|------------|------------|--------------------|--------------------------|
| 1683 JACKSON RONALD L.                                        | 46.5636                    | -110.9211                    | UNKNOWN  | NAD27          | _                    | 4990         | _          | _          | _          | 09N        | 06E        | 1 CCDD             | MEAGHER MT               |
| 1687 STOCK WELL AT FOX*.5 MI N WHITE SULPHUR SP               | 46.555                     | -110.9169                    | UNKNOWN  | NAD27          |                      | 5008         |            |            |            | 09N        | 06E        | 12 CAA             | MEAGHER MT               |
| 1688 WHITE SULPHUR SPRINGS BANK WELL                          | 46.5477                    |                              | UNKNOWN  | NAD27          |                      | 5030         |            |            |            | 09N        | 06E        | 13 AAAA            | MEAGHER MT               |
| 1689 RALPH JORDAN * WHITE SULPHUR SPRINGS                     | 46.5444                    |                              | UNKNOWN  | NAD27          |                      | 5040         |            |            |            | 09N        | 06E        | 13 ADAA            | MEAGHER MT               |
| 1690 WILSON KING * POOR FARM * 1691 COW PALACE *              | 46.5425<br>46.5408         |                              | UNKNOWN  | NAD27<br>NAD27 |                      | 4993<br>5041 |            |            |            | 09N<br>09N | 06E<br>06E | 13 BCDA<br>13 DAAA | MEAGHER MT<br>MEAGHER MT |
| 1692 CASTLE MTN LUMBER CO FIRE PROTECTION WELL                | 46.5391                    |                              | UNKNOWN  | NAD27          |                      | 5018         |            |            |            | 09N        | 06E        | 13 DACA            | MEAGHER MT               |
| 1695 KENNICK JEFF * WHITE SULPHUR SPRINGS                     | 46.533                     |                              | UNKNOWN  | NAD27          |                      | 4990         |            |            |            | 09N        | 06E        | 24 ABB             | MEAGHER MT               |
| 1696 DETERS HOUSE*.5 M S WHITE SULPHUR SPRINGS                | 46.5291                    |                              | UNKNOWN  | NAD27          |                      | 5033         |            |            |            | 09N        | 06E        | 24 ADB             | MEAGHER MT               |
| 1697 HANSON, BOB                                              | 46.5213                    | -110.905                     | UNKNOWN  | NAD27          |                      | 5034         |            |            |            | 09N        | 06E        | 24 DDDA            | MEAGHER MT               |
| 1698 CORKILL BILL * WELDING SCHOOL                            | 46.505                     | -110.9077                    |          | NAD27          |                      | 5038         |            |            |            | 09N        | 06E        | 25 DDCD            | MEAGHER MT               |
| 1702 LIND JAMES                                               | 46.5525                    |                              | UNKNOWN  | NAD27          |                      | 5065         |            |            |            | 09N        | 07E        | 8 CBCC             | MEAGHER MT               |
| 1703 TOWNSEND RANCH LLC                                       | 46.5575709                 | -110.8303484                 |          | NAD83          | 20120404             |              | SUR-GPS    | NAVD88     | 20120404   | 09N        | 07E        | 10 ACCA            | MEAGHER MT               |
| 1704 ELLINGTON, DAVID & LAURA J.                              | 46.5455                    |                              | UNKNOWN  | NAD27          | 20440220420000       | 5190         |            |            |            |            | 07E        | 17 AAD             | MEAGHER MT MEAGHER MT    |
| 1705 SPA MOTEL * WHITE SULPHUR SPRINGS * 1706 DOIG, GORDON H. | 46.547342<br>46.5391       | -110.904893                  | UNKNOWN  | NAD83<br>NAD27 | 20110329130000       | 4979<br>5095 |            |            |            | 09N<br>09N | 07E        | 18 BBAB<br>18 CACA | MEAGHER MT               |
| 1700 BOIG, GORDON H.                                          | 46.5211                    |                              | UNKNOWN  | NAD27          |                      | 5100         |            |            |            | 09N        | 07E        | 19 CB              | MEAGHER MT               |
| 22184 BAIR, HELEN E.                                          | 46.55618506                | -110.915968                  |          | NAD83          | 20190521             | 0.00         |            |            |            | 09N        | 06E        | 12                 | MEAGHER MT               |
| 22185 BAIR HELEN E.                                           | 46.556185                  | -110.915968                  |          | NAD83          |                      | 0            |            |            |            |            | 06E        | 12                 | MEAGHER MT               |
| 22186 HERR, JAMES                                             | 46.55618506                | -110.915968                  | TRS-SEC  | NAD83          | 20190521             | 0            |            |            |            | 09N        | 06E        | 12                 | MEAGHER MT               |
| 22187 THORNES, BILLIE M                                       | 46.56173281                | -110.9239727                 | TRS-SEC  | NAD83          | 20190521             | 0            |            |            |            | 09N        | 06E        | 12 BB              | MEAGHER MT               |
| 22188 JACKSON OAKLEY R.                                       | 46.559421                  | -110.921972                  |          | NAD83          | 20090625             | 5025         |            |            |            | 09N        | 06E        | 12 BCAA            | MEAGHER MT               |
| 22189 JACKSON, OAKLEY R.                                      | 46.55942125                | -110.9219715                 |          | NAD83          | 20190521             | 5025         |            |            |            |            | 06E        | 12 BCAA            | MEAGHER MT               |
| 22190 JACKSON ANGUS RANCH                                     | 46.5593                    |                              | SUR-GPS  | NAD83          | 20000306             | 5025.78      |            |            |            | 09N        | 06E        | 12 BDAB            | MEAGHER MT               |
| 22191 HOLMSTROM, AXEL                                         | 46.55341119                | -110.9199703                 |          | NAD83          | 20190521             | 5000         |            |            |            | 09N        | 06E        | 12 CAC             | MEAGHER MT               |
| 22192 FALLANG, KEN AND ALICE<br>22193 FALLANG, KEN AND ALICE  | 46.55895894<br>46.55710969 | -110.9146338<br>-110.9146338 |          | NAD83<br>NAD83 | 20190521<br>20190521 | 5000<br>5000 |            |            |            | 09N<br>09N | 06E<br>06E | 12 ACB<br>12 ACC   | MEAGHER MT MEAGHER MT    |
| 22194 HOLMSTROM RANCH                                         | 46.550637                  | -110.9146336                 |          | NAD83          | 20190521             | 0            | ·          |            |            | 09N        | 06E        | 12 ACC             | MEAGHER MT               |
| 22196 SIEGER, MARY                                            | 46.54166629                | -110.9158852                 |          | NAD83          | 20190521             | 0            |            |            |            | 09N        | 06E        | 13                 | MEAGHER MT               |
| 22197 MATHIS, WAYNE                                           | 46.54166629                | -110.9158852                 |          | NAD83          | 20190521             | 0            |            |            |            | 09N        | 06E        | 13                 | MEAGHER MT               |
| 22198 FIRST NATIONAL BANK: WHITE SULPHUR SPRINGS              | 46.54717916                | -110.9079457                 |          | NAD83          | 20190521             | 0            |            |            |            |            | 06E        | 13 AA              | MEAGHER MT               |
| 22199 FOWLIE, JAMES R.                                        | 46.54809797                | -110.9172085                 | TRS-SEC  | NAD83          | 20190521             | 5010         |            |            |            | 09N        | 06E        | 13 BAA             | MEAGHER MT               |
| 22200 FOWLIE, JAMES R.                                        | 46.54626035                | -110.9225015                 | TRS-SEC  | NAD83          | 20190521             | 5000         |            |            |            | 09N        | 06E        | 13 BBD             | MEAGHER MT               |
| 22201 DOAK, FANNY                                             | 46.54120688                | -110.9059609                 |          | NAD83          | 20190521             | 5041         |            |            |            | 09N        | 06E        | 13 DAAA            | MEAGHER MT               |
| 22202 CASTLE MTN LUMBER                                       | 46.539369                  | -110.908607                  |          | NAD83          |                      | 5018         |            |            |            |            | 06E        | 13 DACA            | MEAGHER MT               |
| 22203 YAMHILL LUMBER CO.                                      | 46.53707222                | -110.909269                  |          | NAD83          | 20190521             | 5010         |            |            |            | 09N        | 06E        | 13 DDB             | MEAGHER MT               |
| 22213 BUCSIS, DICK                                            | 46.5270205<br>46.530689    | -110.9157901                 |          | NAD83          | 20190521             | 0            |            |            |            | 09N<br>09N | 06E        | 24                 | MEAGHER MT               |
| 22214 HANSEN, JAN<br>22215 HANSEN JAN                         | 46.530689                  | -110.9105321<br>-110.910532  |          | NAD83<br>NAD83 | 20190521             | 0            |            |            |            |            | 06E<br>06E | 24 A<br>24 A       | MEAGHER MT MEAGHER MT    |
| 22216 NIELSEN, JERRY D.                                       | 46.530689                  | -110.9105321                 |          | NAD83          | 20190522             | 0            |            |            |            | 09N        | 06E        | 24 A               | MEAGHER MT               |
| 22217 POTTER & CO.                                            | 46.530689                  | -110.910532                  |          | NAD83          | 20100022             | 0            |            |            |            |            | 06E        | 24 A               | MEAGHER MT               |
| 22218 DETERS, JAMES                                           | 46.53252325                | -110.9079031                 |          | NAD83          | 20190522             | 0            |            |            |            | 09N        | 06E        | 24 AA              | MEAGHER MT               |
| 22219 GOLBERG, JACK                                           | 46.52977188                | -110.9065886                 | TRS-SEC  | NAD83          | 20190522             | 0            |            |            |            | 09N        | 06E        | 24 ADA             | MEAGHER MT               |
| 22220 DETERS JAMES                                            | 46.529772                  | -110.909218                  |          | NAD83          |                      | 0            |            |            |            | 09N        | 06E        | 24 ADB             | MEAGHER MT               |
| 22222 BRAND-S CORPORATION                                     | 46.51243557                | -110.9156072                 |          | NAD83          | 20120814             | 0            |            |            |            | 09N        | 06E        | 25                 | MEAGHER MT               |
| 22223 BREKKE, HOWARD                                          | 46.51197275                |                              |          | NAD83          | 20190522             | 5035         |            |            |            | 09N        | 06E        | 25 DAAA            | MEAGHER MT               |
| 22224 DOUGLAS STUDS INC.                                      | 46.50873307                |                              |          | NAD83          | 20190523             | 5020         |            |            |            | 09N        | 06E        | 25 D               | MEAGHER MT               |
| 22236 CHAPMAN, FOREST                                         | 46.55626076<br>46.55351538 | -110.8949422<br>-110.8962368 |          | NAD83          | 20190521<br>20190521 | 0            |            |            |            | 09N<br>09N | 07E<br>07E | 7 CAD              | MEAGHER MT<br>MEAGHER MT |
| 22237 OWENS, WALLY<br>22238 HARDEN. WARREN & L                | 46.54985488                | -110.9902300                 |          | NAD83<br>NAD83 | 20190521             | 0            |            |            |            | 09N        | 07E        | 7 CCD              | MEAGHER MT               |
| 22239 SCHENDEL, LLOYD L. & MARIAN R.                          | 46.54985488                | -110.8962368                 |          | NAD83          | 20190521             | 0            |            |            |            | 09N        | 07E        | 7 CDD              | MEAGHER MT               |
| 22240 MASSEE, GERALD                                          | 46.54985488                | -110.8910583                 |          |                | 20190521             | 0            |            |            |            |            | 07E        | 7 DCD              | MEAGHER MT               |
| 22241 CHAPMAN, FOREST                                         | 46.55626228                | -110.8741933                 |          | NAD83          | 20190521             | 0            |            |            |            |            | 07E        | 8                  | MEAGHER MT               |
| 22242 OLSEN CE &GM                                            | 46.55672                   | -110.876171                  | TRS-SEC  | NAD83          |                      | 5070         |            |            |            | 09N        | 07E        | 8 BDDC             | MEAGHER MT               |
| 22243 OLSEN, CLIFFORD E. & GERALDINE M                        | 46.553059                  | -110.884082                  |          | NAD83          | 20090629             | 5065         |            |            |            | 09N        | 07E        | 8 CBCC             | MEAGHER MT               |
| 22244 SAUNDERS, R E JR                                        | 46.55840455                | -110.8292837                 |          | NAD83          | 20190521             | 5200         |            |            |            |            | 07E        | 10 AC              | MEAGHER MT               |
| 22245 SAUNDERS, R.E.                                          | 46.55840455                | -110.8292837                 |          |                | 20190521             | 0            |            |            |            | 09N        | 07E        | 10 AC              | MEAGHER MT               |
| 22246 BECKER, PAUL                                            | 46.5454678                 | -110.8687047                 |          | NAD83          | 20190521             | 0            |            |            |            | 09N        | 07E        | 17 A               | MEAGHER MT               |
| 22247 LESTER, RICHARD                                         | 46.5433                    |                              | UNKNOWN  | NAD27          | 20400524             | 5160         |            |            |            | 09N        | 07E        | 17 ACDB            | MEAGHER MT               |
| 22249 ORCA, PAUL<br>22250 LYNG, VIRGINIA                      | 46.54453949<br>46.54825274 | -110.8726853<br>-110.8726853 |          | NAD83<br>NAD83 | 20190521             | 0            |            |            |            | 09N<br>09N | 07E<br>07E | 17 ACB<br>17 ABB   | MEAGHER MT MEAGHER MT    |
| 22250 LTNG, VIRGINIA<br>22251 KINNICK, JEFF                   | 46.54588659                | -110.8733896                 |          | NAD83          | 20190521             |              | SUR-GPS    | NAVD88     | 20120403   |            | 07E        | 17 ABDC            | MEAGHER MT               |
| 22251 KINNIOK, 3E11<br>22252 WILLIAMS, GEORGE                 | 46.53800042                |                              |          | NAD83          | 20190521             | 0 3143.020   |            |            |            | 09N        | 07E        | 18 C               | MEAGHER MT               |
| 22254 BAILEY, RAY E.                                          | 46.52392337                | -110.8995506                 |          | NAD83          | 20190522             | 5050         |            |            |            | 09N        | 07E        | 19 CACC            | MEAGHER MT               |
| 22255 BAILEY, RAY E.                                          | 46.52120143                |                              |          | NAD83          | 20190522             | 5100         |            |            |            | 09N        | 07E        | 19 DDCB            | MEAGHER MT               |
| 22257 BAILEY, RAY E.                                          | 46.51732808                | -110.8828667                 |          | NAD83          | 20190522             | 5150         |            |            |            | 09N        | 07E        | 29 BBC             | MEAGHER MT               |
| 120962 RUSSELL, DOUG                                          | 46.53160613                | -110.9065886                 |          | NAD83          | 20190522             | 0            |            |            |            | 09N        | 06E        | 24 AAD             | MEAGHER MT               |
| 121574 VAN OIL                                                | 46.54809842                | -110.9042556                 |          |                | 20190521             | 0            |            |            |            | 09N        | 07E        | 18 BBB             | MEAGHER MT               |
| 121575 VAN OIL                                                | 46.54809842                |                              |          | NAD83          | 20190521             | 0            |            |            |            |            | 07E        | 18 BBB             | MEAGHER MT               |
| 121576 VAN OIL                                                | 46.54809842                | -110.9042556                 |          | NAD83          | 20190521             | 0            |            |            |            | 09N        | 07E        | 18 BBB             | MEAGHER MT               |
| 121577 VAN OIL                                                | 46.54809842<br>46.54809842 |                              |          | NAD83          | 20190521             | 0            |            |            |            | 09N        | 07E        | 18 BBB<br>18 BBB   | MEAGHER MT               |
| 121579 VAN OIL                                                | 40.04809842                | -110.9042556                 | I KO-SEC | NAD83          | 20190521             | 0            | <u> </u>   | 1          |            | 09N        | 07E        | 10   DDD           | MEAGHER MT               |

| GWICID DRAINAGE_B    | ADDITION_S               | BLOCK LOT | CERTOFSURV PAR | EL ASSESSORTR | GEOCODE | SITE_TYPE | TOTAL_DEPT SWI | L DATE_COMPL               | HOW_DRILLE                | DRILLING_C                          | DRILLER_NA                 |
|----------------------|--------------------------|-----------|----------------|---------------|---------|-----------|----------------|----------------------------|---------------------------|-------------------------------------|----------------------------|
| 1683 BC              |                          |           |                |               |         | WELL      |                | 90                         |                           |                                     |                            |
| 1687 BC              |                          |           |                |               |         | WELL      | 45<br>330 6    | 0                          |                           |                                     |                            |
| 1688 BC<br>1689 BC   |                          |           |                |               |         | WELL      | 175 3          | 6.4                        |                           |                                     |                            |
| 1690 BC              |                          |           |                |               |         | WELL      |                | 40                         |                           |                                     |                            |
| 1691 BC              |                          |           |                |               |         | WELL      | 110 53.        |                            |                           |                                     |                            |
| 1692 BC              |                          |           |                |               |         | WELL      |                | 20                         |                           |                                     |                            |
| 1695 BC              |                          |           |                |               |         | WELL      |                | 14                         |                           |                                     |                            |
| 1696 BC              |                          |           |                |               |         | WELL      |                | 32                         |                           |                                     |                            |
| 1697 BC              |                          |           |                |               |         | WELL      |                | 64 19610406                | CABLE                     |                                     | CLYDE SANDO                |
| 1698 BC              |                          |           |                |               |         | WELL      | 96 35.         |                            |                           |                                     |                            |
| 1702 BC              |                          |           |                |               |         | WELL      |                | 10                         |                           |                                     |                            |
| 1703 BC              | WILLOW CREEK             |           |                |               |         | WELL      | 85             |                            | CABLE                     |                                     | WESLEY LINDSAY             |
| 1704 BC              | COS 77 - CASTLE MOUNTAIN | 2         |                |               |         | WELL      | 130            |                            | FORWARD ROTARY            | HILLMAN DRILLING                    |                            |
| 1705 BC<br>1706 BC   |                          |           |                |               |         | WELL      | 0              | 0 10701019                 | FORWARD BOTARY            | CDIZZI V DDILLING                   | EDANK CDICK                |
| 1706 BC              |                          |           |                |               |         | WELL      |                |                            | FORWARD ROTARY CABLE      | GRIZZLY DRILLING H & L DRILLING INC | FRANK CRICK<br>HAROLD REID |
| 22184 BC             |                          |           |                |               |         | WELL      | 0              | 3 19560101                 | ONDEL                     | IT & E DIVILLENCE INC               | I WINGED INCID             |
| 22185 BC             |                          |           |                |               |         | WELL      | 0              | 0 19560101                 |                           |                                     |                            |
| 22186 BC             |                          |           |                |               |         | WELL      | 20             |                            | FORWARD ROTARY            | GORDON DRILLING INC                 | JAMES A. GORDON            |
| 22187 BC             |                          |           |                |               |         | WELL      | 23             |                            | FORWARD ROTARY            |                                     | JAMES A. GORDON            |
| 22188 BC             |                          |           |                |               |         | WELL      |                | 22 19470101                |                           |                                     | UNKNOWN                    |
| 22189 BC             |                          |           |                |               |         | WELL      |                | 25 19480101                |                           |                                     | UNKNOWN                    |
| 22190 BC             |                          |           |                |               |         | WELL      | 33             |                            | CABLE                     | H & L DRILLING INC                  | HAROLD REID                |
| 22191 BC             |                          |           |                |               |         | WELL      |                |                            | CABLE                     |                                     | ALBERT HECK                |
| 22192 BC             |                          |           |                |               |         | WELL      |                | 3.5 18820101               |                           |                                     |                            |
| 22193 BC             |                          |           |                |               |         | WELL      |                | 4 19160101                 |                           |                                     |                            |
| 22194 BC             |                          |           |                |               |         | WELL      |                |                            | CABLE                     | H & L DRILLING INC                  | HAROLD REID                |
| 22196 BC             |                          |           |                |               |         | WELL      |                |                            | CABLE                     |                                     | WESLEY LINDSAY             |
| 22197 BC<br>22198 BC |                          |           |                |               |         | WELL      | 47<br>340      |                            | CABLE<br>FORWARD ROTARY   |                                     | WESLEY LINDSAY JOE JOHNSON |
| 22199 BC             |                          |           |                |               |         | WELL      | 0              | 5 19300101                 | FURWARD RUTART            | JOE JOHNSON DRILLING                | UNKNOWN                    |
| 22200 BC             |                          |           |                |               |         | WELL      | 0              | 5 19300101                 |                           |                                     | UNKNOWN                    |
| 22200 BC             |                          |           |                |               |         | WELL      | 0              | 80 19630420                | CABLE                     | A & G DRILLING                      | ALBERT HECK                |
| 22202 BC             |                          |           |                |               |         | WELL      |                | 20 19560101                | O/ IDEE                   | / C O DI CIELLINO                   | ALBERTILLOR                |
| 22203 BC             |                          |           |                |               |         | WELL      |                | 20 19570801                |                           |                                     | UNKNOWN                    |
| 22213 BC             |                          |           |                |               |         | WELL      |                |                            | CABLE                     | LINDSAY DRILLING CO INC             | WESLEY LINDSAY             |
| 22214 BC             |                          |           |                |               |         | WELL      | 90             | 43 19771029                | FORWARD ROTARY            | BILLINGS DRILLING                   | LAVERN JEWETT              |
| 22215 BC             |                          |           |                |               |         | WELL      |                |                            | FORWARD ROTARY            |                                     | LAVERN JEWETT              |
| 22216 BC             |                          |           |                |               |         | WELL      |                |                            | FORWARD ROTARY            |                                     | LAVERN JEWETT              |
| 22217 BC             |                          |           |                |               |         | WELL      |                |                            | FORWARD ROTARY            |                                     | HAROLD REID                |
| 22218 BC             |                          |           |                |               |         | WELL      |                |                            | FORWARD ROTARY            | JOE JOHNSON DRILLING                | JOE JOHNSON                |
| 22219 BC             |                          |           |                |               |         | WELL      |                |                            | CABLE                     | H & L DRILLING INC                  | HAROLD REID                |
| 22220 BC<br>22222 BC |                          |           |                |               |         | WELL      |                | 32 19780101<br>25 19750625 | CABLE                     | HILLMAN DRILLING                    | ED HILLMAN                 |
| 22222 BC             |                          |           |                |               |         | WELL      |                |                            | DRILLED                   | HILLIMAN DRILLING                   | TURNER HANSON              |
| 22224 BC             |                          |           |                |               |         | WELL      |                | 50 19580601                | DIVILLED                  |                                     | UNKNOWN                    |
| 22236 BC             |                          |           |                |               |         | WELL      | 12             | 0 19140101                 |                           |                                     | CHICIOTT                   |
| 22237 BC             |                          |           |                |               |         | WELL      |                |                            | ROTARY                    | HAGGERTY DRILLING                   | KEVIN HAGGERTY             |
| 22238 BC             |                          |           |                |               |         | WELL      |                |                            | FORWARD ROTARY            | GORDON DRILLING INC                 | JAMES A. GORDON            |
| 22239 BC             |                          |           |                |               |         | WELL      |                |                            | FORWARD ROTARY            |                                     | JAMES A. GORDON            |
| 22240 BC             |                          |           |                |               |         | WELL      | 140            | 80 19850615                | FORWARD ROTARY            | MONTANA DRILCO                      | JACK HERBERT               |
| 22241 BC             |                          |           |                |               |         | WELL      |                | 0 19470101                 |                           |                                     |                            |
| 22242 BC             |                          |           |                |               |         | WELL      |                | 10 19000101                |                           |                                     |                            |
| 22243 BC             |                          |           |                |               |         | WELL      |                | 10 18900101                | O. II IDA                 |                                     |                            |
| 22244 BC             |                          |           |                |               |         | WELL      |                |                            | CHURN                     | HANSEN ENVIRONMENTAL DRILLING       | 1                          |
| 22245 BC             |                          |           |                |               |         | WELL      |                |                            | AIR ROTARY                | H & L DRILLING INC                  | HAROLD REID                |
| 22246 BC             | DAT WOOD                 | 6         |                |               |         | WELL      |                |                            | FORWARD ROTARY            |                                     | HAROLD REID                |
| 22247 BC<br>22249 BC | PAT WOOD                 | б         |                |               |         | WELL      |                |                            | AIR ROTARY FORWARD ROTARY |                                     | TERRY LINDSAY HAROLD REID  |
| 22249 BC<br>22250 BC |                          |           |                |               |         | WELL      |                |                            | CABLE                     |                                     | HAROLD REID                |
| 22251 BC             |                          |           |                |               |         | WELL      |                |                            | FORWARD ROTARY            | H & L DRILLING INC                  | HAROLD REID                |
| 22251 BC             |                          |           |                |               |         | WELL      |                |                            | BORED                     |                                     | HAROLD REID                |
| 22254 BC             |                          |           |                |               |         | WELL      |                | 45 19610101                |                           |                                     |                            |
| 22255 BC             |                          |           |                |               |         | WELL      |                | 60 19000101                |                           |                                     |                            |
| 22257 BC             |                          |           |                |               |         | WELL      |                |                            | CABLE TOOLS               |                                     | ALBERT HECK                |
| 120962 BC            |                          |           |                |               |         | WELL      | 113            |                            | ROTARY                    | H & L DRILLING INC                  | HAROLD REID                |
| 121574 BC            |                          |           |                |               |         | WELL      |                |                            | AUGER                     |                                     |                            |
| 121575 BC            |                          |           |                |               |         | WELL      |                |                            | AUGER                     | CNI                                 |                            |
| 121576 BC            | JOB NO 90-3107           |           |                |               |         | WELL      |                |                            | AUGER                     | CNI                                 |                            |
| 121577 BC            | JOB NO 90-3107           |           |                |               |         | WELL      |                |                            | AUGER                     | CNI                                 |                            |
| 121579 BC            |                          |           |                |               |         | WELL      | 17 8.          | 21 19900509                | AUGER                     |                                     |                            |

| GWICID DRILLER LI      | DRILLER 00 | DRILLER FI | VERIFIED T       | ABANDONED | DATE ABAND   | STATUS            | FLOWING DEPTH WATE | AQUIFER PRIORITY       | WELL USE | WELLUSE PR | CALC LOC   | VER LOC    | NETWORK   | FIELD VISI | SWL MEAS | SAMPLES  |
|------------------------|------------|------------|------------------|-----------|--------------|-------------------|--------------------|------------------------|----------|------------|------------|------------|-----------|------------|----------|----------|
| 1683                   | 0          |            | _                | _         | _ NE         | W WELL            | 0                  | 0                      |          |            | NO         | YES        |           | 1          | 0        | 1        |
| 1687<br>1688           | 0          |            |                  |           |              | W WELL            | 0                  | 110ALVM 1              |          |            | NO<br>NO   | YES<br>YES |           | 1          | 0        | 1        |
| 1689                   | 0          |            |                  |           |              | W WELL            |                    | 120SDMS 1              |          |            |            | YES        |           | 1          | 0        | 1        |
| 1690                   | 0          |            |                  |           |              | W WELL            | 0                  |                        |          |            |            | YES        |           | 1          | 0        | 1        |
| 1691                   | 0          |            |                  |           |              | W WELL            |                    | 120SDMS 1              |          |            | NO         | YES        |           | 1          | 0        | 1        |
| 1692<br>1695           | 0          |            |                  |           |              | W WELL            | 0                  | 110ALVM 1              |          |            | NO<br>NO   | YES<br>YES |           | 1          | 0        | 1        |
| 1696                   | 0          |            |                  |           |              | W WELL            |                    | 110ALVM 1              |          |            | NO         | YES        |           | 1          | 0        | 1        |
| 1697                   | 0          |            |                  |           |              | W WELL            |                    | 110ALVM 1              |          |            |            | YES        |           | 1          | 0        | 1        |
| 1698                   | 0          |            |                  |           |              | W WELL            |                    | 110TRRC 1              |          |            |            | YES        |           | 1          | 0        | 4        |
| 1702<br>1703 WWC       | 38         |            | 099361           |           |              | W WELL            |                    | 110ALVM 1<br>400PIGN 1 |          |            | NO<br>NO   | YES<br>YES | STATEWIDE | 1 4        | 92       |          |
| 1703 WWC               | 0          |            | 111874           |           |              | W WELL            | 130                |                        |          |            | NO         | YES        | STATEWIDE | 1          | 92       |          |
| 1705                   | 0          |            |                  |           |              | W WELL            |                    | 110ALVM 1              |          |            |            | YES        |           | 2          | 0        | 2        |
| 1706 WWC               | 365        |            | 113336           |           |              | W WELL            | 96                 |                        |          |            | NO         | YES        |           | 1          | 0        | 1        |
| 1707 WWC<br>22184 WWD  | 334        |            |                  |           |              | W WELL            | 130                |                        |          |            | NO<br>YES  | YES<br>YES |           | 1          | 0        | 1        |
| 22185                  | 0          |            |                  |           |              | W WELL            | 0                  |                        |          |            | YES        | YES        |           | 0          | 0        | 0        |
| 22186 WWC              | 428        | 3          | 030993           |           |              | W WELL            | 8                  | 0                      | )        |            |            | YES        |           | 0          | 0        | 0        |
| 22187 WWC              | 428        |            | 030994           |           |              | W WELL            | 9                  |                        |          |            | YES        | YES        |           | 0          | 0        | 0        |
| 22188 WWD              | 0          |            |                  |           |              | EPENED            | 0                  |                        |          |            | YES        | YES        |           | 0          | 0        | 0        |
| 22189 WWD<br>22190 WWC | 334        |            |                  |           |              | W WELL            | 55                 | 110ALVM 1              |          |            | YES<br>NO  | YES<br>YES |           | 1          | 27       | , 0      |
| 22191 WWD              | 114        |            | 080255           |           |              | W WELL            | 30                 |                        |          |            |            | YES        |           | 0          | 0        |          |
| 22192                  | 0          | )          |                  |           |              | W WELL            | 5                  |                        |          |            |            | YES        |           | 0          | 0        | 0        |
| 22193                  | 0          |            |                  |           |              | W WELL            | 10                 |                        |          |            | YES        | YES        |           | 0          | 0        | 0        |
| 22194 WWC<br>22196 WWC | 334        |            |                  |           |              | W WELL            | 101                |                        |          |            | YES<br>YES | YES<br>YES |           | 0          | 0        | ,        |
| 22197 WWC              | 38         |            |                  |           |              | W WELL            | 47                 |                        |          |            |            | YES        |           | 0          | 0        | 0        |
| 22198 WWC              | 154        |            |                  |           | NE           | W WELL            | 90                 | 0                      |          | C          | YES        | YES        |           | 0          | 0        | 0        |
| 22199                  | 0          |            |                  |           |              | W WELL            | 0                  |                        |          |            |            | YES        |           | 0          | 0        | ,        |
| 22200<br>22201 WWC     | 114        |            |                  |           |              | W WELL            | 0                  | 110ALVM 1              | )        |            | YES<br>YES | YES<br>YES |           | 0          | 0        | 9        |
| 22201 WWC              | 0          |            |                  |           |              | W WELL            |                    | 110ALVM 1              |          |            |            | YES        |           | 0          | 0        | 0        |
| 22203                  | 0          |            |                  |           |              | W WELL            | 132                |                        |          |            |            | YES        |           | 0          | 0        | 0        |
| 22213 WWC              | 38         |            |                  |           |              | W WELL            | 51                 |                        |          |            | YES        | YES        |           | 0          | 0        | 0        |
| 22214 WWC<br>22215 WWC | 264<br>264 |            |                  |           |              | W WELL            | 81                 |                        |          |            | YES<br>YES | YES<br>YES |           | 0          | 0        | 0        |
| 22216 WWC              | 264        |            |                  |           |              | W WELL            | 81                 |                        |          |            |            | YES        |           | 0          | 0        | 0        |
| 22217 WWC              | 334        |            | 009885           |           | NE           | W WELL            | 80                 | 0                      |          |            |            | YES        |           | 0          | 0        | 0        |
| 22218 WWC              | 154        |            |                  |           |              | W WELL            | 79                 |                        | )        |            |            | YES        |           | 0          | 0        | 0        |
| 22219 WWC<br>22220     | 334        |            | 009887           |           |              | W WELL            | 131                |                        |          |            | YES<br>YES | YES<br>YES |           | 0          | 0        | 0        |
| 22222 WWC              | 258        |            |                  |           |              | W WELL            | 79                 | 120SDMS 1              |          |            | YES        | YES        |           | 0          | 0        | 0        |
| 22223                  | 0          |            |                  |           |              | W WELL            | 40                 |                        | )        |            | YES        | YES        |           | 0          | 0        | 0        |
| 22224                  | 0          |            |                  |           |              | W WELL            | 100                |                        |          |            |            | YES        |           | 0          | -        | -        |
| 22236                  | 0          |            | 080256           |           |              | W WELL            | 0                  |                        |          |            |            | YES        |           | 0          |          | ,        |
| 22237 WWC<br>22238 WWC | 353<br>428 |            | 072917<br>030997 |           |              | W WELL            | 80                 |                        |          |            |            | YES<br>YES |           | 0          | -        | -        |
| 22239 WWC              | 428        |            | 030998           |           |              | W WELL            | 83                 |                        |          |            |            | YES        |           | 0          |          | -        |
| 22240 WWC              | 466        | 6          | 009889           |           |              | W WELL            | 110                | 0                      |          |            |            | YES        |           | 0          |          | 0        |
| 22241                  | 0          |            |                  |           |              | W WELL            | 0                  |                        |          |            |            | YES        |           | 0          | ,        | -        |
| 22242<br>22243         | 0          |            |                  |           |              | W WELL            | 0                  | 110ALVM 1              |          |            |            | YES<br>YES |           | 0          | _        | -        |
| 22244 WWC              | 74         |            | 099256           |           |              | W WELL            | 20                 |                        |          |            |            | YES        |           | 0          | 0        | 9        |
| 22245 WWC              | 334        |            | 061430           |           | NE           | W WELL            | 119                | 0                      |          | C          | YES        | YES        |           | 0          | 0        | 0        |
| 22246 WWC              | 334        |            | 009890           |           |              | W WELL            | 60                 |                        |          |            |            | YES        |           | 0          | -        | -        |
| 22247 WWC              | 253        |            | 009891           |           |              | W WELL            |                    | 120SDMS 1              |          |            |            | YES<br>YES |           | 1          | 9        | -        |
| 22249 WWC<br>22250 WWC | 334<br>334 |            |                  |           |              | W WELL            | 100                |                        |          |            |            | YES        |           | 0          | , ,      | ,        |
| 22251 WWC              | 334        |            | 009892           |           |              | W WELL            |                    | 120SDMS 1              |          |            |            |            | STATEWIDE | 4          | ,        | -        |
| 22252 WWC              | 334        | !          | 009893           |           | NE           | W WELL            | 113                |                        |          |            | YES        | YES        |           | 0          | 0        | 0        |
| 22254                  | 0          |            |                  |           |              | W WELL            | 0                  |                        |          |            |            | YES        |           | 0          |          |          |
| 22255<br>22257 WWC     | 0<br>114   |            |                  |           |              | W WELL            | 0 110              |                        |          |            |            | YES<br>YES |           | 0          | -        |          |
| 120962 WWC             | 334        |            | 078519           |           |              | W WELL            | 93                 |                        |          |            |            | YES        |           | 0          | -        | -        |
| 121574                 | 0          |            | 079244           | YES       | 19980707 AB  | BANDONED          | 7.1                | 0                      | )        | C          | YES        | YES        |           | 0          | 0        | 0        |
| 121575                 | 0          |            | 079245           |           |              | W WELL            | 10                 |                        |          |            |            | YES        |           | 0          |          | 9        |
| 121576                 | 0          |            | 079258           |           |              | W WELL            | 10                 |                        |          |            |            | YES        |           | 0          | _        | -        |
| 121577<br>121579       | 0          |            | 079246<br>079248 | YES       |              | BANDONED BANDONED | 10                 |                        |          |            |            | YES<br>YES |           | 0          | -        | -        |
| 12.1010                |            | 1          | J. 02 10         | 10        | ,.5500001 AD |                   | · '                |                        | 1        |            | 1.25       |            |           | U          |          | <u> </u> |

| GWICID                                                 | REPORT LIN                                                                                                                                                                                                                                                                                                                                               | ALL_WATER_                                  | YIELD_GPM                      | PUMPING WA                      | DNRC WATER |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|---------------------------------|------------|
| 1683                                                   | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1683&reqby=M&                                                                                                                                                                                                                                                                     |                                             |                                | _                               | _          |
| 1687                                                   | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1687&reqby=M&                                                                                                                                                                                                                                                                     | STOCKWATER                                  |                                |                                 |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1688&reqby=M&                                                                                                                                                                                                                                                                     | OTHER                                       | 50.00 (OTHER)                  |                                 |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1689&reqby=M&                                                                                                                                                                                                                                                                     | IRRIGATION                                  |                                |                                 |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1690&reqby=M&                                                                                                                                                                                                                                                                     | PUBLIC WATER SUPPLY                         |                                |                                 |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1691&reqby=M&                                                                                                                                                                                                                                                                     | DOMESTIC                                    |                                |                                 |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | FIRE PROTECTION                             |                                |                                 |            |
|                                                        | 1 00 1 1 7 10 17                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                    |                                |                                 |            |
|                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                  | DOMESTIC                                    | 50.00 (OTHER)                  |                                 |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | IRRIGATION                                  | 1200.00 (PUMP)                 | 183.00 (PUMP)                   |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | COMMERCIAL, INDUSTRIAL                      |                                |                                 |            |
|                                                        | 1 95                                                                                                                                                                                                                                                                                                                                                     | DOMESTIC                                    | 2 22 (2 4 11 5 2)              | 22.22 (2.41.52)                 |            |
|                                                        | 1 00 1                                                                                                                                                                                                                                                                                                                                                   | DOMESTIC                                    | 2.00 (BAILER)                  | 80.00 (BAILER)                  | 0.4000     |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1704&reqby=M&                                                                                                                                                                                                                                                                     | DOMESTIC                                    | 5.00 (AIR)                     | 130.00 (AIR)                    | 94908      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | PUBLIC WATER SUPPLY                         | 00.00 (AID)                    | 440.00 (AID)                    | 00004      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC STOCKWATER                         | 20.00 (AIR)                    | 140.00 (AIR)<br>176.00 (BAILER) | 26381      |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1707&reqby=M&<br>http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22184&reqby=M&                                                                                                                                                                            | DOMESTIC, STOCKWATER IRRIGATION, STOCKWATER | 13.00 (BAILER)<br>0.25 (OTHER) | 170.00 (DAILER)                 |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22185&reqby=M&                                                                                                                                                                                                                                                                    | IRRIGATION, STOCKWATER                      | 0.23 (OTHEK)                   |                                 |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC DOMESTIC                           | 19.00 (PUMP)                   | 7.00 (PUMP)                     | 66858      |
|                                                        | 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                  | DOMESTIC                                    | 9.00 (AIR)                     | 8.00 (AIR)                      | 66861      |
|                                                        | 1 33                                                                                                                                                                                                                                                                                                                                                     | DOMESTIC                                    | 30.00 (AIK)                    | 0.00 (All ()                    | 00001      |
|                                                        | 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                |                                             | 20.00 (OTHER)                  |                                 |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | STOCKWATER                                  | 15.00 (BAILER)                 | 18.00 (BAILER)                  | 24180      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | STOCKWATER                                  | 30.00 (BAILER)                 | 10.00 (BAILER)                  | 30023663   |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22192&reqby=M&                                                                                                                                                                                                                                                                    | IRRIGATION, STOCKWATER                      |                                | . J. J. J. (D. IIELIK)          | -5525000   |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22193&reqby=M&                                                                                                                                                                                                                                                                    | IRRIGATION, STOCKWATER                      |                                | 4.00 (OTHER)                    |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC                                    | 9.00 (BAILER)                  | 90.00 (BAILER)                  |            |
|                                                        | 1 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                 | DOMESTIC, IRRIGATION, STOCKWATER            | ,                              | 38.00 (BAILER)                  |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22197&reqby=M&                                                                                                                                                                                                                                                                    |                                             | 30.00 (BAILER)                 | 10.00 (BAILER)                  |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | OTHER                                       | 79.00 (PUMP), 42.00 (PUMP)     |                                 | 37156      |
|                                                        | 1 00 1                                                                                                                                                                                                                                                                                                                                                   | STOCKWATER                                  | 20.00 (OTHER)                  | 5.00 (OTHER)                    |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                             | 20.00 (OTHER)                  | 5.00 (OTHER)                    |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | STOCKWATER                                  | 15.00 (BAILER)                 | 80.00 (BAILER)                  |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | FIRE PROTECTION, INDUSTRIAL                 | ,                              | ,                               |            |
| 22203                                                  | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22203&reqby=M&                                                                                                                                                                                                                                                                    | FIRE PROTECTION, INDUSTRIAL                 |                                |                                 |            |
| 22213                                                  | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22213&reqby=M&                                                                                                                                                                                                                                                                    | DOMESTIC                                    | 15.00 (BAILER)                 | 67.00 (BAILER)                  | 19191      |
| 22214                                                  | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22214&reqby=M&                                                                                                                                                                                                                                                                    | DOMESTIC                                    | 75.00 (AIR)                    | 80.00 (AIR)                     | 16188      |
| 22215                                                  | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22215&reqby=M&                                                                                                                                                                                                                                                                    | DOMESTIC                                    | 75.00 (AIR)                    | 80.00 (AIR)                     | 16187      |
| 22216                                                  | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22216&reqby=M&                                                                                                                                                                                                                                                                    | DOMESTIC                                    | 75.00 (AIR)                    | 80.00 (AIR)                     | 16775      |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22217&reqby=M&                                                                                                                                                                                                                                                                    |                                             | 10.00 (AIR)                    | 90.00 (AIR)                     |            |
|                                                        | 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                  | DOMESTIC                                    | 20.00 (AIR)                    | 80.00 (AIR)                     | 20079      |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22219&reqby=M&                                                                                                                                                                                                                                                                    |                                             | 26.00 (BAILER)                 | 91.00 (BAILER)                  |            |
|                                                        | 1 30                                                                                                                                                                                                                                                                                                                                                     | DOMESTIC                                    | 20.00 (OTHER)                  | 80.00 (OTHER)                   | 20079      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC, IRRIGATION                        | 20.00 (BAILER)                 | 48.00 (BAILER)                  |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22223&reqby=M&                                                                                                                                                                                                                                                                    | DOMESTIC, IRRIGATION, STOCKWATER            | 15.00 (OTHER)                  | 40.00 (OTHER)                   |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22224&reqby=M&                                                                                                                                                                                                                                                                    | INDUSTRIAL OF COMMATER                      | 10.00 (071/55)                 |                                 |            |
|                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=22236&reqby=M&                                                                                                                                                                                                                                                                    | IRRIGATION, STOCKWATER                      | 10.00 (OTHER)                  | 00.00 (417)                     | 75450      |
|                                                        | 1 00 1                                                                                                                                                                                                                                                                                                                                                   | DOMESTIC                                    | 8.00 (AIR)                     | . ,                             | 75159      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC IPPLOATION                         | 13.00 (PUMP)                   | 82.00 (PUMP)                    | 66855      |
|                                                        | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                  | DOMESTIC, IRRIGATION                        | 28.00 (AIR)                    | 05 00 (AID)                     | 66877      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC                                    | 50.00 (AIR)                    | 95.00 (AIR)                     |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC STOCKWATER                         | 5.00 (OTHER)                   |                                 |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC, STOCKWATER                        | 40.00 (OTHER)                  |                                 |            |
|                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                  | DOMESTIC, STOCKWATER                        | 40.00 (OTHER)                  | 22 00 (BAILED)                  |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC<br>STOCKWATER                      | 6.00 (BAILER)                  | 22.00 (BAILER)                  | 71500      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | STOCKWATER                                  | 12.00 (AIR)                    | <del></del>                     | 71599      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC                                    | 5.00 (AIR)                     | 53.00 (AIR)                     |            |
|                                                        | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                  | DOMESTIC UNKNOWN                            | 30.00 (AIR)<br>39.00 (BAILER)  | 196.00 (AIR)<br>85.00 (BAILER)  |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | UNKNOWN                                     | 20.00 (BAILER)                 |                                 | 51496      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC                                    | 20.00 (BAILER)                 | 120.00 (BAILER)                 | 01700      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | UNKNOWN                                     | 50.00 (OTHER)                  | 84.00 (OTHER)                   |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | STOCKWATER                                  | 25.00 (OTHER)                  | OT.OU (OTTIEN)                  |            |
| ZZZ04                                                  |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC, STOCKWATER                        | 50.00 (OTHER)                  |                                 |            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                          | STOCKWATER                                  | 10.00 (BAILER)                 | 170.00 (BAILER)                 |            |
| 22255                                                  |                                                                                                                                                                                                                                                                                                                                                          |                                             | 50.00 (AIR)                    | 170.00 (DAILER)                 | 75140      |
| 22255<br>22257                                         |                                                                                                                                                                                                                                                                                                                                                          | DOMESTIC.                                   |                                |                                 | 10170      |
| 22255<br>22257<br>120962                               | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=120962&reqby=M&                                                                                                                                                                                                                                                                   | DOMESTIC<br>MONITORING                      | 20.00 (/ iii t)                |                                 |            |
| 22255<br>22257<br>120962<br>121574                     | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=120962&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121574&reqby=M&                                                                                                                                                                             | MONITORING                                  | ( · /)                         |                                 |            |
| 22255<br>22257<br>120962<br>121574<br>121575           | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=120962&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121574&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121575&reqby=M&                                                                                       | MONITORING<br>MONITORING                    |                                |                                 |            |
| 22255<br>22257<br>120962<br>121574<br>121575<br>121576 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=120962&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121574&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121575&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121576&reqby=M& | MONITORING                                  |                                |                                 |            |

| GWICID           | SITE_NAME                                                  | LATITUDE    | LONGITUDE GEOMETHOD                                                 | DATUM_LATL              | DATE_LATLO                       | ALTITUDE   METHOD_ALT | DATUM_ALTI | DATE_ALTIT | TOWNSHIP   | RANGE      | SECTION QSECTION | COUNTY                          | STATE |
|------------------|------------------------------------------------------------|-------------|---------------------------------------------------------------------|-------------------------|----------------------------------|-----------------------|------------|------------|------------|------------|------------------|---------------------------------|-------|
| 121580           |                                                            |             | -110.9042556 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 18 BBB           | MEAGHER N                       |       |
| 121581           |                                                            | 46.54809842 |                                                                     | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER N                       |       |
| 121582           |                                                            |             | -110.9042556 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER N                       |       |
|                  | VAN OIL * WSS-10                                           | 46.548098   | -110.904256 TRS-SEC                                                 | NAD83                   | 00100501                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
| 121584           |                                                            | 46.54809842 |                                                                     | NAD83                   | 20190521                         | 0                     |            |            |            | 07E<br>06E |                  | MEAGHER MEAGHER                 |       |
|                  | JORDAN, RALPH<br>JORDAN, MELTON C.                         | 46.55618506 | -110.915968 TRS-SEC<br>-110.9146338 TRS-SEC                         | NAD83<br>NAD83          | 20190521<br>20190521             | 0                     |            |            | 09N<br>09N | 06E        |                  | MEAGHER IN                      |       |
|                  | BARFUS, EARNEST                                            |             | -110.8949422 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
|                  | OGLE, RAY                                                  |             | -110.8949422 TRS-SEC<br>-110.9223626 TRS-SEC                        | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER M                       |       |
|                  | SMITH, ISABEL M.                                           | 46.54809797 | -110.909269 TRS-SEC                                                 | NAD83                   | 20190520                         | 0                     |            |            | 09N        | 06E        | 13 AAB           | MEAGHER N                       |       |
|                  | GOLBERG, JACK                                              | 46.52977188 | -110.9065886 TRS-SEC                                                | NAD83                   | 20190522                         | 0                     |            |            |            | 06E        |                  | MEAGHER N                       |       |
|                  | CORKILL, BILL                                              | 46.51336119 | -110.906393 TRS-SEC                                                 | NAD83                   | 20190522                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | CONSTABLE, HENRY S                                         | 46.55351538 |                                                                     | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
| 123297           | MATHIS, WAYNE                                              | 46.54718042 | -110.9029442 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 18 BB            | MEAGHER N                       | MT    |
| 126059           | DAVISON, IVAN                                              | 46.51706369 | -110.9090256 TRS-SEC                                                | NAD83                   | 20190522                         | 0                     |            |            | 09N        | 06E        | 25 AAC           | MEAGHER N                       | MT    |
| 126060           | HOLM, TIM                                                  | 46.5118     | -110.9133 SUR-GPS                                                   | NAD83                   | 20000717                         | 5004.06               |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | CITY OF WHITE SULPHUR SPRINGS                              | 46.540826   | -110.8833 TRS-SEC                                                   | NAD83                   |                                  | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
|                  | HERZOG, IDA                                                | 46.53252325 |                                                                     | NAD83                   | 20190522                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | GOLDBERG, BRUCE                                            | 46.52793763 |                                                                     | NAD83                   | 20190522                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
| 140987           |                                                            | 46.54809842 |                                                                     | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
| 140988           |                                                            |             | -110.9042556 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
| 140989           | VAN OIL<br>HOCHSTRAT, CALVIN AND KATHLEEN                  |             | -110.9042556 TRS-SEC<br>-110.9065886 TRS-SEC                        | NAD83<br>NAD83          | 20190521<br>20190522             | U                     |            |            | 09N<br>09N | 07E<br>06E |                  | MEAGHER MEAGHER                 |       |
|                  | WHITE SULPHUR SPRINGS                                      |             | -110.9065886 TRS-SEC<br>-110.9042556 TRS-SEC                        | NAD83                   | 20190522                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER M                       |       |
|                  | WELBORN, ROBERT N.                                         |             | -110.9131611 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER I                       |       |
|                  | BAILEY, WALLACE L                                          |             | -110.8833003 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
|                  | BARTH, TIM                                                 | 46.53707222 | -110.909269 TRS-SEC                                                 | NAD83                   | 20190521                         | 0                     |            |            |            | 06E        |                  | MEAGHER N                       |       |
|                  | KNUPP, TERRY                                               | 46.54268287 |                                                                     | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER N                       |       |
|                  | ELLINGTON, DAVID AND LAURA                                 |             | -110.8673778 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
| 152631           | SHAW, FRANK AND LUCILLE                                    | 46.50688182 | -110.9129746 TRS-SEC                                                | NAD83                   | 20190523                         | 0                     |            |            | 09N        | 06E        | 25 DC            | MEAGHER N                       | MT    |
| 154308           | HOWARD, JAMES AND JOYCE                                    | 46.55351634 | -110.8649638 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 8 DAD            | MEAGHER N                       | MT    |
| 154309           | DIXON, HOWARD AND JOANNA                                   | 46.55077041 | -110.8715563 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 8 DC             | MEAGHER N                       | MT    |
| 154310           | HAUGAN, HAL                                                | 46.55077041 | -110.8715563 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 8 DC             | MEAGHER N                       | MT    |
| 154311           | STANGLER, BRIAN                                            | 46.54985509 |                                                                     | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
|                  | ONEILL, NANCY & MAT                                        |             | -110.8713585 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER N                       |       |
|                  | STIDHAM, TRAVIS                                            | 46.53615341 |                                                                     | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | STANGLER, BRIAN AND PAMELA                                 |             | -110.8728748 TRS-SEC                                                | NAD83                   | 20170320                         | 0                     |            |            |            | 07E        |                  | MEAGHER M                       |       |
|                  | MCBRIDE, BOB                                               | 46.54985509 | -110.8728748 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
|                  | MIKESELL, BRYAN AND DONALDA CONSTABLE, HENRY STEVE         | 46.53252325 | -110.9184191 TRS-SEC<br>-110.898826 TRS-SEC                         | NAD83<br>NAD83          | 20120621 20190521                | 0                     |            |            | 09N<br>09N | 06E<br>07E |                  | MEAGHER MEAGHER MEAGHER         |       |
|                  | ADAMS, GARY                                                |             | -110.898828 TRS-SEC                                                 | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        | 1                | MEAGHER N                       |       |
|                  | JACKSON, RONALD                                            |             | -110.9226386 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | CITY OF WHITE SULPHUR SPRINGS                              | 46.54985488 | -110.888469 TRS-SEC                                                 | NAD83                   | 20110407                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
| 172712           |                                                            | 46.54809842 |                                                                     | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 18 BBB           | MEAGHER N                       |       |
| 172713           |                                                            |             | -110.9042556 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
| 172714           | VAN OIL                                                    |             | -110.9042556 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 18 BBB           | MEAGHER N                       | MT    |
| 172715           | VAN OIL                                                    | 46.54809842 | -110.9042556 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 18 BBB           | MEAGHER N                       | MT    |
| 172716           | VAN OIL                                                    | 46.54809842 | -110.9042556 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        | 18 BBB           | MEAGHER N                       | MT    |
|                  | PALMER, KATHY                                              |             | -110.9079031 TRS-SEC                                                | NAD83                   | 20190522                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | GOLBERG, BRUCE AND DEBBIE                                  |             | -110.9065886 TRS-SEC                                                | NAD83                   | 20190522                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | BERG GARAGE INC                                            |             | -110.8872077 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
|                  | BERG GARAGE INC                                            |             | -110.8872077 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            | 09N        | 07E        |                  | MEAGHER N                       |       |
|                  | BERG GARAGE INC BERG GARAGE INC                            |             | -110.8872077 TRS-SEC<br>-110.8872077 TRS-SEC                        | NAD83<br>NAD83          | 20190521<br>20190521             | 0                     |            |            |            | 07E<br>07E |                  | MEAGHER MEAGHER MEAGHER         |       |
|                  | LIND, ANDY                                                 |             | -110.88728748 TRS-SEC                                               | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER I                       |       |
|                  | JOHNSON, MARGARET                                          |             | -110.8715563 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER N                       |       |
|                  | BERG GARAGE INC                                            |             | -110.8872077 TRS-SEC                                                | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER M                       |       |
|                  | BUCSIS, DICK AND MARY ANN                                  | 46.51706369 | -110.906393 TRS-SEC                                                 | NAD83                   | 20190522                         | 0                     |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | WILHELM, GARY A.                                           | 46.51336119 |                                                                     | NAD83                   | 20190522                         | 0                     |            |            |            | 06E        |                  | MEAGHER M                       |       |
|                  | ARNESON, FARRAH                                            | 46.54985488 | -110.898826 TRS-SEC                                                 | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER N                       |       |
| 196315           | MEAGHER COUNTY CONSERVATION DISTRICT                       | 46.5602     | -110.8638 SUR-GPS                                                   | NAD83                   | 20010508                         | 5098.6                |            |            | 09N        | 07E        | 9 BBCC           | MEAGHER N                       | MT    |
| 198531           | BAILEY, WALLACE                                            | 46.52165509 | -110.8868497 TRS-SEC                                                | NAD83                   | 20190522                         | 0                     |            |            |            | 07E        | 19 DD            | MEAGHER N                       | MT    |
|                  | WHITE SULPHUR SPRINGS AIRPORT                              | 46.503      | -110.906 SUR-GPS                                                    | NAD83                   | 20021212                         |                       | NAVD88     |            |            | 06E        |                  | MEAGHER M                       |       |
|                  | CHAPMAN RANCH                                              | 46.552      | -110.8852 SUR-GPS                                                   | NAD83                   | 20000503                         | 5059.79               |            |            |            | 07E        |                  | MEAGHER N                       |       |
|                  | MEAGHER COUNTY - ARROWHEAD MEADOWS GOLF COURSE             | 46.5375     | -110.902 SUR-GPS                                                    | NAD83                   | 20000306                         | 5055.49               |            |            |            | 07E        |                  | MEAGHER N                       |       |
|                  | HERR JIM                                                   | 46.5514     | -110.9049 SUR-GPS                                                   | NAD83                   | 20000628                         | 5029.34               |            |            |            | 07E        |                  | MEAGHER N                       |       |
| 199842           | MIKESELL KEN                                               | 46.5465     | -110.9113 SUR-GPS                                                   | NAD83                   | 20000711                         | 5016.17               |            |            |            | 06E        |                  | MEAGHER N                       |       |
| 400047           | WILHELM GARY                                               | 46.5122     | -110.9147 SUR-GPS                                                   | NAD83                   | 20000308                         | 5000.84               |            |            | 09N        | 06E        |                  | MEAGHER N                       |       |
|                  | IOHNSTON 117 AND DUTH E                                    | 16 EE160E10 | 110 808826 TDC CCC                                                  |                         |                                  |                       |            |            |            |            | 7 CDP            |                                 |       |
| 201750           | JOHNSTON, LIZ AND RUTH E                                   | 46.55168513 | -110.898826 TRS-SEC                                                 | NAD83                   | 20190521                         | 0                     |            |            |            | 07E        |                  | MEAGHER N                       |       |
| 201750<br>206369 | JOHNSTON, LIZ AND RUTH E<br>BARRET, RON<br>LESTER, RICHARD | 46.55534697 | -110.898826 TRS-SEC<br>-110.8649638 TRS-SEC<br>-110.8687047 TRS-SEC | NAD83<br>NAD83<br>NAD83 | 20190521<br>20190521<br>20190521 | 0                     |            |            | 09N        | 07E<br>07E | 8 DAA            | MEAGHER MEAGHER MEAGHER MEAGHER | MT    |

| GWICID DRAINAGE_B      | ADDITION_S                                   | BLOCK | LOT  | CERTOFSURV | PARCEL | ASSESSORTR | GEOCODE | SITE_TYPE         | TOTAL_DEPT | SWL DATE_COMPL                 | HOW_DRILLE               | DRILLING_C                             | DRILLER_NA                   |
|------------------------|----------------------------------------------|-------|------|------------|--------|------------|---------|-------------------|------------|--------------------------------|--------------------------|----------------------------------------|------------------------------|
| 121580 BC              |                                              |       |      |            |        |            |         | WELL              | 20         |                                | AUGER                    | CNI                                    |                              |
| 121581 BC<br>121582 BC | JOB NO 90-3107                               |       |      |            |        |            |         | WELL              | 20         |                                | AUGER<br>AUGER           | CNI                                    |                              |
| 121583 BC              | JOB NO 90-3107                               |       |      |            |        |            |         | WELL              | 16.5       |                                | AUGER                    | CINI                                   |                              |
| 121584 BC              |                                              |       |      |            |        |            |         | WELL              | 16.5       |                                | AUGER                    |                                        |                              |
| 122548 BC              |                                              |       |      |            |        |            |         | WELL              | 175        | 21 19820330                    | CABLE                    | H & L DRILLING INC                     | HAROLD REID                  |
| 122549 BC              | PARBERRY TOWNSITE                            | 51    | 1    |            |        |            |         | WELL              | 80         |                                | UNKNOWN                  | HILLMAN DRILLING                       | ED HILLMAN                   |
| 122551 BC              |                                              |       |      |            |        |            |         | WELL              | 70         |                                | DRILLED                  |                                        | 2111112                      |
| 123026 BC<br>123291 BC |                                              |       |      |            |        |            |         | WELL              | 200<br>150 |                                | ROTARY<br>FORWARD ROTARY | RED TIGER DRILLING MONTANA DRILCO      | DUANE L. HAUSER JACK HERBERT |
| 123291 BC              |                                              |       |      |            |        |            |         | WELL              | 134        |                                | ROTARY                   | H & L DRILLING INC                     | HAROLD REID                  |
| 123293 BC              |                                              |       |      |            |        |            |         | WELL              | 93         |                                | CABLE                    | H & L DRILLING INC                     | HAROLD REID                  |
| 123296 BC              |                                              |       |      |            |        |            |         | WELL              | 40         |                                | ROTARY                   | HAGGERTY DRILLING                      | VINCENT HILLMAN              |
| 123297 BC              | PARBERRY                                     | 18    | 6    |            |        |            |         | WELL              | 50         |                                | FORWARD ROTARY           | GORDON DRILLING INC                    | JAMES A. GORDON              |
| 126059 BC              |                                              |       |      |            |        |            |         | WELL              | 98         |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 126060 BC<br>127777 BC |                                              |       |      |            |        |            |         | WELL              | 79         |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 127777 BC<br>127785 BC |                                              |       |      |            |        |            |         | WELL              | 219        |                                | ROTARY<br>ROTARY         | H & L DRILLING INC H & L DRILLING INC  | SHAWN TONEY SHAWN TONEY      |
| 130696 BC              | SHEARER TRACTS NO 3                          |       | 2    |            |        |            |         | WELL              | 159        | 56 19920526                    | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 140987 BC              |                                              |       |      |            |        |            |         | WELL              | 35         |                                | AIR ROTARY               | BOLAND DRILLING                        | 0.0.000                      |
| 140988 BC              |                                              |       |      |            |        |            |         | WELL              | 35         |                                | AIR ROTARY               | BOLAND DRILLING                        |                              |
| 140989 BC              |                                              |       |      |            |        |            |         | WELL              | 35         |                                | AIR ROTARY               | BOLAND DRILLING                        |                              |
| 142754 BC              |                                              |       |      |            |        |            |         | WELL              | 120        |                                | ROTARY                   | RED TIGER DRILLING                     | DUANE L. HAUSER              |
| 146733 BC<br>149039 BC |                                              |       |      |            |        |            |         | WELL              | 20         |                                | AUGER<br>ROTARY          | CNI H & L DRILLING INC                 | SHAWN TONEY                  |
| 149040 BC              |                                              |       |      |            |        |            |         | WELL              | 124        | 34 19941007                    | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY SHAWN TONEY      |
| 150088 BC              | BARTH MINOR                                  |       | 1    |            |        |            |         | WELL              | 99         |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 150090 BC              | CASTLE MOUNTAIN ESTATES                      |       | 3    |            |        |            |         | WELL              | 198        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 150457 BC              | CASTLE MOUNTAIN                              |       | 1    |            |        |            |         | WELL              | 120        |                                | ROTARY                   | HAGGERTY DRILLING                      | KEVIN HAGGERTY               |
| 152631 BC              |                                              |       |      |            |        |            |         | WELL              | 103        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 154308 BC              | CASTLE VALLEY MEADOWS                        |       | 13   |            |        |            |         | WELL              | 118        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 154309 BC<br>154310 BC | CASTLE VALLEY MEADOWS  CASTLE VALLEY MEADOWS |       | 12   |            |        |            |         | WELL              | 107<br>158 |                                | ROTARY<br>ROTARY         | H & L DRILLING INC H & L DRILLING INC  | SHAWN TONEY SHAWN TONEY      |
| 154311 BC              | CASTLE VALLEY MEADOWS  CASTLE VALLEY MEADOWS |       | 10   |            |        |            |         | WELL              | 139        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 154313 BC              | ROONEY TRACTS                                |       | 4    |            |        |            |         | WELL              | 139        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 157791 BC              | BARTH MINOR                                  |       | 2    |            |        |            |         | WELL              | 99         |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 157792 BC              | CASTLE VALLEY MEADOWS                        |       |      |            |        | 5          |         | WELL              | 97         | 36 19960607                    | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 157793 BC              | CASTLE VALLEY MEADOWS                        |       |      |            |        |            |         | WELL              | 135        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 159243 BC              | SHEARER TRACTS #2                            |       |      |            |        |            |         | WELL              | 168        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 163136 BC<br>164078 BC | CASTLE VALLEY MEADOWS                        |       | TR 9 |            |        |            |         | WELL              | 139<br>134 |                                | ROTARY<br>ROTARY         | H & L DRILLING INC H & L DRILLING INC  | SHAWN TONEY SHAWN TONEY      |
| 168726 BC              | CASTLE VALLET MEADOWS                        |       | INS  |            |        |            |         | WELL              | 99         | 24 19980605                    | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 172711 BC              |                                              |       |      |            |        |            |         | WELL              | 201        | 22 19990421                    | ROTARY                   | BUSH DRILLING                          | BILL MAXWELL                 |
| 172712 BC              |                                              |       |      |            |        |            |         | WELL              | 18         | 7.3 19980707                   |                          |                                        |                              |
| 172713 BC              |                                              |       |      |            |        |            |         | WELL              | 26         | 15.6 19980707                  |                          |                                        |                              |
| 172714 BC              |                                              |       |      |            |        |            |         | WELL              | 14         | 11.3 19981006                  |                          |                                        |                              |
| 172715 BC<br>172716 BC |                                              |       |      |            |        |            |         | WELL              | 35         | 11.7 19981006<br>11.3 19981006 |                          |                                        |                              |
| 177710 BC              |                                              | Α     |      |            |        |            |         | WELL              | 68         |                                | ROTARY                   | HILLMAN DRILLING                       | RANDY TREY                   |
| 179518 BC              |                                              |       |      |            |        |            |         | WELL              | 110        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 180192 BC              |                                              |       |      |            |        |            |         | WELL              | 20.5       | 14 20000105                    | HSA                      | MAXIM TECHNOLOGIES                     | PAUL BRAY                    |
| 180193 BC              |                                              |       |      |            |        |            |         | WELL              | 20         |                                | HSA                      | MAXIM TECHNOLOGIES                     | PAUL BRAY                    |
| 181860 BC              |                                              |       |      |            |        |            |         | WELL              | 25         |                                | ·                        | MAXIM TECHNOLOGIES                     | PAUL BRAY                    |
| 181861 BC<br>186204 BC |                                              |       |      |            |        |            |         | WELL              | 16.5<br>58 |                                | ROTARY                   | MAXIM TECHNOLOGIES  H & L DRILLING INC | PAUL BRAY SHAWN TONEY        |
| 186207 BC              |                                              |       |      |            |        |            |         | WELL              | 117        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 186208 BC              |                                              |       |      |            |        |            |         | WELL              | 27         |                                | HSA                      | MAXIM TECHNOLOGIES                     | PAUL BRAY                    |
| 186272 BC              |                                              |       | 3    |            |        |            |         | WELL              | 138        | 56 20001003                    | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 186273 BC              |                                              |       |      |            |        |            |         | WELL              | 160        |                                | ROTARY                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 195645 BC              |                                              |       |      |            |        |            |         | WELL              | 140        | 47 20020422                    | ROTARY                   | BRIDGER DRILLING INC                   | JAY BICK                     |
| 196315 BC<br>198531 BC |                                              |       |      |            |        |            |         | WELL              | 28<br>357  | 15.32<br>150 20020725          | ROTARY                   | H & L DRILLING INC                     | SHAMM TONEY                  |
| 198531 BC<br>199819 BC |                                              |       |      |            |        |            |         | WELL              |            | 54.29                          | NOTART                   | H & L DRILLING INC                     | SHAWN TONEY                  |
| 199827 BC              |                                              |       |      |            |        |            |         | WELL              |            | 12.06                          |                          |                                        |                              |
| 199828 BC              |                                              |       |      |            |        |            |         | WELL              |            | 72.85                          |                          |                                        |                              |
| 199830 BC              |                                              |       |      |            |        |            |         | WELL              | 21         | 7.3                            |                          |                                        |                              |
| 199842 BC              |                                              |       |      |            |        |            |         | WELL              | 25         | 8.18                           |                          |                                        |                              |
| 199847 BC              |                                              | 1,    |      |            |        |            |         | WELL              | 140        | 19.02                          | 20712                    |                                        |                              |
| 201750 BC              | HIGGINS ADDITION                             | 41    | 1    |            |        |            |         | WELL              | 200        |                                | ROTARY                   | DIAMOND M DRILLING INC                 | BILL MAXWELL                 |
| 206369 BC<br>208223 BC | CASTLE VALLEY MEADOWS  APACHE WOODS          |       | 14   |            |        |            |         | WELL              | 110<br>160 |                                | ROTARY<br>ROTARY         | H & L DRILLING INC VIDIC DRILLING INC  | SHAWN TONEY DENNIS VIDIC     |
| 212769 BC              | ALAGIE WOODS                                 |       |      |            |        |            |         | PRECIP STATION    |            | 0                              | NOTAIN                   | VIDIO DIVILLING INC                    | DEMINIS VIDIO                |
| 2.2.55 55              | +                                            |       |      |            |        |            |         | I. ILESII STATION | . J        | <u> </u>                       | ļ                        | <u> </u>                               |                              |

| GWICID DRILLER_LI        | DRILLER_00   DRILLER_F | VERIFIED_T       | ABANDONED_ | DATE_ABAND | STATUS                | FLOWING | DEPTH_WATE A | AQUIFER | PRIORITY | WELL_USE | WELLUSE_PR | CALC_LOC   | VER_LOC    | NETWORK | FIELD_VISI | SWL_MEAS | SAMPLES |
|--------------------------|------------------------|------------------|------------|------------|-----------------------|---------|--------------|---------|----------|----------|------------|------------|------------|---------|------------|----------|---------|
| 121580                   | 0                      | 079259           |            |            | ABANDONED             |         | 9            |         | 0        |          |            | YES        | YES        |         | 0          | -        | (       |
| 121581<br>121582         | 0                      | 079249<br>079250 |            |            | ABANDONED ABANDONED   |         | 10           |         | 0        |          |            | YES<br>YES | YES<br>YES |         | 0          | -        |         |
| 121583                   | 0                      | 079251           | YES        |            | ABANDONED             |         | 5.5          |         | 0        |          |            | YES        | YES        |         | 0          | -        |         |
| 121584                   | 0                      | 079252           | YES        |            | ABANDONED             |         | 4.5          |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 122548 WWC               | 334                    | 080434           |            |            | NEW WELL              |         | 110          |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 122549 WWC               | 258                    | 080435           |            |            | NEW WELL              |         | 80           |         | 0        |          |            | YES        | YES        |         | 0          | -        | (       |
| 122551                   | 0                      | 080437           |            |            | NEW WELL              |         | 0            |         | 0        |          |            | YES        | YES        |         | 0          | -        |         |
| 123026 WWC<br>123291 WWC | 386<br>466             | 081857<br>044249 |            |            | NEW WELL<br>NEW WELL  |         | 180<br>140   |         | 0        |          |            | YES<br>YES | YES<br>YES |         | 0          | 0        |         |
| 123291 WWC               | 334                    | 080761           |            |            | NEW WELL              |         | 134          |         | 0        |          |            | YES        | YES        |         | 0          | 0        |         |
| 123293 WWC               | 334                    | 080762           |            |            | NEW WELL              |         | 93           |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 123296 WWC               | 436                    | 081964           |            |            | NEW WELL              |         | 38           |         | 0        |          | 0          | YES        | YES        |         | 0          | 0        | (       |
| 123297 WWC               | 428                    | 081965           |            |            | NEW WELL              |         | 34           |         | 0        |          |            | YES        | YES        |         | 0          |          | (       |
| 126059 WWC               | 447                    | 086255           |            |            | NEW WELL              |         | 98           | 2001100 | 0        |          |            | YES        | YES        |         | 0          |          | `       |
| 126060 WWC<br>127777 WWC | 447<br>447             | 086256<br>088633 |            |            | NEW WELL<br>NEW WELL  |         | 199          | 20SNGR  | 0        |          |            | NO<br>YES  | YES<br>YES |         | 1          | - 00     |         |
| 127777 WWC               | 447                    | 088632           |            |            | NEW WELL              |         | 80           |         | 0        |          |            | YES        | YES        |         | 0          |          |         |
| 130696 WWC               | 447                    | 091490           |            |            | NEW WELL              |         | 130          |         | 0        |          |            | YES        | YES        |         | 0          | 0        |         |
| 140987                   | 0                      | 103234           |            |            | ABANDONED             |         | 0            |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 140988                   | 0                      | 103235           |            |            | ABANDONED             |         | 0            |         | 0        |          | 0          | YES        | YES        |         | 0          | 0        | (       |
| 140989                   | 0                      | 103236           |            |            | ABANDONED             |         | 0            |         | 0        |          |            | YES        | YES        |         | 0          | -        | (       |
| 142754 WWC               | 386                    | 104822           |            |            | NEW WELL              |         | 0            |         | 0        |          |            | YES        | YES        |         | 0          | -        | (       |
| 146733<br>149039 WWC     | 0<br>447               | 108562<br>110562 |            |            | ABANDONED<br>NEW WELL |         | 7<br>124     |         | 0        |          |            | YES<br>YES | YES<br>YES |         | 0          |          | (       |
| 149039 WWC               | 447                    | 110562           |            |            | NEW WELL              |         | 99           |         | 0        |          |            | YES        | YES        |         | 0          | -        |         |
| 150088 WWC               | 447                    | 112094           |            |            | NEW WELL              |         | 79           |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 150090 WWC               | 447                    | 111809           |            |            | NEW WELL              |         | 178          |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 150457 WWC               | 353                    | 111211           |            |            | NEW WELL              |         | 100          |         | 0        |          | 0          | YES        | YES        |         | 0          | 0        | (       |
| 152631 WWC               | 447                    | 114142           |            |            | NEW WELL              |         | 103          |         | 0        |          |            | YES        | YES        |         | 0          | -        | C       |
| 154308 WWC               | 447                    | 115754           |            |            | NEW WELL              |         | 98           |         | 0        |          |            | YES        | YES        |         | 0          | Ü        | (       |
| 154309 WWC               | 447                    | 115755           |            |            | NEW WELL              |         | 107          |         | 0        |          |            | YES        | YES        |         | 0          | -        | _       |
| 154310 WWC<br>154311 WWC | 447<br>447             | 115756<br>115757 |            |            | NEW WELL<br>NEW WELL  |         | 138<br>119   |         | 0        |          |            | YES<br>YES | YES<br>YES |         | 0          | -        |         |
| 154313 WWC               | 447                    | 115757           |            |            | NEW WELL              |         | 119          |         | 0        |          |            | YES        | YES        |         | 0          | -        |         |
| 157791 WWC               | 447                    | 119065           |            |            | NEW WELL              |         | 99           |         | 0        |          |            | YES        | YES        |         | 0          | -        |         |
| 157792 WWC               | 447                    | 119066           |            |            | NEW WELL              |         | 57           |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 157793 WWC               | 447                    | 119067           |            |            | NEW WELL              |         | 95           |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 159243 WWC               | 447                    | 120183           |            |            | NEW WELL              |         | 145          |         | 0        |          |            | YES        | YES        |         | 0          | -        | (       |
| 163136 WWC               | 447                    | 125099           |            |            | NEW WELL              |         | 119          |         | 0        |          |            | YES        | YES        |         | 0          |          |         |
| 164078 WWC<br>168726 WWC | 447<br>447             | 125413           |            |            | NEW WELL<br>NEW WELL  |         | 94           |         | 0        |          |            | YES<br>YES | YES<br>YES |         | 0          | 0        |         |
| 172711 WWC               | 597                    | 134064           |            |            | NEW WELL              |         | 145          |         | 0        |          |            | YES        | YES        |         | 0          | 0        |         |
| 172712                   | 0                      | 134065           |            |            | ABANDONED             |         | 8            |         | 0        |          |            | YES        | YES        |         | 0          | 0        |         |
| 172713                   | 0                      | 134066           |            |            | ABANDONED             |         | 11           |         | 0        |          |            | YES        | YES        |         | 0          | 0        | (       |
| 172714                   | 0                      | 134067           | YES        |            | ABANDONED             |         | 10           |         | 0        |          |            | YES        | YES        |         | 0          | 0        | С       |
| 172715                   | 0                      | 134068           |            |            | ABANDONED             |         | 10           |         | 0        |          |            |            | YES        |         | 0          | -        |         |
| 172716                   | 0                      | 134069           |            |            | ABANDONED             |         | 10           |         | 0        |          |            | YES        | YES        |         | 0          |          |         |
| 177531 WWC<br>179518 WWC | 105<br>447             | 137645<br>141856 |            |            | NEW WELL              |         | 68           |         | 0        |          |            | YES<br>YES | YES<br>YES |         | 0          | -        | -       |
| 180192 MWC               | 344                    | 140017           |            |            | NEW WELL              |         | 5            |         | 0        |          |            |            | YES        |         | 0          | -        | _       |
| 180193 MWC               | 344                    | 140018           |            |            | NEW WELL              |         | 4.5          |         | 0        |          |            | YES        | YES        |         | 0          | -        |         |
| 181860 MWC               | 344                    | 140817           |            |            | NEW WELL              |         | 9.5          |         | 0        |          | 0          | YES        | YES        |         | 0          | 0        | (       |
| 181861 MWC               | 344                    | 140818           |            |            | NEW WELL              |         | 6            |         | 0        |          |            | YES        | YES        |         | 0          | -        | (       |
| 186204 WWC               | 447                    |                  |            |            | NEW WELL              |         | 38           |         | 0        |          |            |            | YES        |         | 0          | -        | -       |
| 186207 WWC<br>186208 MWC | 447<br>344 MW-2A       |                  |            |            | NEW WELL              |         | 77           |         | 0        |          |            | YES<br>YES | YES<br>YES |         | 0          |          |         |
| 186208 MWC               | 344 MVV - 2A<br>447    |                  |            |            | NEW WELL              |         | 110          |         | 0        |          |            | YES        | YES        |         | 0          | -        |         |
| 186273 WWC               | 447                    |                  |            |            | NEW WELL              |         | 60           |         | 0        |          |            |            | YES        |         | 0          |          |         |
| 195645 WWC               | 425                    |                  |            |            | NEW WELL              |         | 100          |         | 0        |          |            | YES        | YES        |         | 0          | -        |         |
| 196315                   | 0                      |                  |            |            | NEW WELL              |         |              | 10ALVM  | 1        |          | 0          | NO         | YES        |         | 1          |          |         |
| 198531 WWC               | 447                    |                  |            |            | NEW WELL              |         | 307          |         | 0        |          |            | YES        | YES        |         | 0          |          |         |
| 199819                   | 0                      |                  |            |            | NEW WELL              |         |              | 20SDMS  | 1        |          |            |            | YES        |         | 1          |          |         |
| 199827<br>199828         | 0                      |                  |            |            | NEW WELL              |         | 0 11         | 10ALVM  | <u>1</u> |          |            | NO<br>NO   | YES<br>YES |         | 1          | - 00     |         |
| 199828                   | 0                      |                  |            |            | NEW WELL              |         |              | 10ALVM  | 1        |          |            | NO         | YES        |         | 1          |          |         |
| 199842                   | 0                      |                  |            |            | NEW WELL              |         |              | 10ALVM  | 1        |          |            |            | YES        |         | 1          |          |         |
| 199847                   | 0                      |                  |            |            | NEW WELL              |         |              | 20SDMS  | 1        |          |            | NO         | YES        |         | 1          |          |         |
| 201750 WWC               | 597                    |                  |            |            | NEW WELL              |         | 180          |         | 0        |          | 0          | YES        | YES        |         | 0          |          |         |
| 206369 WWC               | 447                    |                  |            |            | NEW WELL              |         | 90           |         | 0        |          |            |            | YES        |         | 0          |          |         |
| 208223 WWC               | 526 LESTER             |                  |            |            | NEW WELL              |         | 140          |         | 0        |          |            |            | YES        |         | 0          | -        |         |
| 212769                   | 0                      |                  |            |            |                       |         | 0            |         | 0        |          | 0          | NO         | YES        |         | 0          | 0        | . (     |

| 404500                                                                                                                                                                                                 | REPORT_LIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALL WATER                                                                                                                                                                                                     | YIELD GPM                                                                                   | PUMPING WA      | DNRC WA                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|--------------------------------|
| 121580                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121580&regby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121581&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121582&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121583&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    |                                                                                             |                 |                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=121584&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    | 0.00 (DAILED)                                                                               | 445.00 (DAILED) |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=122548&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               | 3.00 (BAILER)                                                                               | 115.00 (BAILER) |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=122549&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STOCKWATER                                                                                                                                                                                                    | 7.00 (AIR)                                                                                  | 80.00 (AIR)     | 66911                          |
| 122551                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=122551&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WILDLIFE                                                                                                                                                                                                      | 10.00 (OTHER)                                                                               |                 |                                |
| 123026                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=123026&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STOCKWATER                                                                                                                                                                                                    | 85.00 (AIR)                                                                                 |                 | 78541                          |
| 123291                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=123291&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC, IRRIGATION                                                                                                                                                                                          | 10.00 (AIR)                                                                                 | 130.00 (AIR)    |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=123292&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 40.00 (AIR)                                                                                 | 120.00 (AIR)    | 30117411                       |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=123293&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2020110                                                                                                                                                                                                       | 50.00 (BAILER)                                                                              | 53.00 (BAILER)  | 00111111                       |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOMESTIC                                                                                                                                                                                                      | ` '                                                                                         |                 | 77005                          |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=123296&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 60.00 (AIR)                                                                                 | 35.00 (AIR)     | 77895                          |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=123297&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 23.00 (AIR)                                                                                 | 45.00 (AIR)     |                                |
| 126059                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=126059&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 20.00 (AIR)                                                                                 | 85.00 (AIR)     | 113640                         |
| 126060                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=126060&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 20.00 (AIR)                                                                                 | 68.00 (AIR)     | 88163                          |
| 127777                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=127777&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 5.00 (AIR)                                                                                  | 209.00 (AIR)    | 80786                          |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=127785&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IRRIGATION                                                                                                                                                                                                    | 25.00 (AIR)                                                                                 | 70.00 (AIR)     | 80712                          |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=130696&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 60.00 (AIR)                                                                                 | 148.00 (AIR)    | 96874                          |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=140987&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    | 00.00 (AIIV)                                                                                | 140.00 (All t)  | 30074                          |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=140988&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=140989&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=142754&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               | 30.00 (AIR)                                                                                 | 98.00 (AIR)     | 90317                          |
| 146733                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=146733&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITORING                                                                                                                                                                                                    |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=149039&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 50.00 (AIR)                                                                                 | 102.00 (AIR)    |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=149040&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STOCKWATER                                                                                                                                                                                                    | 50.00 (AIR)                                                                                 | 139.00 (AIR)    |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=150088&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 35.00 (AIR)                                                                                 | 79.00 (AIR)     | 94873                          |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               | ` ,                                                                                         | ` '             |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=150090&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 25.00 (AIR)                                                                                 | 180.00 (AIR)    | 93886                          |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=150457&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 15.00 (AIR)                                                                                 | 115.00 (AIR)    | 94907                          |
| 152631                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=152631&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 45.00 (AIR)                                                                                 | 79.00 (AIR)     | 93846                          |
| 154308                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=154308&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 30.00 (AIR)                                                                                 | 97.00 (AIR)     | 94961                          |
| 154309                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=154309&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 15.00 (AIR)                                                                                 | 93.00 (AIR)     |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=154310&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 30.00 (AIR)                                                                                 | 136.00 (AIR)    |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=154311&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 50.00 (AIR)                                                                                 | 111.00 (AIR)    | 30002693                       |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                             | ` '             | 30002093                       |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=154313&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 30.00 (AIR)                                                                                 | 120.00 (AIR)    |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=157791&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 30.00 (AIR)                                                                                 | 76.00 (AIR)     |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=157792&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 35.00 (AIR)                                                                                 | 76.00 (AIR)     | 30110540                       |
| 157793                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=157793&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 30.00 (AIR)                                                                                 | 110.00 (AIR)    |                                |
| 159243                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=159243&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 60.00 (AIR)                                                                                 | 140.00 (AIR)    |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=163136&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 30.00 (AIR)                                                                                 | 105.00 (AIR)    | 101599                         |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=164078&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 22.00 (AIR)                                                                                 | 95.00 (AIR)     | 101000                         |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOMESTIC                                                                                                                                                                                                      | 20.00 (AIR)                                                                                 | 80.00 (AIR)     |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=168726&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               | ` '                                                                                         |                 | 01010                          |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=172711&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PUBLIC WATER SUPPLY                                                                                                                                                                                           | 1000.00 (PUMP)                                                                              | 58.00 (PUMP)    | 61342                          |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=172712&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                             |                 |                                |
| 172713                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=172713&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                             |                 |                                |
| 172714                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=172714&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=172715&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                             |                 |                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                             |                 |                                |
| 1///16                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sglserver/v11/reports/SiteSummary.asp?gwicid=172716&regby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                             |                 |                                |
|                                                                                                                                                                                                        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=172716&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 15.00 (AIR)                                                                                 |                 |                                |
| 177531                                                                                                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMESTIC                                                                                                                                                                                                      | 15.00 (AIR)                                                                                 |                 |                                |
| 177531<br>179518                                                                                                                                                                                       | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IRRIGATION                                                                                                                                                                                                    | 15.00 (AIR)<br>25.00 (AIR)                                                                  |                 |                                |
| 177531<br>179518<br>180192                                                                                                                                                                             | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRRIGATION<br>MONITORING                                                                                                                                                                                      |                                                                                             |                 |                                |
| 177531<br>179518<br>180192<br>180193                                                                                                                                                                   | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IRRIGATION MONITORING MONITORING                                                                                                                                                                              |                                                                                             |                 |                                |
| 177531<br>179518<br>180192<br>180193<br>181860                                                                                                                                                         | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IRRIGATION<br>MONITORING                                                                                                                                                                                      |                                                                                             |                 |                                |
| 177531<br>179518<br>180192<br>180193<br>181860                                                                                                                                                         | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IRRIGATION MONITORING MONITORING                                                                                                                                                                              |                                                                                             |                 |                                |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861                                                                                                                                               | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING                                                                                                                                             |                                                                                             |                 | 113623                         |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204                                                                                                                                     | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IRRIGATION MONITORING MONITORING MONITORING MONITORING DOMESTIC                                                                                                                                               | 25.00 (AIR)<br>40.00 (AIR)                                                                  |                 | 113623                         |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207                                                                                                                           | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IRRIGATION MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC                                                                                                                                      | 25.00 (AIR)                                                                                 |                 | 113623                         |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208                                                                                                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRRIGATION MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING                                                                                                                           | 25.00 (AIR)<br>40.00 (AIR)<br>32.00 (AIR)                                                   |                 |                                |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272                                                                                                       | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IRRIGATION MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC                                                                                                                  | 25.00 (AIR)<br>40.00 (AIR)<br>32.00 (AIR)<br>21.00 (AIR)                                    |                 | 113641                         |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273                                                                                             | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1861&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IRRIGATION MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION                                                                                                       | 25.00 (AIR)<br>40.00 (AIR)<br>32.00 (AIR)<br>21.00 (AIR)<br>275.00 (PUMP)                   | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273                                                                                             | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwic | IRRIGATION MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION                                                                                            | 25.00 (AIR)<br>40.00 (AIR)<br>32.00 (AIR)<br>21.00 (AIR)                                    | 126.00 (PUMP)   | 113641                         |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273                                                                                             | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1861&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IRRIGATION MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION                                                                                                       | 25.00 (AIR)<br>40.00 (AIR)<br>32.00 (AIR)<br>21.00 (AIR)<br>275.00 (PUMP)                   | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273<br>195645                                                                                   | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M&http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwic | IRRIGATION MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION                                                                                            | 25.00 (AIR)<br>40.00 (AIR)<br>32.00 (AIR)<br>21.00 (AIR)<br>275.00 (PUMP)                   | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273<br>195645<br>196315                                                                         | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=1861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186278&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19645&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/ | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION MONITORING STOCKWATER                                                           | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)              | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273<br>195645<br>196315<br>198531                                                               | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=195645&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/repor | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC                                                  | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)              | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186273<br>195645<br>196315<br>198531<br>199819                                                               | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=195645&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/ | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC DOMESTIC                                         | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)              | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273<br>195645<br>196315<br>198531<br>199819<br>199827                                           | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/Sit | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC UNUSED                                           | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)              | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273<br>195645<br>196315<br>199819<br>199827<br>199828                                           | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/Sit | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC UNUSED DOMESTIC                                  | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)              | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186272<br>186273<br>195645<br>196315<br>199819<br>199827<br>199828<br>199830<br>199842                       | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186202&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=18627&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=18627&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19882&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/S | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC UNUSED DOMESTIC INDUSTRIAL            | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)              | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>18186204<br>186204<br>186207<br>186208<br>186272<br>186273<br>195645<br>196315<br>199819<br>199827<br>199828<br>199830<br>199842                     | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=18627&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199819&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199830&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/report | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC UNUSED DOMESTIC                                  | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)              | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186273<br>195645<br>196315<br>199819<br>199827<br>199828<br>199830<br>199842                                 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=18627&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199819&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199830&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/report | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC UNUSED DOMESTIC INDUSTRIAL STOCKWATER | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)  20.00 (AIR) | 126.00 (PUMP)   | 113641<br>30066514             |
| 177531<br>179518<br>180192<br>180193<br>181860<br>181861<br>186204<br>186207<br>186208<br>186273<br>195645<br>196315<br>199819<br>199827<br>199828<br>199830<br>199847<br>201750                       | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186208&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186272&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19645&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199819&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199828&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=19982&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199848&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199847&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199847&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199847&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199847&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC IRRIGATION IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC UNUSED DOMESTIC INDUSTRIAL STOCKWATER DOMESTIC            | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)  20.00 (AIR) | 126.00 (PUMP)   | 113641<br>30066514<br>30002057 |
| 177531<br>179518<br>180192<br>180193<br>181860<br>18186204<br>186204<br>186207<br>186208<br>186273<br>195645<br>196315<br>199819<br>199827<br>199828<br>199830<br>199842<br>199847<br>201750<br>206369 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=177531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=179518&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180192&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=180193&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181860&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=181861&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186204&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186207&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=18627&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=186273&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=196315&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=198531&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199819&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199827&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199830&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=199842&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/report | IRRIGATION MONITORING MONITORING MONITORING MONITORING MONITORING DOMESTIC DOMESTIC MONITORING DOMESTIC IRRIGATION IRRIGATION IRRIGATION MONITORING STOCKWATER DOMESTIC UNUSED DOMESTIC INDUSTRIAL STOCKWATER | 25.00 (AIR)  40.00 (AIR)  32.00 (AIR)  21.00 (AIR)  275.00 (PUMP)  40.00 (AIR)  20.00 (AIR) | 126.00 (PUMP)   | 113641<br>30066514<br>30002057 |

| GWICID                 | SITE_NAME     | LATITUDE    | LONGITUDE    | GEOMETHOD | DATUM_LATL | DATE_LATLO | ALTITUDE   METHOD_ALT | DATUM_ALTI | DATE_ALTIT | TOWNSHIP | RANGE | SECTION QSECTION | COUNTY STATE |
|------------------------|---------------|-------------|--------------|-----------|------------|------------|-----------------------|------------|------------|----------|-------|------------------|--------------|
| 213250 BARRETT, JOHN   |               | 46.53616442 | -110.8976987 | TRS-SEC   | NAD83      | 20190521   | 0                     |            | _          | 09N      | 07E   | 18 CD            | MEAGHER MT   |
| 213456 COLLINS, DAVE   | AND KAREN     | 46.50688182 | -110.9182398 | TRS-SEC   | NAD83      | 20190522   | 0                     |            |            | 09N      | 06E   | 25 CD            | MEAGHER MT   |
| 228960 HURWITZ, CONN   | IE            | 46.50604012 | -110.8853485 | TRS-SEC   | NAD83      | 20190522   | 0                     |            |            | 09N      | 07E   | 30 DDD           | MEAGHER MT   |
| 228961 FEDDES, BRIAN   | AND MEREDITH  | 46.53344038 | -110.9092176 | TRS-SEC   | NAD83      | 20190522   | 0                     |            |            | 09N      | 06E   | 24 AAB           | MEAGHER MT   |
| 234316 BERG GARAGE I   | NC.           | 46.54718042 | -110.8872077 | TRS-SEC   | NAD83      | 20190521   | 0                     |            |            | 09N      | 07E   | 18 AA            | MEAGHER MT   |
| 238837 BAILEY, WALLAC  | CE L.         | 46.56109701 | -110.8464382 | TRS-SEC   | NAD83      | 20190521   | 0                     |            |            | 09N      | 07E   | 9 AAC            | MEAGHER MT   |
| 246200 LINK NATHAN     |               | 46.544539   | -110.870032  | TRS-SEC   | NAD83      | 20081009   | 0                     |            |            | 09N      | 07E   | 17 ACA           | MEAGHER MT   |
| 247141 KAKUK LAURA E   |               | 46.542585   | -110.919855  | TRS-SEC   | NAD83      | 20081010   | 0                     |            |            | 09N      | 06E   | 13 BDC           | MEAGHER MT   |
| 250791 BROWN, CLINTO   | N             | 46.507017   | -110.913367  | NAV-GPS   | NAD83      | 20090612   | 0                     |            |            | 09N      | 06E   | 25 DC            | MEAGHER MT   |
| 250850 YAMHILL LUMBE   | R CO.         | 46.53707222 | -110.909269  | TRS-SEC   | NAD83      | 20190521   | 0                     |            |            | 09N      | 06E   | 13 DDB           | MEAGHER MT   |
| 250853 ERIKSON, CLARI  | NCE           | 46.53344038 | -110.9092176 | TRS-SEC   | NAD83      | 20190522   | 0                     |            |            | 09N      | 06E   | 24 AAB           | MEAGHER MT   |
| 250861 FRIZBIE, LLOYD  |               | 46.52977188 | -110.9065886 | TRS-SEC   | NAD83      | 20190522   | 0                     |            |            | 09N      | 06E   | 24 ADA           | MEAGHER MT   |
| 250862 MULSKI, PAT     |               | 46.52977188 | -110.9065886 | TRS-SEC   | NAD83      | 20190522   | 0                     |            |            | 09N      | 06E   | 24 ADA           | MEAGHER MT   |
| 250864 ANDERSON, RIC   | HARD          | 46.5425851  | -110.9225015 | TRS-SEC   | NAD83      | 20190521   | 0                     |            |            | 09N      | 06E   | 13 BCD           | MEAGHER MT   |
| 250865 JACKSON, G. I.  |               | 46.55710969 | -110.9173021 | TRS-SEC   | NAD83      | 20190521   | 0                     |            |            | 09N      | 06E   | 12 BDD           | MEAGHER MT   |
| 250893 BAILEY, WALLY   |               | 46.53254284 | -110.8975452 | TRS-SEC   | NAD83      | 20190522   | 0                     |            |            | 09N      | 07E   | 19 BA            | MEAGHER MT   |
| 251624 BERG JACK       |               | 46.531606   | -110.909218  |           | NAD83      | 20090928   | 0                     |            |            | 09N      | 06E   | 24 AAC           | MEAGHER MT   |
| 254937 GALT RANCH LP   |               | 46.535235   | -110.909269  |           | NAD83      | 20100330   | 0                     |            |            | 09N      | 06E   | 13 DDC           | MEAGHER MT   |
| 260104 WHITE SULPHUR   | RSPRINGS      | 46.5473     | -110.9038    | MAP       | NAD27      |            | 5025 MAP              | NGVD29     | 19610901   | 09N      | 07E   | 18 BB            | MEAGHER MT   |
| 261183 MOUNTAIN VIEW   |               | 46.54718042 | -110.9029442 |           | NAD83      | 20190521   | 0                     |            |            | 09N      | 07E   | 18 BB            | MEAGHER MT   |
| 262473 SPA HOT SPRIN   | SS            | 46.54718042 | -110.9029442 | TRS-SEC   | NAD83      | 20110822   | 0                     |            |            | 09N      | 07E   | 18 BB            | MEAGHER MT   |
| 264319 BONSER, BUCK    | & JENNY       | 46.54732443 | -110.8713585 | TRS-SEC   | NAD83      | 20120207   | 0                     |            |            | 09N      | 07E   | 17 AB            | MEAGHER MT   |
| 272070 ANDES, SHANE    | AND CHRISTINA | 46.55077041 | -110.8662823 | TRS-SEC   | NAD83      | 20130516   | 0                     |            |            | 09N      | 07E   | 8 DD             | MEAGHER MT   |
| 275546 BOSSERT, KEN    | k ELEANOR     | 46.535528   | -110.907     | NAV-GPS   | NAD27      | 20131020   | 0                     |            |            | 09N      | 06E   | 13 DDDB          | MEAGHER MT   |
| 275761 JARVIS, WOODII  | V.            | 46.54717916 | -110.9185317 | TRS-SEC   | NAD83      | 20131107   | 0                     |            |            | 09N      | 06E   | 13 BA            | MEAGHER MT   |
| 278411 GLUHM, JONNY    | AND EVELYN    | 46.537075   | -110.90825   | NAV-GPS   | NAD27      | 20140602   | 0                     |            |            | 09N      | 06E   | 13 DDBD          | MEAGHER MT   |
| 279353 HOLTHUES, BER   | RE            | 46.541583   | -110.906722  | NAV-GPS   | WGS84      | 20140731   | 0                     |            |            | 09N      | 06E   | 13 AD            | MEAGHER MT   |
| 279355 HOLTHUES, BER   | RE            | 46.541667   | -110.907111  | NAV-GPS   | WGS84      | 20140801   | 0                     |            |            | 09N      | 06E   | 13 AD            | MEAGHER MT   |
| 279356 HOLTHUES, BER   | RE            | 46.541944   | -110.906389  | NAV-GPS   | WGS84      | 20140801   | 0                     |            |            | 09N      | 06E   | 13 AD            | MEAGHER MT   |
| 279357 HOLTHUES, BER   | RE            | 46.541611   | -110.907278  | SUR-GPS   | WGS84      | 20140801   | 0                     |            |            | 09N      | 06E   | 13 AD            | MEAGHER MT   |
| 279358 HOLTHUES, BER   | RE            | 46.541528   | -110.906972  | NAV-GPS   | WGS84      | 20140802   | 0                     |            |            | 09N      | 06E   | 13 AD            | MEAGHER MT   |
| 281432 ASKINS, JOHN    |               | 46.55077001 | -110.8871744 | TRS-SEC   | NAD83      | 20150127   | 0                     |            |            | 09N      | 07E   | 7 DD             | MEAGHER MT   |
| 283934 HOLTHUES, BER   | RE            | 46.5415     | -110.907167  | NAV-GPS   | WGS84      | 20150730   | 0                     |            |            | 09N      | 06E   | 13 AD            | MEAGHER MT   |
| 283935 HOLTHUES, BER   | RE            | 46.5415     | -110.907056  | NAV-GPS   | WGS84      | 20150730   | 0                     |            |            | 09N      | 06E   | 13 AD            | MEAGHER MT   |
| 284259 CARVER, TONY    | AND MEGAN     | 46.54361118 | -110.8819735 | TRS-SEC   | NAD83      | 20150911   | 0                     |            |            | 09N      | 07E   | 17 BC            | MEAGHER MT   |
| 285290 TOWNSEND RAN    | ICH LLC       | 46.53254284 | -110.8975452 | TRS-SEC   | NAD83      | 20151119   | 0                     |            |            | 09N      | 07E   | 19 BA            | MEAGHER MT   |
| 285291 OGLE, KEN AND   | DAYNA         | 46.50688182 | -110.9077093 |           | NAD83      | 20151119   | 0                     |            |            | 09N      | 06E   | 25 DD            | MEAGHER MT   |
| 289993 BUCKINGHAM, M   | ARGARET       | 46.55077001 | -110.9027099 | TRS-SEC   | NAD83      | 20161110   | 0                     |            |            | 09N      | 07E   | 7 CC             | MEAGHER MT   |
| 293707 BARTH, TIM & MI | RIAM          | 46.536153   | -110.913239  | TRS-SEC   | NAD83      | 20170905   | 0                     |            |            | 09N      | 06E   | 13 DC            | MEAGHER MT   |
| 299539 SCHOOL DISTRI   | CT NO. 8      | 46.54718042 | -110.9029442 |           | NAD83      | 20181121   | 0                     |            |            | 09N      | 07E   | 18 BB            | MEAGHER MT   |
| 300369 MEAGHER COUN    | TY            | 46.54166629 | -110.9158852 | TRS-SEC   | NAD83      | 20190211   | 0                     |            |            | 09N      | 06E   | 13               | MEAGHER MT   |
| 300371 MEAGHER COUN    | TY            | 46.54166629 | -110.9158852 |           | NAD83      | 20190211   | 0                     |            |            | 09N      | 06E   | 13               | MEAGHER MT   |
| 300375 MEAGHER COUN    |               | 46.54166629 | -110.9158852 |           | NAD83      | 20190211   | 0                     |            |            | 09N      | 06E   | 13               | MEAGHER MT   |
| 300376 MEAGHER COUN    | TY            | 46.54166629 | -110.9158852 | TRS-SEC   | NAD83      | 20190211   | 0                     |            |            | 09N      | 06E   | 13               | MEAGHER MT   |
| 300377 MEAGHER COUN    | TY            | 46.54166629 | -110.9158852 | TRS-SEC   | NAD83      | 20190211   | 0                     |            |            | 09N      | 06E   | 13               | MEAGHER MT   |
| 301355 COLLINS, JAMES  |               | 46.52151775 | -110.9079031 | TRS-SEC   | NAD83      | 20190522   | 0                     |            |            | 09N      | 06E   | 24 DD            | MEAGHER MT   |
| 305887 GALT, WILLIAM \ | V             | 46.54717916 | -110.9079457 | TRS-SEC   | NAD83      | 20200406   | 0                     |            |            | 09N      | 06E   | 13 AA            | MEAGHER MT   |
| 317387 K REIN PROPER   | FIES LLC      | 46.53252325 | -110.9079031 | TRS-SEC   | NAD83      | 20211028   | 0                     |            |            | 09N      | 06E   | 24 AA            | MEAGHER MT   |
| 317692 WHITE, MARK/BI  | ROWN, GAIL    | 46.55077041 | -110.8662823 | TRS-SEC   | NAD83      | 20211201   | 0                     |            |            | 09N      | 07E   | 8 DD             | MEAGHER MT   |

| GWICID | DRAINAGE B | ADDITION S                  | BLOCK | LOT   | CERTOFSURV | PARCEL | ASSESSORTR | GEOCODE           | SITE TYPE | TOTAL DEPT | SWL DATE COMP | L HOW DRILLE     | DRILLING C                   | DRILLER NA         |
|--------|------------|-----------------------------|-------|-------|------------|--------|------------|-------------------|-----------|------------|---------------|------------------|------------------------------|--------------------|
| 213250 |            | 21 ARROWHEAD CIRCLE         |       |       |            |        |            |                   | WELL      | 199        | 80 19980311   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 213456 |            |                             |       |       |            |        |            |                   | WELL      | 118        | 40 20040709   | AIR ROTARY       | LINDSAY DRILLING CO INC      | TERRY LINDSAY      |
| 228960 |            |                             |       |       |            |        |            |                   | WELL      | 400        | 200 20060622  | ROTARY           | MURRAYS WELL SERVICE         | RICK L. MURRAY     |
| 228961 |            | SHEARER RANCH               |       |       |            |        |            |                   | WELL      | 120        | 60 20060621   | ROTARY           | MURRAYS WELL SERVICE         | RICK L. MURRAY     |
| 234316 |            |                             |       |       |            |        |            |                   | WELL      | 25         | 16 20070207   | HOLLOWSTEM AUGER | HAZ TECH DRILLING INC        | PAUL BRAY          |
| 238837 |            |                             |       |       |            |        |            |                   | WELL      | 100        | 39 20070815   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 246200 |            | CASTLE MOUNTAIN ESTATES     |       | 5     |            |        |            |                   | WELL      | 100        | 58 20080718   | ROTARY           | H AND L DRILLING             | SHAWN TONEY        |
| 247141 |            |                             |       |       |            |        |            |                   | WELL      | 800        | 22 20080904   | ROTARY           | KEVIN HAGGERTY DRILLING INC. | KEVIN HAGGERTY     |
| 250791 | ВС         |                             |       |       |            |        |            |                   | WELL      | 92         | 45 20090612   | ROTARY           | VAN DYKEN DRILLING INC       | BERNARD WESTRA     |
| 250850 |            |                             |       |       |            |        |            |                   | WELL      | 131        | 20 19570701   |                  |                              | UNKNOWN            |
| 250853 | ВС         |                             |       |       |            |        |            |                   | WELL      | 90         | 40 19801029   | CABLE            | H & L DRILLING INC           | HAROLD REID        |
| 250861 | ВС         |                             |       |       |            |        |            |                   | WELL      | 89         | 34 19800930   | CABLE            | H & L DRILLING INC           | HAROLD REID        |
| 250862 | ВС         |                             |       |       |            |        |            |                   | WELL      | 84         | 27 19800928   | CABLE            | H & L DRILLING INC           | HAROLD REID        |
| 250864 | ВС         |                             |       |       |            |        |            |                   | WELL      | 125        | 40 19761029   | CABLE            | H & L DRILLING INC           | ED HILLMAN         |
| 250865 | BC         |                             |       |       |            |        |            |                   | WELL      | 36         | 16 19800209   | CABLE            | H & L DRILLING INC           | HAROLD REID        |
| 250893 | BC         |                             |       |       |            |        |            |                   | WELL      | 89         | 54 19800922   | CABLE TOOL       | H & L DRILLING INC           | HAROLD REID        |
| 251624 | BC         | SHEARER RANCH TRACTS II     |       | 4     |            |        |            |                   | BOREHOLE  | 140        | 58 20090603   | ROTARY           |                              | SHAWN TONEY        |
| 254937 | BC         |                             |       |       |            |        |            |                   | WELL      | 113        | 41 20100205   | ROTARY           | H AND L DRILLING             | SHAWN TONEY        |
| 260104 |            |                             |       |       |            |        |            |                   | SPRING    | 0          | 0             |                  |                              |                    |
| 261183 | BC         |                             |       |       |            |        |            |                   | WELL      | 220        | 31            | ROTARY           |                              |                    |
| 262473 | ВС         |                             |       |       |            |        |            |                   | WELL      | 280        | 6 20110630    | ROTARY           | H AND L DRILLING             | SHAWN TONEY        |
| 264319 |            | ELLINGTON MINOR             |       | 2     |            |        |            |                   | WELL      | 181        | 89 20111014   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 272070 |            | CASTLE MOUNTAIN             |       | 11    |            |        |            |                   | WELL      | 100        | 55 20121114   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 275546 | ВС         |                             |       |       |            |        |            |                   | WELL      | 110        | 57 20131020   | ROTARY           | HAYES DRILLING               | WILL HAYES         |
| 275761 | ВС         | FOWLIE MINOR                |       | Α     |            |        |            |                   | WELL      | 293        | 150 20130501  | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 278411 | ВС         | THE OLD MILL MINOR SUB      |       |       |            |        |            |                   | WELL      | 118        | 56 20140602   | ROTARY           | HAYES DRILLING               | WILL HAYES         |
| 279353 |            |                             |       |       |            |        |            |                   | WELL      | 20         | 15 20140731   | HOLLOWSTEM AUGER | HAZ TECH DRILLING INC        | PAUL E. BRAY       |
| 279355 |            |                             |       |       |            |        |            |                   | WELL      | 20         | 15 20140801   | HOLLOWSTEM AUGER | HAZ TECH DRILLING INC        | PAUL E. BRAY       |
| 279356 | ВС         |                             |       |       |            |        |            |                   | WELL      | 20         | 15 20140801   | HOLLOWSTEM AUGER | HAZ TECH DRILLING INC        | PAUL E. BRAY       |
| 279357 |            |                             |       |       |            |        |            |                   | WELL      | 20         | 15 20140801   |                  | HAZ TECH DRILLING INC        | PAUL E. BRAY       |
| 279358 |            |                             |       |       |            |        |            |                   | WELL      | 20         | 15 20140802   |                  | HAZ TECH DRILLING INC        | PAUL E. BRAY       |
| 281432 |            |                             |       |       |            |        |            |                   | WELL      | 93         | 39 20141110   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 283934 |            |                             |       |       |            |        |            |                   | WELL      | 40         | 0 20150730    |                  | HAZ TECH DRILLING INC        | PAUL E. BRAY       |
| 283935 |            |                             |       |       |            |        |            |                   | WELL      | 20         | 15 20150730   |                  | HAZ TECH DRILLING INC        | PAUL E. BRAY       |
| 284259 |            |                             |       |       |            |        |            |                   | WELL      | 193        | 139 20150623  | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 285290 |            |                             |       |       |            |        |            |                   | WELL      | 158        | 95 20150831   | ROTARY           | A-10 DRILLING                | MARK MILLER        |
| 285291 |            |                             |       |       |            |        |            |                   | WELL      | 108        | 39 20150901   | ROTARY           | A-10 DRILLING                | MARK MILLER        |
| 289993 |            | WOODSON ADDITION            |       | 72-74 |            |        |            |                   | WELL      | 62         | 11 20160815   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 293707 |            | BARTH MINOR                 |       | 1B    |            |        |            |                   | WELL      | 85         | 43 20170331   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 299539 |            | I.                          | 31    | 2     |            |        |            |                   | WELL      | 340        | 29 20180724   | ROTARY           | A-10 DRILLING                | MARK MILLER        |
| 300369 |            |                             | 136   | 1-8   |            |        |            | 47179813103010000 |           | 12         |               |                  | BOLAND DRILLING              | CHRISTOPHER BOLAND |
| 300371 |            |                             | 136   | 1-8   |            |        |            |                   | WELL      | 12         | 0 20161001    |                  | BOLAND DRILLING              | CHRISTOPHER BOLAND |
| 300375 |            |                             | 136   | 1-8   |            |        |            | 47179813103010000 |           | 13         | 0 20161001    |                  | BOLAND DRILLING              | CHRISTOPHER BOLAND |
| 300376 |            |                             | 136   | 1-8   |            |        |            | 47179813103010000 |           | 7          | 0 19900101    |                  | BOLAND DRILLING              | CHRISTOPHER BOLAND |
| 300377 |            |                             | 136   | 1-8   |            |        |            | 47179813103010000 |           | 12         | 0 20030101    |                  | BOLAND DRILLING              | CHRISTOPHER BOLAND |
| 301355 |            |                             |       |       |            |        |            |                   | WELL      | 80         | 32 19930414   | FORWARD ROTARY   | JOE JOHNSON DRILLING         | JOE L. JOHNSON     |
| 305887 |            | WSS ORIGINAL TOWNSITE AMEND | 61    | 5     |            |        |            |                   | WELL      | 244        | 40 20200117   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 317387 |            |                             |       |       |            |        |            |                   | WELL      | 155        | 70 20210916   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |
| 317692 | RC         | CASTLE VALLEY MEADOWS       |       | 6     |            |        |            |                   | WELL      | 163        | 43 20210929   | ROTARY           | H & L DRILLING INC           | SHAWN TONEY        |

| GWICID   | DRILLER LI | DRILLER 00 | DRILLER FI | VERIFIED T | ABANDONED | DATE ABAND | STATUS    | FLOWING | DEPTH WATE | AQUIFER | PRIORITY | WELL USE | WELLUSE PR CAI | LC LOC | VER LOC | NETWORK | FIELD VISI | SWL MEAS | SAMPLES       |
|----------|------------|------------|------------|------------|-----------|------------|-----------|---------|------------|---------|----------|----------|----------------|--------|---------|---------|------------|----------|---------------|
| 213250 V |            | 447        |            | _          | _         |            | NEW WELL  |         | 159        |         | 0        |          | 0 YES          |        | YES     |         |            |          |               |
| 213456 V |            | 253        |            |            |           |            | NEW WELL  |         | 118        |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | С             |
| 228960 V | VWC        | 351        |            |            |           |            | NEW WELL  |         | 200        |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | C             |
| 228961 V | VWC        | 351        |            |            |           |            | NEW WELL  |         | 60         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | C             |
| 234316 N | ИWC        | 344        | MW-6       |            |           |            | NEW WELL  |         | 10         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | С             |
| 238837 V |            | 447        |            |            |           |            | NEW WELL  |         | 60         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | С             |
| 246200 V |            | 447        |            |            |           |            | NEW WELL  |         | 80         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | C             |
| 247141 V |            | 353        |            |            |           |            | NEW WELL  |         | 0          |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | С             |
| 250791 V |            | 380        |            |            |           |            | NEW WELL  |         | 92         |         | 0        |          | 0 NO           |        | YES     |         | 0          | 0        | C             |
| 250850   | -          | 0          |            |            |           |            | NEW WELL  |         | 131        |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | С             |
| 250853 V | VWC        | 334        |            |            |           |            | NEW WELL  |         | 90         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | C             |
| 250861 V |            | 334        |            |            |           |            | NEW WELL  |         | 89         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | C             |
| 250862 V |            | 334        |            |            |           |            | NEW WELL  |         | 84         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | C             |
| 250864 V |            | 258        |            |            |           |            | NEW WELL  |         | 125        |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | 0             |
| 250865 V |            | 334        |            |            |           |            | NEW WELL  |         | 36         |         | 0        |          | 0 YES          |        | YES     |         | 0          |          | C             |
| 250893 V |            | 334        |            |            |           |            | NEW WELL  |         | 89         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | Č             |
| 251624 V |            | 447        |            |            |           |            | NEW WELL  |         | 140        |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | C             |
| 254937 V | -          | 447        |            |            |           |            | NEW WELL  |         | 93         |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | C             |
| 260104   |            | 0          |            |            |           |            |           |         | 0          |         | 0        |          | 0 NO           |        | YES     |         | 4          | -        | F             |
| 261183   |            | 0          |            |            |           |            | NEW WELL  |         | 49         |         | 0        |          | 0 YES          |        | YES     |         |            | -        |               |
| 262473 V | WWC.       | 447        |            |            |           |            | NEW WELL  |         | 180        |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 264319 V |            | 447        |            |            |           |            | NEW WELL  |         | 141        |         | 0        |          | 0 YES          |        | YES     |         | 0          | · ·      | 0             |
| 272070 V |            | 447        |            |            |           |            | NEW WELL  |         | 100        |         | 0        |          | 0 YES          |        | YES     |         | 0          | _        | · · · · · ·   |
| 275546 V |            | 361        |            |            |           |            | NEW WELL  |         | 101        |         | 0        |          | 0 NO           |        | YES     |         | 0          | •        | •             |
| 275761 V |            | 447        |            |            |           |            | NEW WELL  |         | 233        |         | 0        |          | 0 YES          |        | YES     |         | 0          | Ü        |               |
| 278411 V |            | 361        |            |            |           |            | NEW WELL  |         | 78         |         | 0        |          | 0 NO           |        | YES     |         | 0          | -        | •             |
| 279353 N |            | 435        |            |            |           |            | NEW WELL  |         | 10         |         | 0        |          | 0 NO           |        | YES     |         | 0          |          | · · · · · ·   |
| 279355 N |            | 435        |            |            |           |            | NEW WELL  |         | 5          |         | 0        |          | 0 NO           |        | YES     |         | 0          |          |               |
| 279356 N |            | 435        |            |            |           |            | NEW WELL  |         | 5          |         | 0        |          | 0 NO           |        | YES     |         | 0          |          |               |
| 279357 N |            | 435        |            |            |           |            | NEW WELL  |         | 5          |         | 0        |          | 0 NO           |        | YES     |         | 0          | · ·      | · · · · · · · |
| 279358 N |            | 435        |            |            |           |            | NEW WELL  |         | 5          |         | 0        |          | 0 NO           |        | YES     |         | 0          |          |               |
| 281432 V |            | 447        |            |            |           |            | NEW WELL  |         | 53         |         | 0        |          | 0 YES          |        | YES     |         | 0          | -        |               |
| 283934 N |            | 435        |            |            |           |            | NEW WELL  |         | 15         |         | 0        |          | 0 NO           |        | YES     |         | 0          | -        |               |
| 283935 N |            | 435        |            |            |           |            | NEW WELL  |         | 5          |         | 0        |          | 0 NO           |        | YES     |         | 0          |          |               |
| 284259 V |            | 447        |            |            |           |            | NEW WELL  |         | 153        |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 285290 V |            | 611        |            |            |           |            | NEW WELL  |         | 118        |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 285291 V |            | 611        |            |            |           |            | NEW WELL  |         | 88         |         | 0        |          | 0 YES          |        | YES     |         | 0          | -        |               |
| 289993 V |            | 447        |            |            |           |            | NEW WELL  |         | 42         |         | 0        |          | 0 YES          |        | YES     |         | 0          | •        |               |
| 293707 V |            | 447        |            |            |           |            | NEW WELL  |         | 65         |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 299539 V |            | 611        |            |            |           |            | NEW WELL  |         | 280        |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 300369 V |            | 667        |            |            | YES       |            | ABANDONED |         | 7          |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 300369 V |            | 667        |            |            | YES       |            | ABANDONED |         | 7          |         | 0        |          | 0 YES          |        | YES     |         | 0          |          | 0             |
| 300371 V |            | 667        |            |            | YES       | 1 1 1      | ABANDONED |         | 8          |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 300375 V | -          | 667        |            |            | YES       | 1 1 1      | ABANDONED |         | 2          |         | 0        |          | 0 YES          |        | YES     |         | 0          |          | 0             |
| 300376 V |            | 667        |            |            | YES       |            | ABANDONED |         | 7          |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
|          |            |            |            |            | 120       |            |           |         |            |         |          |          |                |        |         |         | 0          | -        |               |
| 301355 V |            | 154        |            |            |           |            | NEW WELL  |         | 65         |         | 0        |          | 0 YES          |        | YES     |         |            |          |               |
| 305887 V |            | 447        |            |            |           |            | NEW WELL  |         | 164        |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 317387 V |            | 447        |            |            |           |            | NEW WELL  |         | 95         |         | 0        |          | 0 YES          |        | YES     |         | 0          |          |               |
| 317692 V | VVVC       | 447        |            |            |           |            | NEW WELL  |         | 113        |         | 0        |          | 0 YES          |        | YES     |         | 0          | 0        | 0             |

| WICID  | REPORT LIN                                                                                                                                                                    | ALL WATER                   | YIELD GPM      | PUMPING WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DNRC WATER |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=213250&reqby=M&                                                                                        | DOMESTIC                    | 23.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=213456&reqby=M&                                                                                        | DOMESTIC                    | 30.00 (AIR)    | 112.00 (AIR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=228960&reqby=M&                                                                                        | DOMESTIC                    | 10.00 (AIR)    | 1.1200 (1.11.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=228961&reqby=M&                                                                                        | DOMESTIC                    | 20.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30027391   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=234316&reqby=M&                                                                                        | MONITORING                  | 20.00 (/ 1)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0002.00.   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=238837&reqby=M&                                                                                        | DOMESTIC                    | 60.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=246200&reqby=M&                                                                                        | DOMESTIC, STOCKWATER        | 35.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30043734   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=247141&reqby=M&                                                                                        | OTHER                       | 70.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00040704   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=250791&reqby=M&                                                                                        | DOMESTIC                    | 30.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=250850&reqby=M&                                                                                        | FIRE PROTECTION, INDUSTRIAL | 50.00 (AIIV)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=250853&reqby=M&                                                                                        | DOMESTIC DOMESTIC           | 47.00 (BAILER) | 50.00 (BAILER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=250861&reqby=M&                                                                                        | DOMESTIC                    | 45.00 (BAILER) | 50.00 (BAILER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=250862&reqby=M&                                                                                        | DOMESTIC                    | 40.00 (BAILER) | 68.00 (BAILER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|        |                                                                                                                                                                               |                             | , ,            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20110560   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=250864&reqby=M&                                                                                        | DOMESTIC                    | 20.00 (BAILER) | 100.00 (BAILER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30119568   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=250865&reqby=M&                                                                                        | DOMESTIC                    | 50.00 (BAILER) | 20.00 (BAILER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=250893&reqby=M&                                                                                        | UNKNOWN                     | 35.00 (BAILER) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=251624&reqby=M&                                                                                        | DOMESTIC                    | 50.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=254937&reqby=M&                                                                                        | DOMESTIC, STOCKWATER        | 60.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=260104&reqby=M&                                                                                        |                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=261183&reqby=M&                                                                                        |                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=262473&reqby=M&                                                                                        | PUBLIC WATER SUPPLY         | 430.00 (PUMP)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 264319 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=264319&reqby=M&                                                                                        | DOMESTIC                    | 21.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30062782   |
| 272070 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=272070&reqby=M&                                                                                        | DOMESTIC                    | 35.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 275546 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=275546&reqby=M&                                                                                        | DOMESTIC                    | 50.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30067748   |
| 275761 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=275761&reqby=M&                                                                                        | DOMESTIC                    | 5.00 (AIR)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 278411 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=278411&reqby=M&                                                                                        | DOMESTIC                    | 50.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 279353 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=279353&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 279355 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=279355&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 279356 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=279356&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 279357 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=279357&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 279358 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=279358&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 281432 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=281432&reqby=M&                                                                                        | IRRIGATION                  | 32.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=283934&regby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=283935&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=284259&reqby=M&                                                                                        | DOMESTIC                    | 10.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=285290&reqby=M&                                                                                        | STOCKWATER                  | 35.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30108148   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=285291&reqby=M&                                                                                        | DOMESTIC                    | 30.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30105074   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=289993&reqby=M&                                                                                        | IRRIGATION                  | 50.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00100011   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=293707&regby=M&                                                                                        | DOMESTIC                    | 50.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30112597   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=299539&reqby=M&                                                                                        | IRRIGATION                  | 40.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30112331   |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=300369&reqby=M&                                                                                        | MONITORING                  | 40.00 (All t)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=300371&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=300375&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=300376&reqby=M&                                                                                        | MONITORING                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        |                                                                                                                                                                               |                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=300377&reqby=M&                                                                                        | MONITORING                  | 20.00 (AID)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=301355&reqby=M&                                                                                        | DOMESTIC                    | 20.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 305887 | http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=305887&reqby=M& http://mbmggwic.mtech.edu/sqlserver/v11/reports/SiteSummary.asp?gwicid=317387&reqby=M& | DOMESTIC DOMESTIC           | 12.00 (AIR)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 04700- |                                                                                                                                                                               | 11 M MAIL & 1 M '           | 50.00 (AIR)    | The second secon | 1          |

#### **MONTANA WELL LOG REPORT**

**Other Options** 

This well log reports the activities of a licensed Montana well driller, serves as the official record of work done within the borehole and casing, and describes the amount of water encountered. This report is compiled electronically from the contents of the Ground Water Information Center (GWIC) database for this site. Acquiring water rights is the well owner's responsibility and is NOT accomplished by the filing of this report.

Return to menu Plot this site in State Library Digital Atlas Plot this site in Google Maps View scanned well log (6/30/2009 1:26:12 PM)

Site Name: CITY OF WHITE SULPHUR SPRINGS

**GWIC Id: 172711** 

**DNRC Water Right: 61342** 

Section 1: Well Owner(s)

1) CITY OF WHITE SULPHUR SPRINGS (MAIL)

102 8TH AVE NE

WHITE SULPHUR SPRINGS MT 59645 [04/21/1999]

Section 2: Location

Township Range Section **Quarter Sections** 09N 07E 7 SW1/4 SE1/4 SE1/4 County Geocode

**MEAGHER** 

Latitude Longitude Geomethod Datum 46.54985488145 -110.888469034 TRS-SEC NAD83 Date **Ground Surface Altitude Ground Surface Method** Datum

Section 7: Well Test Data

Total Depth: 201 Static Water Level: 22 Water Temperature:

Pump Test \*

Depth pump set for test \_ feet.

1000 gpm pump rate with \_ feet of drawdown after 10 hours of pumping.

Time of recovery <u>0.03</u> hours. Recovery water level 22 feet. Pumping water level 58 feet.

\* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Addition **Block** Lot

Section 3: Proposed Use of Water

PUBLIC WATER SUPPLY (1)

Section 4: Type of Work Drilling Method: ROTARY

Status: NEW WELL

**Section 5: Well Completion Date** 

Date well completed: Wednesday, April 21, 1999

**Section 6: Well Construction Details** 

12.25

**Borehole dimensions** From To Diameter 14.75 30

201

30 Casing

|      |     |          | Wall      | Pressure |        |            |
|------|-----|----------|-----------|----------|--------|------------|
| From | То  | Diameter | Thickness | Rating   | Joint  | Туре       |
| 0    | 201 | 10.75    | 0.25      |          | WELDED | A53B STEEL |

Completion (Perf/Screen)

|      |     |          | # of     | Size of  |                        |
|------|-----|----------|----------|----------|------------------------|
| From | То  | Diameter | Openings | Openings | Description            |
| 145  | 195 | 10       |          | 3/16 X 1 | HOLTE PERFORATOR SLOTS |

Annular Space (Seal/Grout/Packer)

| From | То |             | Cont.<br>Fed? |
|------|----|-------------|---------------|
| 0    | 35 | NEAT CEMENT |               |

Section 8: Remarks

Section 9: Well Log **Geologic Source** 

| Unassi | Jnassigned |                                                                                |  |  |  |  |  |  |
|--------|------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|
| From   | То         | Description                                                                    |  |  |  |  |  |  |
| 0      | 3          | TOPSOIL                                                                        |  |  |  |  |  |  |
| 3      | 11         | DRY SANDY CLAY                                                                 |  |  |  |  |  |  |
| 11     | 28         | MOIST SANDY CLAY                                                               |  |  |  |  |  |  |
| 28     | 31         | MUDSTONE BROWN 2 GPM                                                           |  |  |  |  |  |  |
| 31     | 55         | HARDER BROWN SILTSTONE 20 GPM                                                  |  |  |  |  |  |  |
| 55     | 75         | BROWN SILTSTONE W/INTERMITTENT LAYER OF A HARD<br>GREEN BROWN SILTSTONE 40 GPM |  |  |  |  |  |  |
| 75     | 201        | FRACTURED SILTSTONE                                                            |  |  |  |  |  |  |
|        |            |                                                                                |  |  |  |  |  |  |
|        |            |                                                                                |  |  |  |  |  |  |
|        |            |                                                                                |  |  |  |  |  |  |
|        |            |                                                                                |  |  |  |  |  |  |
|        |            |                                                                                |  |  |  |  |  |  |
|        |            |                                                                                |  |  |  |  |  |  |
|        |            |                                                                                |  |  |  |  |  |  |
|        |            |                                                                                |  |  |  |  |  |  |

#### **Driller Certification**

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

Name: BILL MAXWELL Company: BUSH DRILLING License No: WWC-597 Date Completed: 4/21/1999

#### **MONTANA WELL LOG REPORT**

**Other Options** 

This well log reports the activities of a licensed Montana well driller, serves as the official record of work done within the borehole and casing, and describes the amount of water encountered. This report is compiled electronically from the contents of the Ground Water Information Center (GWIC) database for this site. Acquiring water rights is the well owner's responsibility and is NOT accomplished by the filing of this report.

Return to menu Plot this site in State Library Digital Atlas Plot this site in Google Maps View scanned well log (4/11/2011 5:17:58 PM)

| Site Name: CITY Of | WHITE | <b>SULPHUR</b> | SPRING |
|--------------------|-------|----------------|--------|
| CMIC Id. OCOCZO    |       |                |        |

GWIC ld: 260672

Section 1: Well Owner(s)

1) CITY OF WHITE SULPHUR SPRINGS (MAIL)

WHITE SULPHUR SPRINGS MT 59645 [06/23/1986]

Section 2: Location

Township Range Section **Quarter Sections** 09N 07E SW1/4 SE1/4 SE1/4 7 Geocode County

**MEAGHER** 

Latitude Longitude Geomethod Datum 45.5499 -110.8898 NAV-GPS NAD27 **Ground Surface Altitude Ground Surface Method** 

Addition **Block** Lot

Section 3: Proposed Use of Water

PUBLIC WATER SUPPLY (1)

Section 4: Type of Work Drilling Method: ROTARY

Status: NEW WELL

**Section 5: Well Completion Date** 

Date well completed: Monday, June 23, 1986

#### **Section 6: Well Construction Details**

Borehole dimensions

| From | То  | Diameter |
|------|-----|----------|
| 0    | 30  | 18       |
| 0    | 200 | 14       |

Casing

| From | То |    | Wall<br>Thickness | Pressure<br>Rating | Joint | Туре                  |
|------|----|----|-------------------|--------------------|-------|-----------------------|
| 0    | 30 | 16 |                   |                    |       | CASING (TYPE UNKNOWN) |
| 0    | 90 | 10 |                   |                    |       | STEEL                 |

Completion (Perf/Screen)

|      |     |          | # of     | Size of  |                             |
|------|-----|----------|----------|----------|-----------------------------|
| From | То  | Diameter | Openings | Openings | Description                 |
| 90   | 200 | 10       |          | .10      | SCREEN-CONTINUOUS-STAINLESS |

Annular Space (Seal/Grout/Packer)

|      |    |             | Cont. |
|------|----|-------------|-------|
| From | То | Description | Fed?  |
| 0    | 0  | BENTONITE   |       |
| 0    | 88 | CEMENT      |       |

#### **Section 7: Well Test Data**

Total Depth: 200 Static Water Level: 19 Water Temperature:

#### Pump Test \*

Depth pump set for test 42 feet.

200 gpm pump rate with \_ feet of drawdown after 24 hours of pumping.

Time of recovery \_ hours. Recovery water level \_ feet. Pumping water level \_ feet.

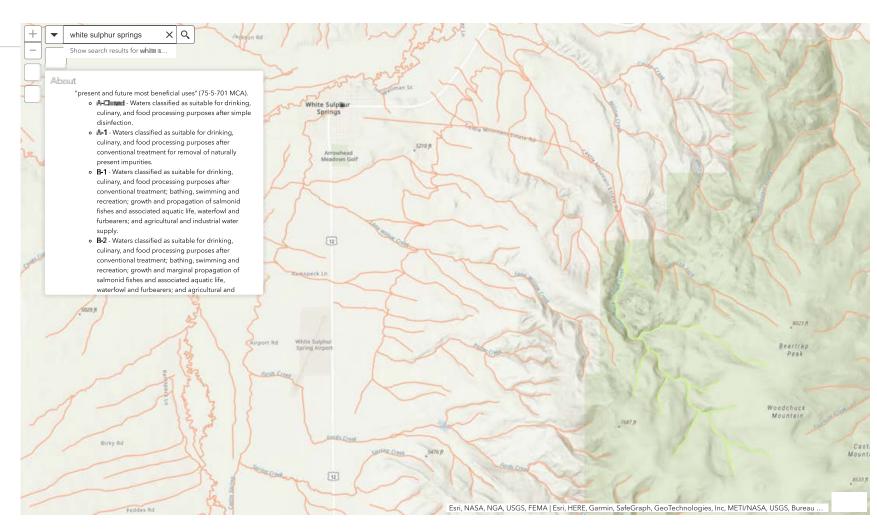
\* During the well test the discharge rate shall be as uniform as possible. Datum Date This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

#### Section 8: Remarks

Section 9: Well Log **Geologic Source** 

| Unassi | Jnassigned |                     |  |  |  |  |  |
|--------|------------|---------------------|--|--|--|--|--|
| From   | То         | Description         |  |  |  |  |  |
| 0      |            | FINE SAND           |  |  |  |  |  |
| 19     | 200        | FRACTURED SILTSTONE |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |
|        |            |                     |  |  |  |  |  |

#### **Driller Certification**


All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

| Name:                     |  |
|---------------------------|--|
| Company:                  |  |
| License No: -             |  |
| Date Completed: 6/23/1986 |  |

# **Appendix G**

**Surface Water Data** 

# Legend Water Quality User Class Use Classification A-1 A-C B-1 B-2 B-3 C-1 C-2 C-3 I Non-State Jurisdiction Mentane Those Network (Nen-state Jurisdiction)



#### **Assessment Record Summary**

Reporting Cycle: 2020 Assessment Record: MT41J002\_011 Status: Unassigned

WATER INFORMATION Status: Unassigned

Reporting Cycle: 2020

Assessment Unit: MT41J002\_011

Name: North Fork Smith River

Location Description: NORTH FORK SMITH RIVER, Lake Sutherlin to mouth (Smith River), T9N R6E

S21

Water Type:Size (Miles/Acres)Use Class:RIVER23 MILESB-1

Trophic Status:

**Trophic Trend:** 

**1 - Hydrologic Unit Code:** 10030103 **2 - HUC Name:** Smith

3 - Watershed: Upper Missouri4 - Basin: Upper Missouri

5 - TMDL Planning Area: Smith

**6 - Ecoregion:** Northwestern Great Plains

**7 - County:** Meagher County

**8 - LAT/LONG AU Upstream:** Start: 46.621622 / -110.746814 **9 - LAT/LONG AU Downstream:** End: 46.528624 / -110.977853

Water Quality Category: 5 - Waters where one or more applicable beneficial uses have been assessed as

being impaired or threatened, and a TMDL is required to address the factors

causing the impairment or threat.

07/13/2022 06:46:45 Page 1 of 3

## **Assessment Record Summary**

Reporting Cycle: 2020 Assessment Record: MT41J002\_011 Status: Unassigned

| Beneficial Use Support Information |                     |                         |            |                             |                 |
|------------------------------------|---------------------|-------------------------|------------|-----------------------------|-----------------|
| Use Name                           | Fully<br>Supporting | Not Fully<br>Supporting | Threatened | Insufficient<br>Information | Not<br>Assessed |
| Aquatic Life                       | X                   |                         |            |                             |                 |
| Agricultural                       |                     |                         |            |                             | X               |
| Drinking Water                     | Х                   |                         |            |                             |                 |
| Primary Contact Recreation         |                     | X                       |            |                             |                 |

| Assessment Information |                    |                          |
|------------------------|--------------------|--------------------------|
| Use Name               | Assessment Type    | Assessment<br>Confidence |
| NA                     |                    |                          |
| Use Name               | Assessment Methods |                          |
| NA                     |                    |                          |

| Impairment Information     |                            |                  |                |
|----------------------------|----------------------------|------------------|----------------|
| Use Name                   | Probable Causes            | Probable Sources | TMDL Completed |
| Primary Contact Recreation | Chlorophyll-a              | Source Unknown   | N              |
|                            | Escherichia coli (E. Coli) | Source Unknown   | N              |
|                            | Nitrogen, Total            | Source Unknown   | N              |
|                            | Phosphorus, Total          | Source Unknown   | N              |

07/13/2022 06:46:45 Page 2 of 3

## **Assessment Record Summary**

Reporting Cycle: 2020 Assessment Record: MT41J002\_011 Status: Unassigned

| Use Name | Observed Effects |
|----------|------------------|
| NA       |                  |

| Delisting / Category Changes |                                                                                                  |             |                                                                                             |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------|--|--|--|
| Cause                        | Reason for Change                                                                                | Change Date | Comments                                                                                    |  |  |  |
| Chlorophyll-a                | Not caused by a pollutant (4C)                                                                   | 01/25/2008  | The pollutant/non-pollutant effect designation was changed from pollutant to non-pollutant. |  |  |  |
| Fecal Coliform               | Data and/or information lacking to determine WQ status; original basis for listing was incorrect | 11/08/2011  | Fecal Coliform has changed to E. Coli due to updated standards.                             |  |  |  |

07/13/2022 06:46:45 Page 3 of 3

## **Appendix H**

Floodplain Map



#### Navigation

#### Search

MSC Home (/portal/)

#### MSC Search by Address (/portal/search)

MSC Search All Products (/portal/advanceSearch)

 MSC Products and Tools (/portal/resources/productsandtools)

Hazus (/portal/resources/hazus)

LOMC Batch Files (/portal/resources/lomc)

Product Availability (/portal/productAvailability)

MSC Frequently Asked Questions (FAQs) (/portal/resources/faq)

MSC Email Subscriptions (/portal/subscriptionHome)

Contact MSC Help (/portal/resources/contact)

## FEMA Flood Map Service Center: Search By Address

#### Enter an address, place, or coordinates:

White Sulphur Springs, Montana

Search

Whether you are in a high risk zone or not, you may need flood insurance (https://www.fema.gov/national-flood-insurance-program) because most homeowners insurance doesn't cover flood damage. If you live in an area with low or moderate flood risk, you are 5 times more likely to experience flood than a fire in your home over the next 30 years. For many, a National Flood Insurance Program's flood insurance policy could cost less than \$400 per year. Call your insurance agent today and protect what you've built.

Learn more about steps you can take (https://www.fema.gov/what-mitigation) to reduce flood risk damage.

#### Search Results—Products for WHITE SULPHUR SPRINGS, CITY OF

Show ALL Products » (https://msc.fema.gov/portal/availabilitySearch?addcommunity=300047&communityName=WHITE SULPHUR SPRINGS, CITY OF#sear

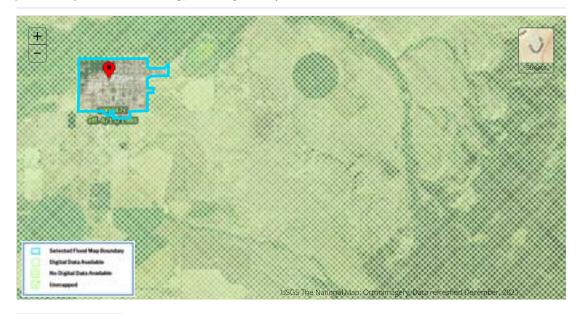
The flood map for the selected area is number 300047C, effective on 04/15/1986

#### **MAP IMAGE**



(https://msc.fema.gov/portal/viewProduct?productID=3000470




(https://msc.fema.gov/portal/downloadProduct?

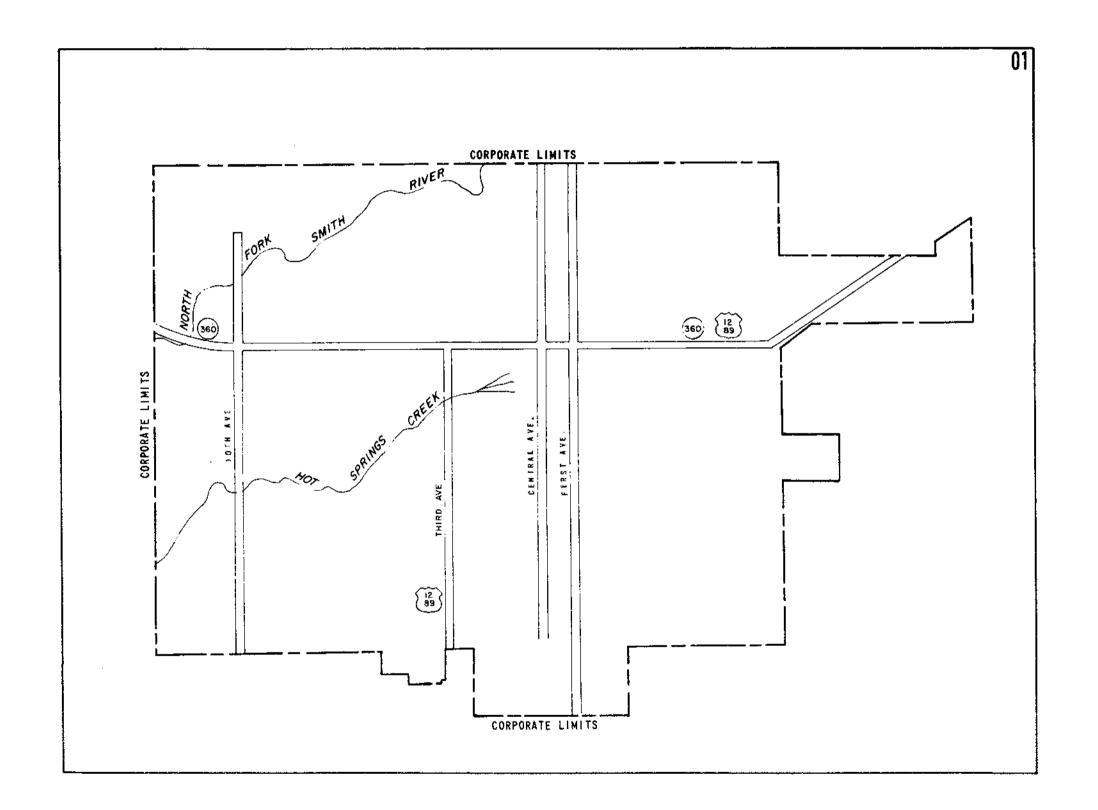
productTypeID=FINAL PRODUCT&productSubTypeID=FIRM PANEL&productID=300047C)

#### Changes to this FIRM 🔮

Revisions (0) Amendments (0) Revalidations (0)

You can choose a new flood map or move the location pin by selecting a different location on the locator map below or by entering a new location in the search field above. It may take a minute or more during peak hours to generate a dynamic FIRMette.






Home (//www.fema.gov/) Download Plug-ins (//www.fema.gov/download-plug-ins) About Us (//www.fema.gov/about-agency) Privacy Policy (//www.fema.gov/privacy-policy) FOIA (//www.fema.gov/foia) Office of the Inspector General (//www.oig.dhs.gov/) Strategic Plan (//www.fema.gov/fema-strategic-plan) Whitehouse.gov (//www.whitehouse.gov) DHS.gov (//www.dhs.gov) Ready.gov (//www.ready.gov) USA.gov (//www.usa.gov) DisasterAssistance.gov (//www.disasterassistance.gov/)



Official website of the Department of Homeland Security





KEY TO MAP

ZONE C

Zone Designations

ZONE A

ZONE C

Elevation Reference Mark

RM7<sub>X</sub>

Zone D Boundary

●M1.5

#### **EXPLANATION OF ZONE DESIGNATIONS**

#### ZONE

#### EXPLANATION

- A Areas of 100-year flood; base flood elevations and flood hazard factors not determined.
- Areas between limits of the 100-year flood and 500year flood; or certain areas subject to 100-year flooding with average depths less than one (1) foot or where the contributing drainage area is less than one square mile; or areas protected by levees from the base flood.
- C Areas of minimal flooding.
- Areas of undetermined, but possible, flood hazards.
- Areas of 100-year coastal flood with velocity (wave action); base flood elevations and flood hazard factors not determined.

#### **NOTES TO USER**

INITIAL IDENTIFICATION:

MAY 24, 1974

FLOOD HAZARD BOUNDARY MAP REVISIONS:

JANUARY 16, 1976 FEBRUARY 16, 1982

FLOOD INSURANCE RATE MAP EFFECTIVE:

APRIL 15, 1986

FLOOD INSURANCE RATE MAP (EVISIONS: NONE

To determine if flood insurance is available in this community, contact your insurance agent, or call the National Flood Insurance Program, at (800) 638-6620.

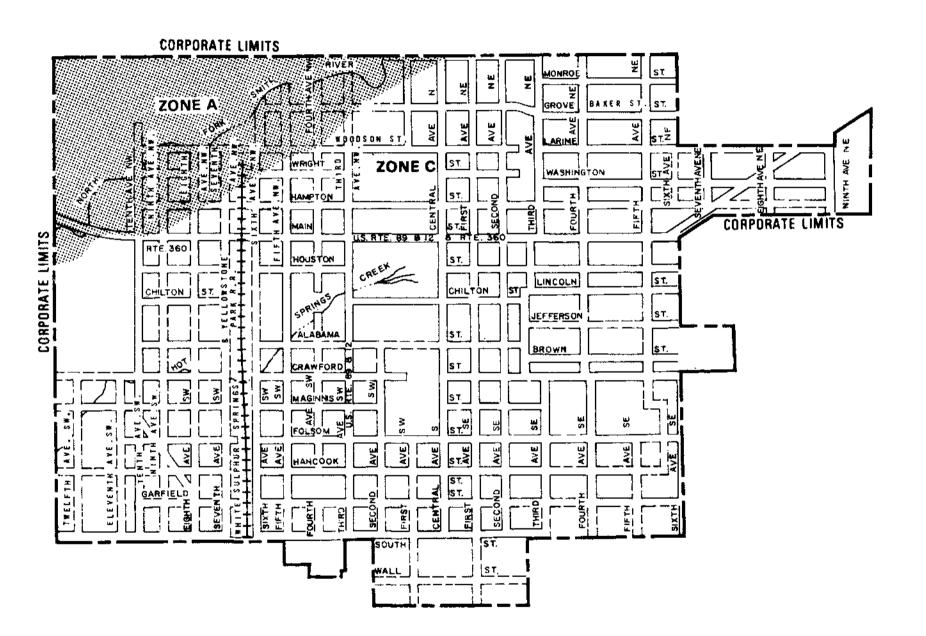
### FEDERAL EMERGENCY MANAGEMENT AGENCY



FLOOD INSURANCE RATE MAP PANEL(S) 01

## MAP INDEX

CITY OF WHITE SULPHUR SPRINGS,MT (MEAGHER CO.)


COMMUNITY NO. 300047 C



EFFECTIVE DATE: APPL 15, 1986

FLOOD INSURANCE RATE MAP

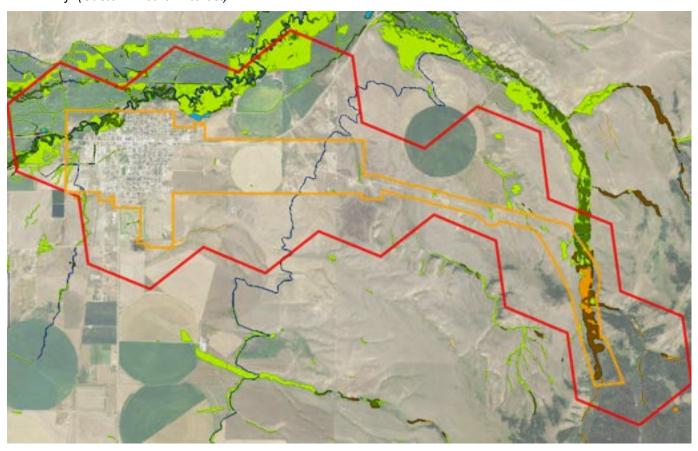
2400 FEET



FEDERAL EMERGENCY MANAGEMENT AGENCY CITY OF WHITE SULPHUR SPRINGS,MT (MEAGHER CO.)

## **Appendix I**

Natural Heritage Program Wetland and Riparian Map




#### Latitude Longitude 46.51014 -110.79556 46.56431 -110.92652

Explain 🗗

#### Wetland and Riparian

#### Summarized by: (Custom Area of Interest)



#### **Wetland and Riparian Mapping**

P - Palustrine

| AB - Aqu | atic Bed |  |
|----------|----------|--|
|          |          |  |

F - Semipermanently Flooded 11 Acres (no modifier) <1 Acres PABF b - Beaver 3 Acres PABFb h - Diked/Impounded 1 Acres PABFh 7 Acres PABFx x - Excavated

**P - Palustrine, AB - Aquatic Bed**Wetlands with vegetation growing on or below the water surface for most of the growing season.

#### EM - Emergent

295 Acres A - Temporarily Flooded (no modifier) 270 Acres PEMA 25 Acres PEMAx x - Excavated C - Seasonally Flooded 29 Acres (no modifier) 16 Acres PEMC f - Farmed 11 Acres PEMCf x - Excavated 2 Acres PEMCx F - Semipermanently Flooded <1 Acres (no modifier) <1 Acres PEMF x - Excavated <1 Acres PEMFx

#### P - Palustrine, EM - Emergent

Wetlands with erect, rooted herbaceous vegetation present during most of the growing season.

#### SS - Scrub-Shrub

A - Temporarily Flooded 77 Acres (no modifier) 71 Acres PSSA x - Excavated 6 Acres PSSAx C - Seasonally Flooded 45 Acres (no modifier) 43 Acres PSSC 2 Acres PSSCx x - Excavated

#### P - Palustrine, SS - Scrub-Shrub

Wetlands dominated by woody vegetation less than 6 meters (20 feet) tall. Woody vegetation includes tree saplings and trees that are stunted due to environmental conditions.

#### R - Riverine (Rivers)

#### 3 - Upper Perennial

■ UB - Unconsolidated Bottom

F - Semipermanently Flooded 1 Acres (no modifier) 1 Acres R3UBF

#### R - Riverine (Rivers), 3 - Upper Perennial, UB -**Unconsolidated Bottom**

Stream channels where the substrate is at least 25% mud, silt or other fine particles.

| G - Intermittently Expose | d                         | 1 Acres                   |                                                                                                                                                                                                                                                           |
|---------------------------|---------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (no modifier)             | 1 Acres                   | R3UBG                     |                                                                                                                                                                                                                                                           |
| H - Permanently Flooded   |                           | 14 Acres                  |                                                                                                                                                                                                                                                           |
| (no modifier)             | 14 Acres                  | R3UBH                     |                                                                                                                                                                                                                                                           |
| - Intermittent            |                           |                           |                                                                                                                                                                                                                                                           |
| SB - Stream Bed           |                           |                           | R - Riverine (Rivers), 4 - Intermittent, SB - Stream Bed<br>Active channel that contains periodic water flow.                                                                                                                                             |
| C - Seasonally Flooded    |                           | 9 Acres                   | retive chamer that contains periodic vater now.                                                                                                                                                                                                           |
| x - Excavated             | 9 Acres                   | R4SBCx                    |                                                                                                                                                                                                                                                           |
| - Riparian<br>- Lotic     |                           |                           |                                                                                                                                                                                                                                                           |
| •                         | 29 Acres Rp1              | ss Th.<br>th.<br>inc      | o - Riparian, 1 - Lotic, SS - Scrub-Shrub<br>his type of riparian area is dominated by woody vegetation<br>at is less than 6 meters (20 feet) tall. Woody vegetation<br>cludes tree saplings and trees that are stunted due to<br>vironmental conditions. |
| - Lotic  SS - Scrub-Shrub | 29 Acres Rp1 51 Acres Rp1 | ss Th<br>th.<br>ind<br>en | is type of riparian area is dominated by woody vegetation<br>at is less than 6 meters (20 feet) tall. Woody vegetation<br>cludes tree saplings and trees that are stunted due to                                                                          |

1 Acres Rp2FO

**Rp - Riparian, 2 - Lentic, FO - Forested**This riparian class has woody vegetation that is greater than 6 meters (20 feet) tall.

2 - Lentic

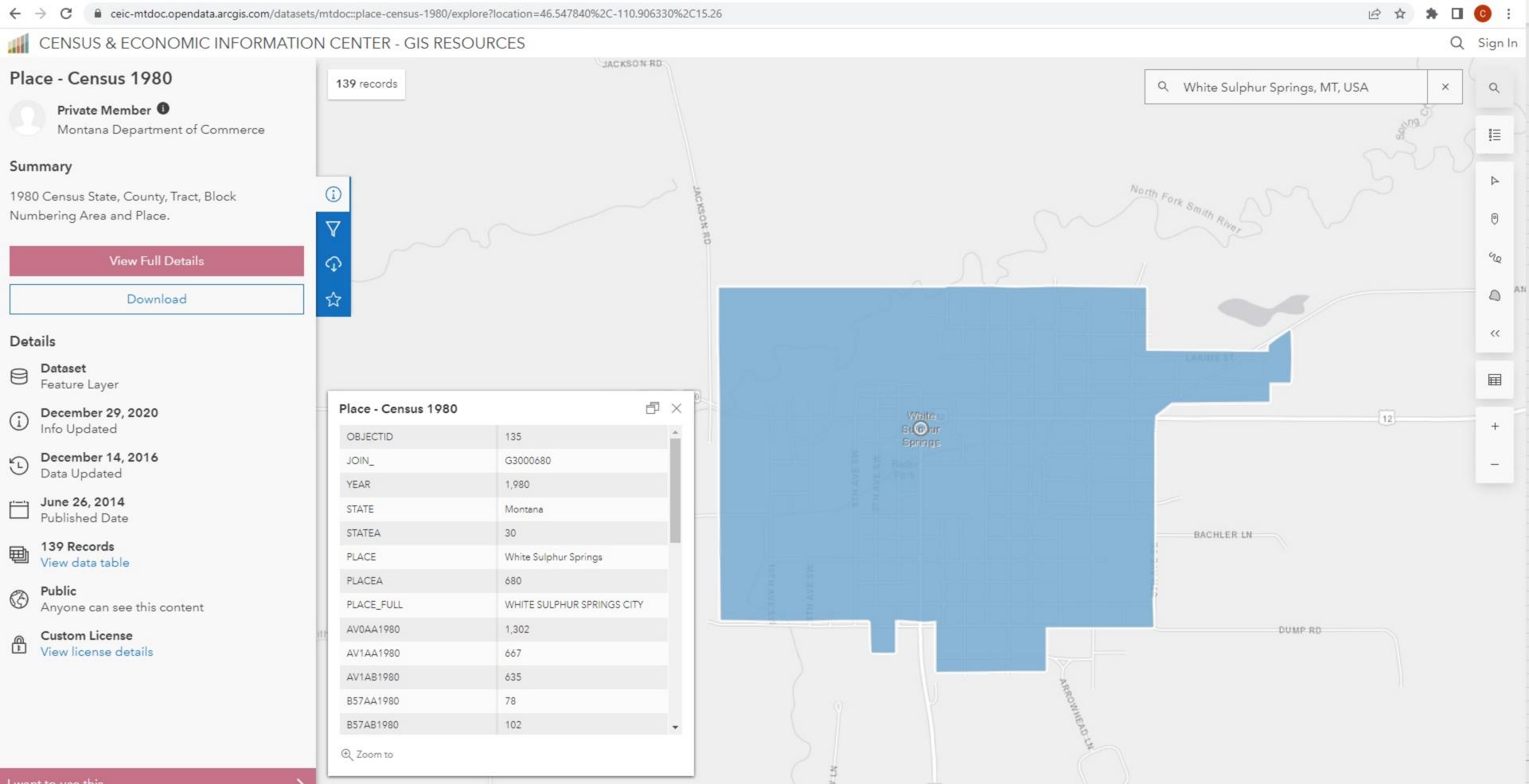
FO - Forested (no modifier)

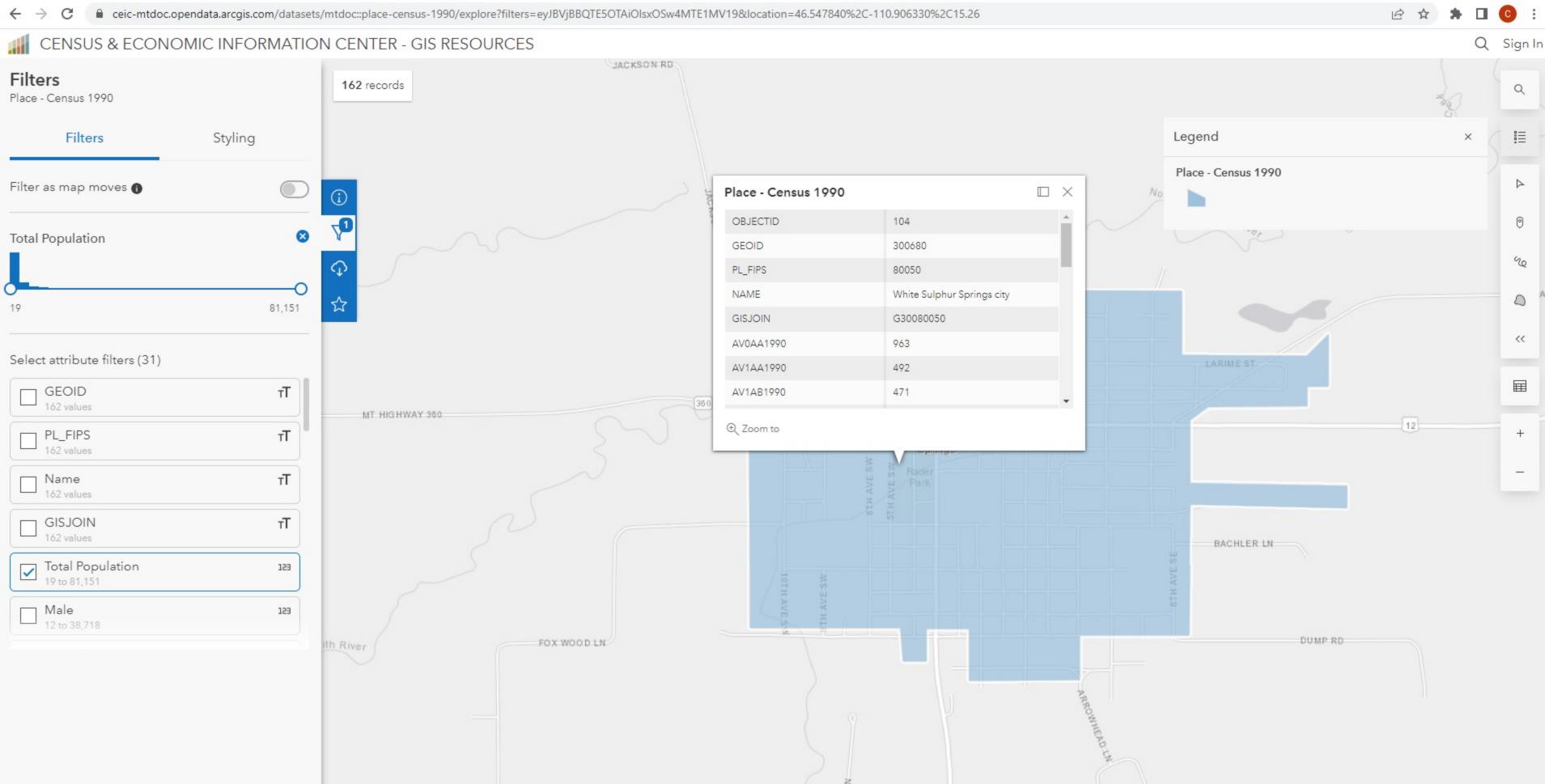
## **Introduction to Wetland and Riparian**

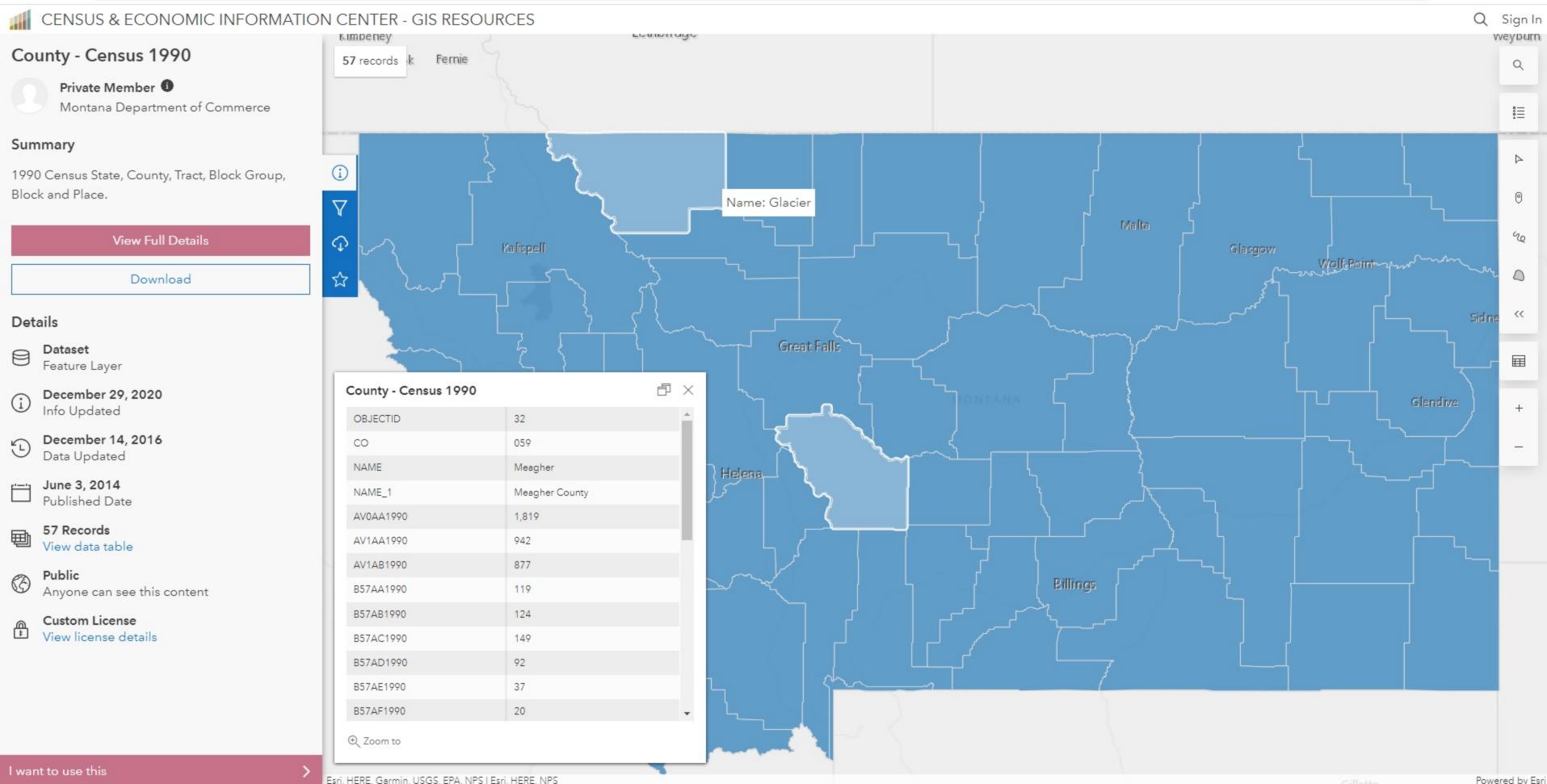
Within the report area you have requested, wetland and riparian mapping is summarized by acres of each classification present. Summaries are only provided for modern MTNHP wetland and riparian mapping and not for outdated (NWI Legacy) or incomplete (NWI Scalable) mapping efforts; described here. MTNHP has made all three of these datasets and associated metadata available for separate download on the Montana Wetland and Riparian Framework web page.

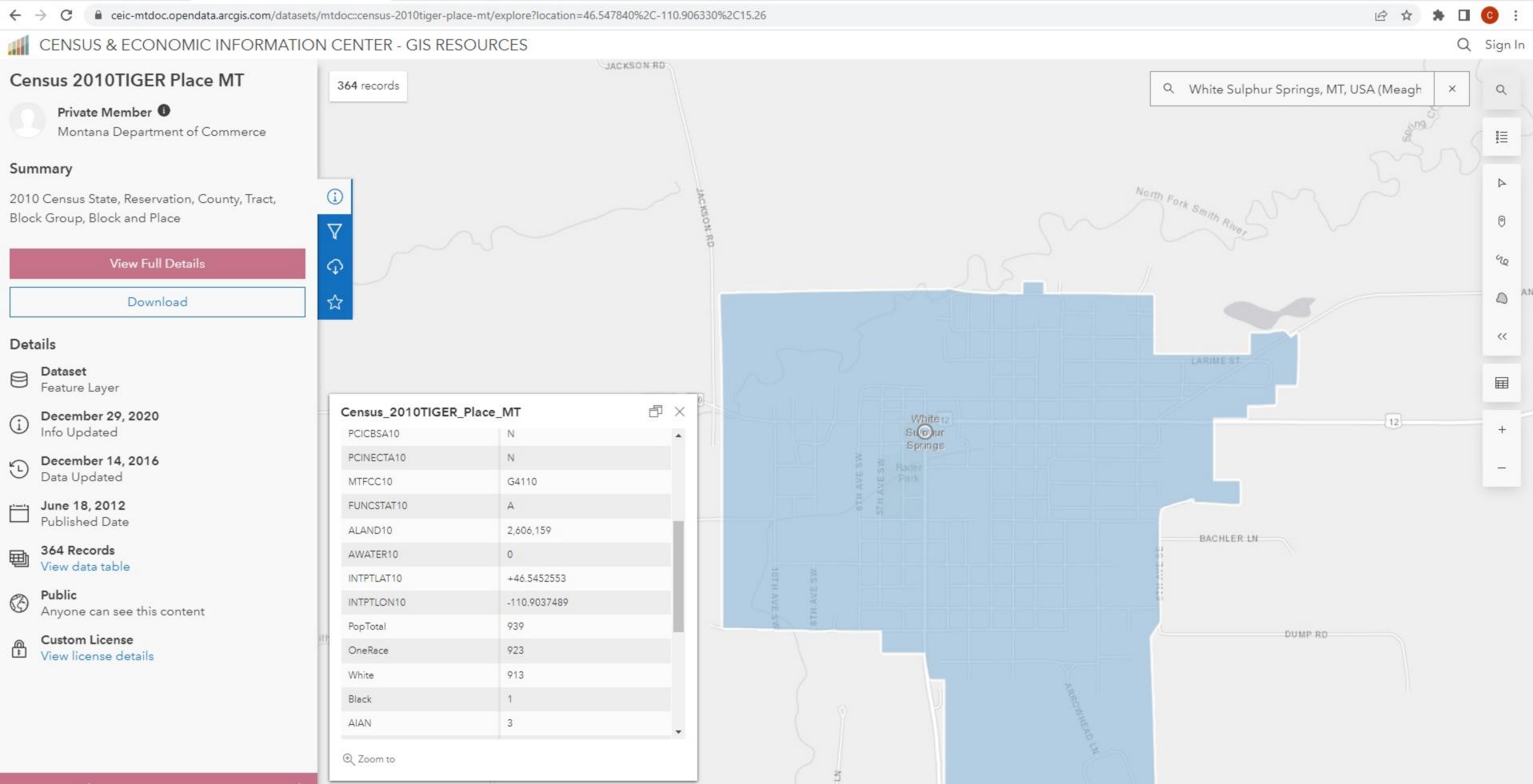
Wetland and Riparian mapping is one of 15 <u>Montana Spatial Data Infrastructure</u> framework layers considered vital for making statewide maps of Montana and understanding its geography. The wetland and riparian framework layer consists of spatial data representing the extent, type, and approximate location of wetlands, riparian areas, and deep water habitats in Montana.

Wetland and riparian mapping is completed through photointerpretation of 1-m resolution color infrared aerial imagery acquired from 2005 or later. A coding convention using letters and numbers is assigned to each mapped wetland. These letters and numbers describe the broad landscape context of the wetland, its vegetation type, its water regime, and the kind of alterations that may have occurred. Ancillary data layers such as topographic maps, digital elevation models, soils data, and other aerial imagery sources are also used to improve mapping accuracy. Wetland mapping follows the federal Wetland Mapping Standard and classifies wetlands according to the Cowardin classification system of the National Wetlands Inventory (NWI) (Cowardin et al. 1979, FGDC Wetlands Subcommittee 2013). Federal, State, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands differently than the NWI. Similar coding, based on U.S. Fish and Wildlife Service conventions, is applied to riparian areas (U.S. Fish and Wildlife Service 2009). These are mapped areas where vegetation composition and growth is influenced by nearby water bodies, but where soils, plant communities, and hydrology do not display true wetland characteristics. These data are intended for use at a scale of 1:12,000 or smaller. Mapped wetland and riparian areas do not represent precise boundaries and digital wetland data cannot substitute for an on-site determination of jurisdictional wetlands.

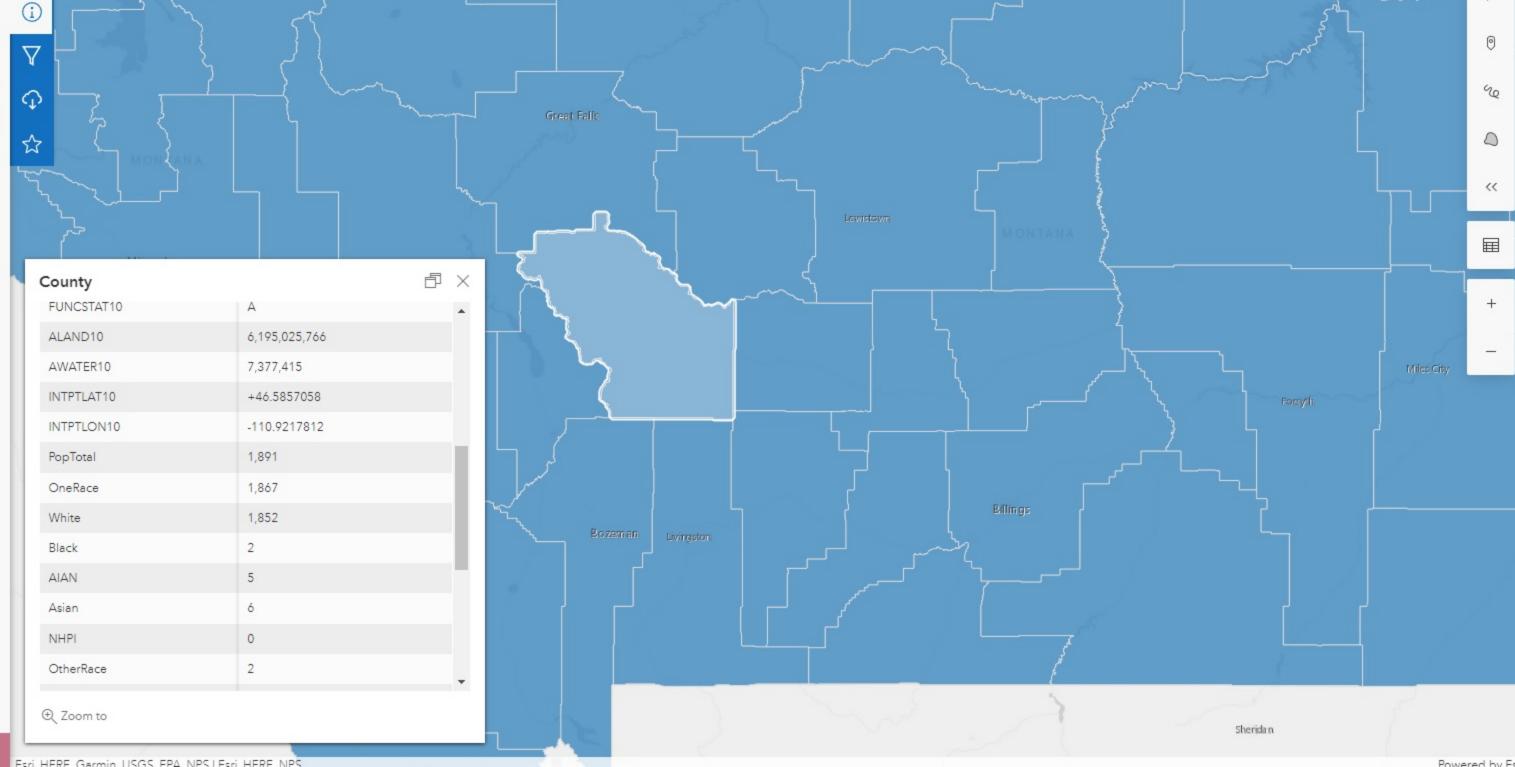

See a detailed overview, with examples, of both <u>wetland and riparian classification systems and associated</u> <u>codes</u>


#### Literature Cited

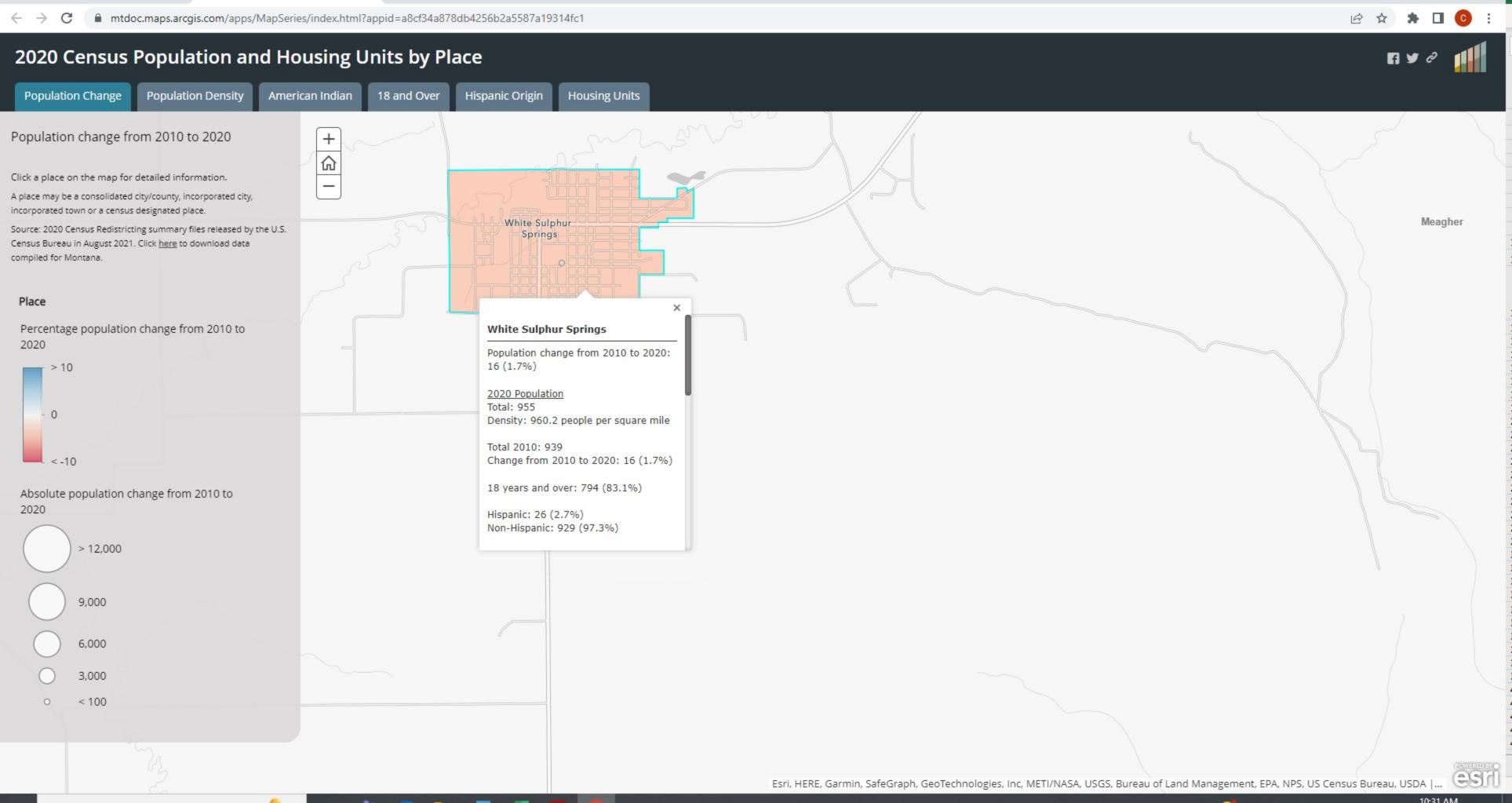

- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish and Wildlife Service, FWS/OBS-79/31. Washington, D.C. 103pp.
- Federal Geographic Data Committee. 2013. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, D.C.
- U.S. Fish and Wildlife Services. 2009. A system for mapping riparian areas in the western United States. Division of Habitat and Resource Conservation, Branch of Resource and Mapping Support, Arlington, Virginia.


## **Appendix J**

**Census and Income Data** 








**Custom License** View license details



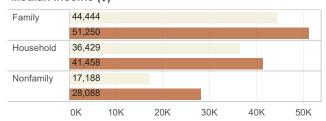
I want to use this



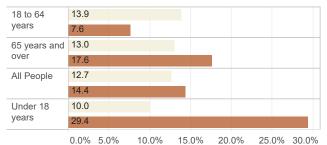
#### **Income and Poverty Trend**

American Community Survey (ACS) 5-Year Data Profile

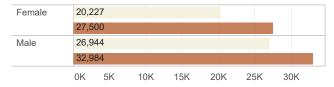
2019



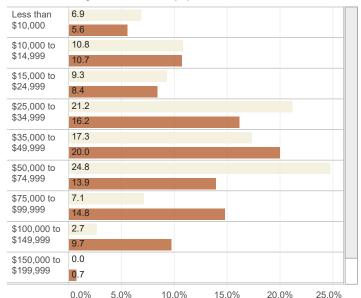

Select Geography Level 2014
Place 2019


#### **Select Geography Name**

White Sulphur Springs


#### Median Income (\$)




#### People Below Poverty Level (%)



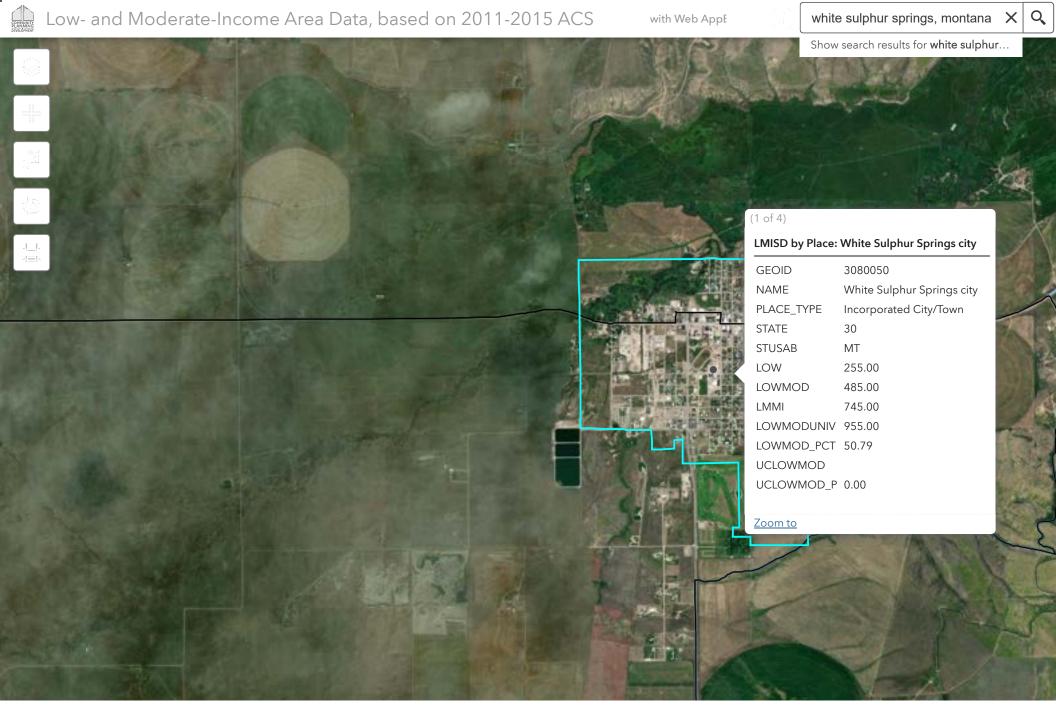

#### Median Earnings by Gender (\$)



#### Households by Income Class (%)



#### Household Income by Source (%)




10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%

Data Source: American Community Survey 5-year Data Profile, U.S. Census Bureau.

American Community Survey (ACS) 5-year estimates are derived from surveys conducted over a 5 year period. The information on this page compares the most recent ACS 5-year estimate to most recent non-overlapping ACS 5-year estimate.







## **Appendix K**

**Public Outreach Information** 

### AFFIDAVIT OF PUBLICATION

| STATE OF MONTANA)   |    |
|---------------------|----|
| County of Meagher ) | SS |

Laura Phillips, being duly sworn, deposes and says: That she is
Assistant Editor of the MEAGHER COUNTY NEWS, a newspaper of
general circulation printed and published in White Sulphur Springs,
Meagher County, Montana, and that the notice hereunto annexed: City
of White Sulphur Springs, Notice of Public Hearing, has been correctly published in the regular and entire issue of every number of said
paper for two consecutive weeks, beginning on the 9th day of March,
2023, ending on the 16th day of March, 2023.

Subscribed and sworn to before me this

Output

Day of March, A. D. 2023

Notary Public for the State of Montana

GRETCHEN RADER
NOTARY PUBLIC for the
State of Montana
Residing at White Suphur Springs, Montana
My Commission Expires
June 15, 2025

#### NOTICE OF PUBLIC HEARING

The City of White Sulphur Springs will hold a public hearing on Tuesday, March 21, 2023. The public hearing will begin at 5:30 p.m. at the City Hall at 105 West Hampton in White Sulphur Springs. The City has scheduled a hearing to obtain public comments regarding the proposed improvements to the City of White Sulphur Springs' water system. With assistance from Great West Engineering, the City is preparing a water preliminary engineering report (PER) update. It may apply for funding from the Montana Department of Commerce, Montana Department of Natural Resources and Conservation, USDA Rural Development, or the Department of Environmental Quality's Drinking Water State Revolving Fund Program.

At the public hearing, White Sulphur Springs and Great West Engineering representatives will explain the project's purpose, the project area, the scope of work, the budget, possible funding sources, and any costs that may result for local citizens because of the project. Great West Engineering will also present its assessment of the project's environmental impact. A copy of the PER is available at City Hall. During the public hearing, residents may ask questions and express their opinions regarding the project and its potential impact on the City of White Sulphur Springs residents.

Residents can submit comments and questions about the project at any time at wss@itstriangle.com or P.O. Box 442, White Sulphur Springs, MT 59645. You may also contact Great West Engineering's Project Manager, Jessica Salo, PE, at (406) 422-1288 or jsalo@greatwesteng.com.

See What's Possible.

www.greatwesteng.com

# City of White Sulphur Springs

## Water System Improvements Preliminary Engineering Report – Public Meeting

March 21, 2022

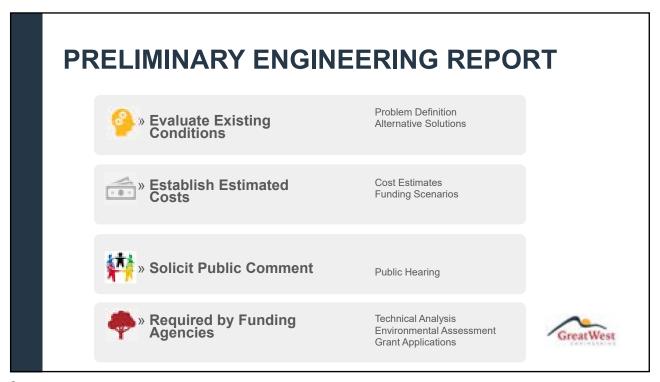
Jessica Salo, PE

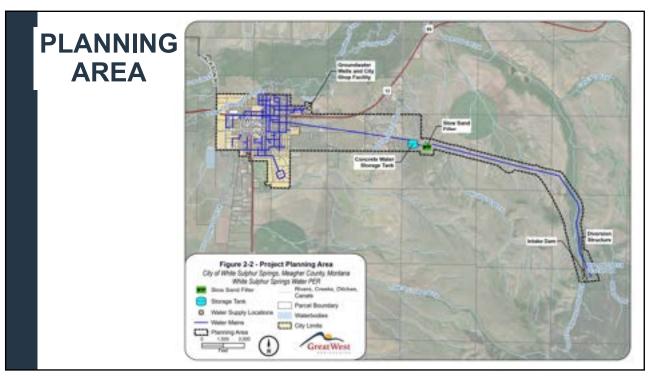


WHITE SELFECK SPENCE

1

## WHY ARE WE HERE





Identified water system needs



Discuss Preliminary Engineering Report (PER) Discuss Environmental Assessment (EA) Public comment

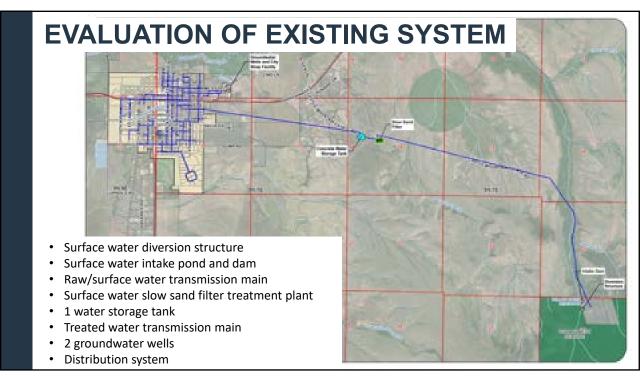






## **POPULATION**

## **Current Population**


• 2020 Census population is 955

## 2045 Design Population Estimate

- 1% annual growth projection
- 1,225 estimated design year population



5



## WATER USE EVALUATION

- Water use can be evaluated two ways:
  - 1. Based on source data
  - 2. Based on metered data

Water Loss Evaluation

• Source Data

Average Day Use = 242,537 gallons per day Average Gallons per Capita Per Day = 254 gpcd

Meter Data

Average Day Use = 120,487 gallons per day Average Gallons per Capita Per Day = 126 gpcd

· Unaccounted for Water

122,000 gallons per day or 50% of the water pumped into the system is lost

Anything over 15% is considered excessive 30% of the water system is old cast iron, steel, or ductile iron

0% of the water system is old cast iron, steel, or ductile iron

7

## WATER USE EVALUATION

### Water Demands (based on current source data)

| Year | Estimated<br>Population | Average Day<br>Use (gpd) | Maximum Day<br>Use (gpd) | Annual Acre-<br>Feet |
|------|-------------------------|--------------------------|--------------------------|----------------------|
| 2020 | 955                     | 242,537                  | 727,610                  | 272                  |
| 2045 | 1,225                   | 311,037                  | 933,110                  | 348                  |

## Water Demands (with assumed reduced leakage)

| Year | Estimated<br>Population | Average Day<br>Use (gpd) | Maximum Day<br>Use (gpd) | Annual Acre-<br>Feet |
|------|-------------------------|--------------------------|--------------------------|----------------------|
| 2020 | 955                     | 143,250                  | 429,750                  | 160                  |
| 2045 | 1,225                   | 183,708                  | 551,125                  | 206                  |



## **WATER SUPPLY**

- Surface water source is the South Fork of Willow Creek
- Diversion structure and dam provide water to a 6-inch PVC transmission main that flows by gravity to the slow sand filter building
- After treatment water flows to the storage tank where it is chlorinated before entering the distribution system





- Groundwater supply source are two groundwater wells located close together at the City shop facility
- Wells are pumps directly in the distribution system, feeding the user demands and filling the storage tank
- No treatment other than disinfection with chlorine



9

## WATER SUPPLY – DIVERSION STRUCTURE



- Diversion structure on the South Fork of Willow Creek
- Diverts flow to the water system
- 1940s construction
- Two concrete channels, one for the diverted flow and one for the mainstream flow
- A bar screen and slide gate on the diversion channel. The slide gate is used to isolate the City's water system from Willow Creek.



## WATER SUPPLY - INTAKE POND AND DAM

Intake pond and dam on Willow Creek Reservoir:

- Concrete dam with spillway, flushing valve, and wooden catwalk.
- Flushing valve is used to drain the pond and flush sediment
- Staff must walk on catwalk to operate valve
- Dam structure is 1940s era
- Engineered sand filter with perforated pipes was added in the 1990s underneath the pond
- Pipes collect water, manifold together, and supply water to the transmission main.





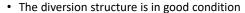
11

## **WATER SUPPLY – GROUNDWATER WELLS**

**Groundwater Wells** 

- City uses groundwater when Willow Creek source is not in use or as a supplement source to Willow Creek
- Well house at City shop yard






| Well<br>Name | GWIC ID | Well<br>Completion<br>Date | Total<br>Depth (ft.) | Static<br>Water<br>Level (ft.) | Test<br>Pumping<br>Rate (gpm) <sup>(1)</sup> | Actual<br>Pumping<br>Rate (gpm) <sup>(2)</sup> |
|--------------|---------|----------------------------|----------------------|--------------------------------|----------------------------------------------|------------------------------------------------|
| Well #1      | 260672  | 1986                       | 200                  | 19                             | 200                                          | 350                                            |
| Well #2      | 172711  | 1999                       | 201                  | 22                             | 1,000                                        | 534                                            |

(1)Based on original well logs

<sup>(2)</sup>Based on operator knowledge

### WATER SUPPLY ASSESSMENT



- · Concrete dam is in good condition but the catwalk is deteriorated
- · Flushing valve is not functional
- · Pond is filled with silt, aquatic plants and deadfall
- · Buildup of sediment is affecting quality of water
- Willow Creek source has not been used reliably for the past two to three years
- Transmission main from intake to the treatment plant was last upgraded in the 1980s and there are no known issues.
- Access to diversion/intake is difficult
- Coordination with Forest Service is important to manage deadfall
- Groundwater well meters not in the correct place to meter both wells
- City needs both water sources in order to meet demands
- Water quantity could become an issue within the planning period if no improvements are made or if leakage is not reduced.
- Finished water quality is good and the City routinely meets drinking water standards.



13

## WATER TREATMENT



- A slow sand filtration facility treats the water diverted from Willow Creek
- Constructed in 2004
- Includes four filter compartments
- Current practice includes raking the sand after spring runoff
- Plant can treat around 120 to 140 gpm when the turbidity is 0.6 NTU or lower
- Finished water is collected at the bottom of the filters via an underdrain system before going to the storage tank
- System is 100% gravity
- Groundwater wells are disinfected with gaseous chorine



**GreatWest** 

### TREATMENT ASSESSMENT



- Facility is relatively new and in excellent condition
- The City's slow sand filters are not performing at the level that slow sand filters are typically designed to operate
- Should be able to treat water with a turbidity of 10-20 NTU
- Causes may be due to clays and algae in the water, wrong size of filter sand, ineffective cleaning procedures, or a combination of these factors.
- Another issue is there is no way to measure raw turbidity when the plant is not in use, making it difficult to know when the plant can be put into service
- No issues with groundwater disinfection system.



15

## **STORAGE**

A 560,000-gallon storage tank was constructed in 2012 and is located approximately 2 miles southeast of the City.

Storage Need

Operational (average daily demand)

Emergency
Fire Suppression (2,500 gpm for 2 hours)

**Total Required** 

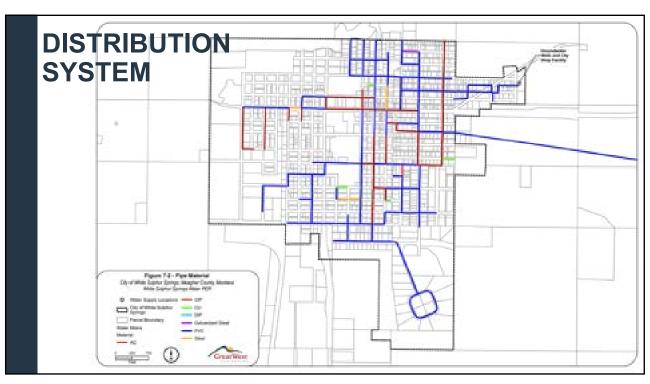
Storage Surplus (+) or Deficit (-)(1)

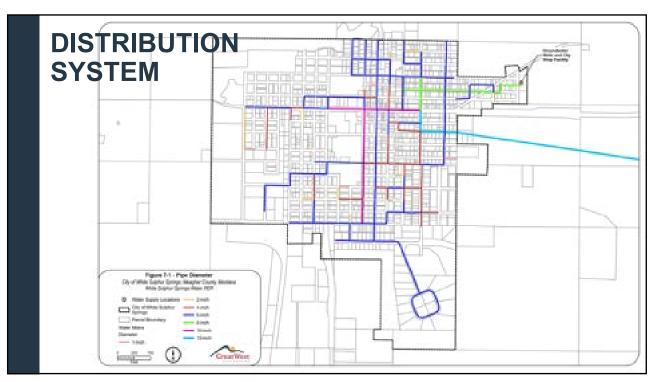
- Partially buried prestressed concrete storage tank
- 80-foot diameter, 15 feet high.
- Good condition



(1)Based on existing storage capacity of 560,000 gallons.

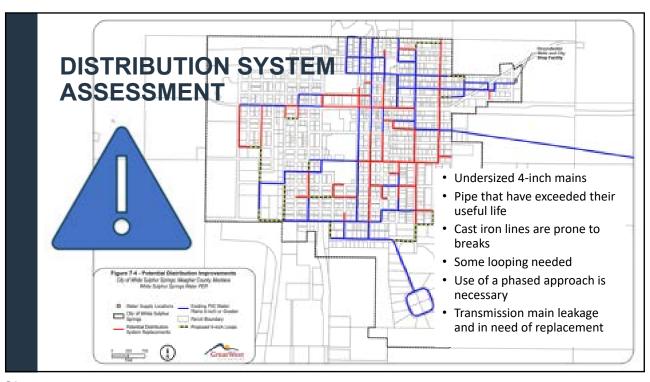


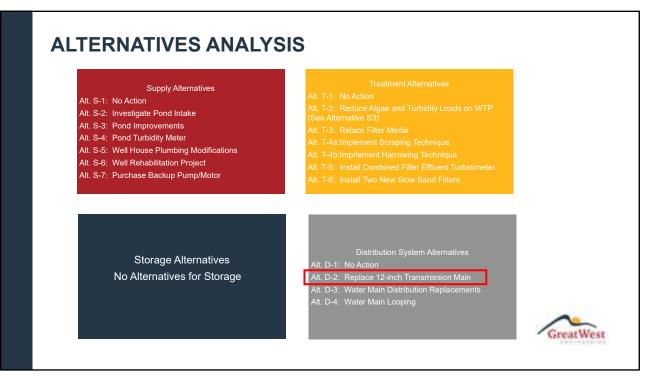

## STORAGE ASSESSMENT



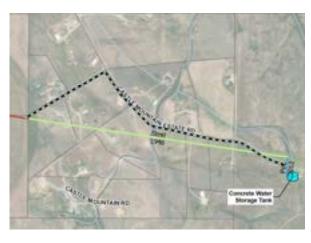

- Storage capacity is adequate for existing demands but starts to fall short when looking at projected demands
  - If leakage can be reduced, storage volume will be adequate
- Tank was recently constructed in 2012
- In excellent condition
- Buried concrete tanks can have high design life on the order of 100 years
- No improvements to storage needed at this time.




17







19

# TRANSMISSION MAIN Line was originally constructed in the 1940s as steel. A portion was replaced in 1986 with PVC and another portion in 2010 with PVC. There is a remaining portion of the main that is still 1946 steel and is believed to be the biggest source of leakage in the system.





# PREFERRED ALTERNATIVE



|   | OPINION                              | OF PROBABLE      | COST       |         |             |       |           |
|---|--------------------------------------|------------------|------------|---------|-------------|-------|-----------|
|   | City of White                        | Sulphur Spring   | s, Montana |         |             |       |           |
|   | Alternative D2: Rep                  | lace 12-inch Tra | ansmission | Main    |             |       |           |
| # | BIDITEM                              | QTY              | UNITS      | UI      | NIT PRICE 1 |       | TOTAL     |
| 1 | 12-inch PVC Water Main               | 4,000            | LF         | \$      | 125.00      | \$    | 500,000   |
| 2 | 12-inch Gate Valve                   | 5                | EA         | \$      | 8,000.00    | \$    | 40,000    |
| 3 | 12-inch Fittings                     | 5                | EA         | \$      | 4,500.00    | \$    | 22,500    |
| 4 | HDPE Bore for Canal Crossing         | 150              | LF         | \$      | 250.00      | \$    | 37,500    |
| 5 | Gravel Surface Restoration           | 4,000            | LF         | \$      | 25.00       | \$    | 100,000   |
| 6 | Seed and Fertilize                   | 1                | LS         | \$      | 8,000.00    | \$    | 8,000     |
|   | Direct Construction Subtotal         |                  |            |         |             | \$    | 708,000   |
|   | Mobilization 10%                     |                  |            | \$      | 71,000      |       |           |
|   | Traffic Control                      | 1%               |            |         | S           | 7,000 |           |
|   | Construction Subtotal                |                  |            |         |             | \$    | 786,000   |
|   | 2024 Construction Cost <sup>2</sup>  |                  | 8.0%       |         |             | \$    | 849,000   |
|   | Contingency                          |                  | 20%        |         |             |       |           |
|   | Permitting                           |                  |            |         |             | s     | 5,000     |
|   | Land Acquisition                     |                  |            |         |             | s     | 2,500     |
|   | Geotechnical Investigation           |                  |            |         |             | \$    | 10,000    |
|   | Engineering Design 10%               |                  | \$         | 101,900 |             |       |           |
|   | Engineering Construction             |                  | 10%        |         |             | \$    | 101,900   |
|   | Grant Admin, Legal, & Administrative |                  |            |         |             | \$    | 85,000    |
|   | TOTAL <sup>3</sup>                   |                  |            |         |             | S     | 1.325.300 |

Construction Cost = \$1.3 Million



23

# FUNDING SCENARIOS

| WATER SYSTEM IMPRO                                                                                                                                                                                  | SCENARIO#3                                                 | SCENARIO#4                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|
| ITEM                                                                                                                                                                                                | ARPA MAG, SRF<br>Loan (20-yrs, 2.5%)<br>w/ SRF Forgiveness | ARPA MAG, DNRO<br>MCEP, SRF Loar<br>(30-yrs, 2.5%) w<br>SRF Forgiveness |
| Alternative D2: Replace 12-inch Transmission Main                                                                                                                                                   | \$1,325,300                                                | \$1,325,300                                                             |
| Rounded Total                                                                                                                                                                                       | \$1,325,300                                                | \$1,325,300                                                             |
| RPA MAG (City & County Combined)                                                                                                                                                                    | \$306,708                                                  | \$306,708                                                               |
| DBG Grant                                                                                                                                                                                           |                                                            |                                                                         |
| NRC Grant                                                                                                                                                                                           |                                                            | \$125,000                                                               |
| ICEP Grant                                                                                                                                                                                          |                                                            | \$500,000                                                               |
| D Grant or SRF Loan Forgiveness                                                                                                                                                                     | \$750,000                                                  | \$295,194                                                               |
| D or SRF Loan                                                                                                                                                                                       | \$268,592                                                  | \$98,398                                                                |
| otal Project Funds                                                                                                                                                                                  | \$1,325,300                                                | \$1,325,300                                                             |
| RF Bond Reserve (1/2 year payment)                                                                                                                                                                  | \$8,608                                                    | \$2,352                                                                 |
| RD - Interim Interest (loans > \$500,000, check rate w/ RD Staff)                                                                                                                                   |                                                            |                                                                         |
| otal Loan Amount                                                                                                                                                                                    | \$277,200                                                  | \$100,750                                                               |
| Annual Loan Payment                                                                                                                                                                                 | \$17,770                                                   | \$4,820                                                                 |
| otal Loan Payments Over Life of Loan                                                                                                                                                                | \$355,400                                                  | \$144,600                                                               |
| Total Interest Paid Over Life of Loan                                                                                                                                                               | \$78,200                                                   | \$43,850                                                                |
| Annual Loan Coverage                                                                                                                                                                                | \$1,777                                                    | \$482                                                                   |
| OTAL ANNUAL CAPITAL DEBT SERVICE COST                                                                                                                                                               | \$19,547                                                   | \$5,302                                                                 |
| Jser Capital Cost/Month <sup>(1)</sup>                                                                                                                                                              | \$2.62                                                     | \$0.71                                                                  |
| Current Annual O&M <sup>(2)</sup>                                                                                                                                                                   | \$250,000                                                  | \$250,000                                                               |
| Current Annual Debt Service <sup>(3)</sup>                                                                                                                                                          | \$132,058                                                  | \$132,058                                                               |
| dditional O&M Due To Project                                                                                                                                                                        | \$0                                                        | \$0                                                                     |
| TOTAL ANNUAL O&M COSTS                                                                                                                                                                              | \$382,058                                                  | \$382,058                                                               |
| Jser O&M Cost/Month <sup>(1)</sup>                                                                                                                                                                  | \$51.22                                                    | \$51.22                                                                 |
| JSER COST/MONTH <sup>(1)</sup>                                                                                                                                                                      | \$53.84                                                    | \$51.93                                                                 |
| existing Average User Cost/Month/EDU                                                                                                                                                                | \$48.86                                                    | \$48.86                                                                 |
| COST/MONTH INCREASE/EDU                                                                                                                                                                             | \$4.98                                                     | \$3.07                                                                  |
| Existing Other System Cost/Month                                                                                                                                                                    | \$42.00                                                    | \$42.00                                                                 |
| otal Proposed Water & Sewer Cost/Month                                                                                                                                                              | \$95.84                                                    | \$93.93                                                                 |
| Combined Systems Target Rate <sup>(4)</sup>                                                                                                                                                         | \$79.46                                                    | \$79.46                                                                 |
| PERCENT OF COMBINED TARGET RATE                                                                                                                                                                     | 120.6%                                                     | 118.2%                                                                  |
| Based on 622 EDUs Based on brief analysis of last firree years actual expenditures - s. Based on highest calculated coverage calculation - SRF Debt Sen https://comdev.mt.gov/Resources/Target-Rate | bject to change after more the vice Schedule on Current D  | norough analysis.<br>rinking Water Loans                                |



# ENVIRONMENTAL ASSESSMENT

Factors Considered:

- · Land Cover
- Land Management
- Soils and Farmland Classification
- · Biological Resources
- Water Resources
- Floodplains
- Wetlands
- Cultural and Historical Resources
- Socio-economic and Environmental Justice Issues
- · Hazardous Materials

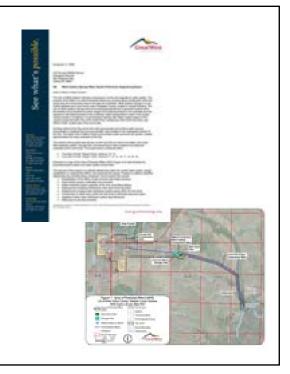
Public document analyzing complexity and seriousness of environmental issues

Local, State, and Federal agencies were contacted

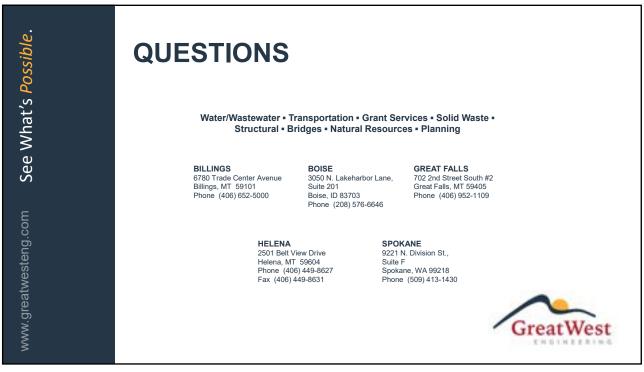
Public comment accepted



25


# ENVIRONMENTAL ASSESSMENT

### Comments received from:


- · US Fish and Wildlife Service
- Montana Historical Society
- Diversion/Intake may need to be recorded prior to rehabilitation
- Montana Land Reliance
- DNRC Water Resources
- Meagher County
- · Helena-Lewis & Clark National Forest
- Montana Fish, Wildlife and Parks
  - Westslope Cutthroat Trout considerations

### Decision:

· No significant impacts have been identified.







### City of White Sulphur Springs

The Public Hearing of the City Council was held on March 21, 2023 at 5:30 pm followed afterwards with the Regular Session. Mayor Rick Nelson called the meeting to order with the following members present:

Ron Coleman Pattie Berg Rick Ellison

March 21, 2023 @ 5:30 pm

### PUBLIC HEARING

A. City's Water Preliminary Engineering Report (PER) Update.

Discussion:

White Sulphur Springs and Great West Engineering representatives will explain the project's purpose, the project area, the scope of work, the budget, possible funding sources, and any costs that may result for local citizens because of the project. Great West Engineering will also present its assessment of the project's environmental impact. Also funding options, including the Montana Department of Commerce, Montana Department of Natural Resources and Conservation, USDA Rural Development, or the Department of Environmental Quality's Drinking Water State Revolving Fund Program.

Public Comment.

Jessica Salo discussed the City's Water System Improvements Preliminary Engineering Report (PER). A PER is a required component of funding applications when a community applies for state funding to assist with infrastructure improvement projects. The PER includes an evaluation of existing conditions, identifies problems or deficiencies, develops potential alternatives to address the issues, estimates costs, and ultimately provides a preferred project and associated funding scenario. Public involvement is also conducted as part of the process. The PER provides the technical analysis and justification for the proposed project. Environmental implications are also evaluated.

The 2020 Census population is 955.
The 2045 Design Population Estimate:
1% annual growth projection
1,225 estimated design year population

### Evaluation of Existing System

surface water diversion structure surface water intake pond and dam raw/surface water transmission main surface water slow sand filter treatment plant 1 water storage tank treated water transmission main 2 groundwater wells distribution system

Water Use can be evaluated two ways, based on source date and metered data. The source data was 242,537 gallons per day and the meter data was 120,487 gallons per day. The unaccounted water was 122,000 gallons per day or 50% of the water pumped into the system is lost (anything over 15% is considered excessive). 30% of the City's Water System is old cast iron, steel, or ductile iron.

### Water Supply:

surface water source is the South Fork of Willow Creek diversion structure and dam provide water to a 6-inch pvc transmission main that flows by gravity to the slow sand filter building after treatment water flows to the storage tank where it is chlorinated before entering the distribution system groundwater supply source are two groundwater wells located close together at the City shop facility wells are pumps directly in the distribution system, feeding the user demands and filling the storage tank no treatment other than disinfection with chlorine

### Water Supply - Diversion Structure:

diversion structure on the South Fork of Willow Creek diverts flow to the water system 1940s construction two concrete channels, one for the diverted flow and one for the mainstream flow a bar screen and slide gate on the diversion channel. the slide gate is used to isolate the City's water system from Willow Creek.

### Water Supply - Intake Pond and Dam:

intake pond and dam on willow Creek Reservoir concrete dam with spillway, flushing valve, and wooden catwalk. flushing valve is used to drain the pond and flush sediment staff must walk on catwalk to operate valve dam structure is 1940s era engineered sand filter with perforated pipes was added in the 1990s underneath the pond pipes collect water, manifold together, and supply water to the transmission main

### Water Supply - Groundwater Wells: Well #1 (1986) and Well #2 (1999)

City uses groundwater when Willow Creek source is not in use or as a supplement source to Willow Creek well house at City Shop Yard

### Water Supply Assessment:

the diversion structure is in good condition concrete dam is in good condition but the catwalk is deteriorated flushing valve is not functional pond is filled with silt, aquatic plants and deadfall

buildup of sediment is affecting quality of water

Willow Creek source has not been used reliably for the past two to three years

transmission main from intake to the treatment plant was last upgraded in the 1980s and there are no known issues. access to diversion/intake is difficult

coordination with Forest Service is important to manage deadfall

groundwater well meters not in the correct place to meter both wells

City needs both water sources in order to meet demands

water quantity could become an issue within the planning period if no improvements are made or if leakage is not reduced

finished water quality is good and the City routinely meets drinking water standards.

### Water Treatment:

a slow sand filtration facility treats the water diverted from Willow Creek constructed in 2004 includes four filter compartments current practice includes raking the sand after spring runoff plant can treat around 120 to 140 gpm when the turbidity is 0.6 NTU or lower finished water is collected at the bottom of the filters via an underdrain system before going to the storage tank system is 100% gravity groundwater wells are disinfected with gaseous chlorine

### Treatment Assessment:

facility is relatively new and in excellent condition

the City's slow sand filters are not performing at the level that slow sand filters are typically designed to operate should be able to treat water with a turbidity of 10-20 NTU

causes may be due to clays and algae in the water, wrong size of filter sand, ineffective cleaning procedures, or a combination of these factors.

another issue is there is no way to measure raw turbidity when the plant is not in use, making it difficult to know when the plant can be put into service

no issues with groundwater disinfection system.

### Storage:

a 560,000 gallon storage tank was constructed in 2012 and is located approximately 2 miles SE of the City. partially buried prestressed concrete storage tank 80-foot diameter, 15 feet high good condition

### Storage Assessment

storage capacity is adequate for existing demands but starts to fall short when looking at projected demands if leakage can be reduced, storage volume will be adequate tank was recently constructed in 2012

in excellent condition

buried concrete tanks can have high design life on the order of 100 years no improvements to storage needed at this time

### Transmission Main

line was originally constructed in the 1940s as steel

a portion was replaced in 1986 with PVC and another portion in 2010 with PVC

there is a remaining portion of the main that is still 1946 steel and is believed to be the biggest source of leakage in the system

### Distribution System Assessment

undersized 4-inch mains (should be at least 6-inch water mains to provide adequate fire flow protection and serving fire hydrants)

pipe that have exceeded their useful life

cast iron lines are prone to breaks

some looping needed

use of a phased approach is necessary

transmission main leakage and in need of replacement

### Alternative Analysis

### Supply Alternatives

Alt. S-1: No Action

Alt. S-2: Investigate Pond Intake

Alt. S-3: Pond Improvements

Alt. S-4: Pond Turbidity Meter

Alt. S-5: Well House Plumbing Modifications

Alt. S-6: Well Rehabilitation Project

Alt. S-7: Purchase Backup Pump/Motor

### Treatment Alternatives

Alt. T-1: No Action

Alt. T-2: Reduce Algae and Turbidity Loads on WTP (see alternative S3)

Alt. T-3: Replace Filter Media

Alt. T-4a: Implement Scaping Technique

Alt. T-4b: Implement Harrowing Technique

Alt. T-5: Install Combined Filter Effluent Turbidimeter

Alt. T-6: Install Two New Slow Sand Filters

### Storage Alternatives No Alternatives for Storage

### Distribution System Alternatives

Alt. D-1: No Action

Alt. D-2: Replace 12-inch Transmission Main

Alt. D-3: Water Main Distribution Replacements

Alt. D-4: Water Main Looping

The Mayor, City Attorney, and Council discussed the Alternatives and Funding Scenarios. The 12-inch transmission line from the storage tank to the City limits has evolved over the years and sections have been replaced. The line was originally constructed in the 1940s as steel. A portion was replaced in 1988 with PVC and another portion in 2010 with PVC. There is a remaining portion of the main that is still 1946 steel and is believed to be the biggest source of leakage in the system. This line would be replaced by a 12-inch Transmission Main and realigned the main along the Castle Mountain Estate Road and along property lines in the adjoining subdivision. Easement negotiations will be required for the realignment. The Council discussed that the City would rebuild the torn up road and it would likely be left in much better condition that it is now. The Council discussed putting hydrants along the road to help with fire suppression.

If the City wanted to get started with the project before July 2025 the SRF Loan Program was the way to go, because the City really can't afford to wait on starting the project due to all of the leaks (122,000 treated water gallons per day) with the last replacement of water transmission main last section. The City currently qualifies as a disadvantaged community with the current Median Household Income (MHI) data that is being used. The MHI has gone up and when those new numbers go into effect, the City won't have the disadvantaged community status anymore. Disadvantaged community status is eligible for the 75% SRF forgiveness. A positive for going with Scenario #3 is that the City would not have to wait 2 years until DNRC/MCEP funding is available. SRF loans are relatively easy to obtain and could have the project ready to bid potentially by early next year.

The Mayor, City Attorney, Great West Engineering – Jessica Salo, and Council discussed the PER and they were in agreement that the preferred alternative would be:

|   | Alternative O.                   | Replace 12 inch 1 | TAN SHIPS SHOW |    |          | _    |          |
|---|----------------------------------|-------------------|----------------|----|----------|------|----------|
|   | BIDITEM                          | QTY               | UNITE          | UN | IT PRICE |      | TOTAL    |
|   | 17 not PVC Water Mair            | 4.500             | 1.5            | 1  | 754.00   | 1    | 500-10   |
| 2 | 12 pcf Calls Valve               |                   | E.A            | 1  | 1.000    | 1    | Affile   |
| 5 | 12 inch F dings                  |                   | EA             | 1  | 4.94.35  | 1    | 22.50    |
|   | HOPE fore to case I linking      | 150               | 1.00           | 1  | 26. 1    | 1.   | - 27.62  |
| 5 | Service for two free brokening   | 4,000             | 1.0            | 1  | 47.1     | 3    | F 4 4    |
|   | Sept 1 and 1 or Mary             |                   | - 5            | 1  | * * *    | 1    | 18.0     |
|   | Direct Construction Subfotal     |                   |                | 71 |          | 1    | 700 04   |
|   | Wignester                        |                   |                |    |          | 1.   |          |
|   | Tradic Contine                   |                   |                |    |          | 1.   | 7.7      |
|   | Construction Subtotal            |                   |                |    |          | 1    | FB6 04   |
|   | 21.4 Constrator List             |                   |                |    |          | 10   | 549-9    |
|   | Contrigency                      |                   | 27.4           |    |          | 1.1  | 3.00     |
|   | For many                         |                   |                |    |          | 1    | 4.9      |
|   | Land Acquision                   |                   |                |    |          | 1.5  | 2.5      |
|   | Certechnisal Investigation       |                   |                |    |          | 1.5. | 10.0     |
|   | Engineering Design               |                   | 10%            |    |          | 1.   | 1 . 4    |
| _ | Engineering Construction         |                   | 10%            |    |          | 1    | 111.9    |
|   | Grant Adren Legal & Adrenerative |                   |                |    |          | 1    | 65.00    |
|   | TOTAL <sup>3</sup>               |                   |                |    |          |      | 1,325,30 |

| FUNDING OPTIONS FOR WHITE SULPH<br>WATER SYSTEM (N               |                                                            | EDU.                                                                    |
|------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|
| Manual Automate                                                  | SCENARIO #3                                                | SCENARIO 84                                                             |
| ITEM                                                             | ARPA MAG. SRF<br>Loan (20-yrs. 2.5%)<br>w/ SRF Forgiveness | ARPA MAG, DNRC<br>MCEP, SRF Low<br>(30 yrs, 2 5%) w/<br>SRF Forgiveness |
| Alternative D2: Replace 12-inch Transmission Main                | \$1,325,300                                                | \$1,325,300                                                             |
| Hounded Total                                                    | \$1,325,300                                                | \$1,325,300                                                             |
| ARPA MAG (Cry & County Combined)                                 | \$306.706                                                  | \$306,708                                                               |
| CDBG Grant                                                       |                                                            |                                                                         |
| DNRC Grant                                                       |                                                            | \$125,000                                                               |
| MCEP Grant                                                       |                                                            | \$500,000                                                               |
| RD Grantor SRF Loan Forgweness                                   | \$750,000                                                  | \$296,194                                                               |
| RD or SRF Loan                                                   | 1 192                                                      | \$98,398                                                                |
| Yotal Project Funds                                              | \$1,325,300                                                | \$1,325,300                                                             |
| SRF Bond Reserve (1/2 year payment)                              | \$8 608                                                    | \$2,352                                                                 |
| RD .: Interest interest (spans > \$500,000, sheck rate w/ RD 5tm |                                                            | 01                                                                      |
| fotal Loan Amount                                                | \$277.200                                                  | \$100.750                                                               |
| Armuai Loan Payment                                              | \$17.770                                                   | \$4.820                                                                 |
| lotars oan Payments Over Life of Loan                            | \$365.400                                                  | \$144.500                                                               |
| Total Interest Paid Over Life of Loan                            | \$78,200                                                   | \$43.850                                                                |
| Annual Loan Coverage                                             | \$1.777                                                    | \$407                                                                   |
| TOTAL ANNUAL CAPITAL DEBT SERVICE COST                           | \$19,547                                                   | \$5.302                                                                 |
| User Capital Cost Month 15                                       | 52.62                                                      | \$0.71                                                                  |
| Current Annual O&M                                               | \$250,000                                                  | \$250,000                                                               |
| Surrent Annual Debt Service                                      | \$132.058                                                  | \$132.058                                                               |
| Additional O&M Due To Project                                    | \$0                                                        | \$0                                                                     |
| TOTAL ANNUAL OBM COSTS                                           | \$382,058                                                  | \$382,058                                                               |
| User OSM Cost Month "                                            | \$51.22                                                    | \$51.22                                                                 |
| SER COSTIMONTH                                                   | \$53.64                                                    | \$51.93                                                                 |
| xisting Average User CostMontVEDU                                | \$48.86                                                    | \$48.86                                                                 |
| OS TIMONTH INCREASEADU                                           | \$4.96                                                     | 53.GF                                                                   |
| xisting Other System CostMonth                                   | \$42.00                                                    | \$42.00                                                                 |
| otal Proposed Water & Sewer CostMonth                            | \$65.84                                                    | \$93.93                                                                 |
| Combined Systems Target Rate                                     | \$76.46                                                    | \$75.46                                                                 |
| PERCENT OF COMBINED TARGET RATE                                  | 120.6%                                                     | 118.2%                                                                  |

Based on Erefanation of set three years advances benditures is subject to sharing internity the formula measure. Tieses on highest calculated coverage balculation - SRF Dett Service Schedule on Current Ericking Water Loans

### The Environmental Assessment comments received from:

US Fish & Wildlife Service

Montana Historical Society (diversion/intake may need to be recorded prior to rehabilitation)

Montana Land Reliance

DNRC Water Sources

Meagher County

Helena-Lewis & Clark National Forest

Montana Fish, Wildlife and Parks (Westslope Cutthroat Trout considerations)

The Environmental Assessment decision was that no significant impacts have been identified.

The next steps would be to:

Finalize the PER and Prepare the SRF Application - March/April 2023

Finalize Funding and Contract for Design - May/June 2023

Easement Negotiations and Design - July 2023

Bidding - January 2024

Construction - Spring 2025

### Motion/Vote to Close Public Hearing and Adjourn to Regular Business Meeting. March 21, 2023 @ 6:15 pm

The Mayor asked if there was a motion to close the Public Hearing. Ron Coleman motioned to close the Public Hearing. Pattie Berg seconded the motion. Ron Coleman, Pattie Berg, and Rick Ellison all said Aye. Motion carried and passed,

- A. Call Regular Meeting to Order
- B. Roll Call
- C. Pledge of Allegiance to Flag
- D. Public Comment:

Public comment will be accepted on public matters not listed on this agenda and are within the jurisdiction of the City Council and having a significant interest to the public. During a regular session, there will be time after each agenda item for comment about that item.

- 1. Step up to the podium and state your name and address for the record.
- 2. Please limit your comments to THREE (3) minutes.

### E. Unfinished Business - Items for Discussion and/or Action

### Phase 4 Water Transmission Project: Action on PER and Proposed Project with Funding – Jessica Salo/Craig Erickson from Great West and Council

Discussion and/or Action

Continue discussion from Public Hearing and March 6, 2023 meeting as to Adopting PER and Proposed Phase 4 Project, together with decisions as to Funding, considering: 1) all regular system operation and maintenance expenses, 2) fund a reasonable system repair & replacement reserve account, and 3) cover 110% of all principal and interest payments due on outstanding bonds at our present rate structure; and whether our present categories adequately reflect equivalencies between dwellings and businesses and their corresponding impact on the system or require alteration.

Accept Public Comment

Motion to Adopt proposed PER together with Proposed Phase 4 Water Transmission Project, and funding alternative, OR Motion to continue discussion.

The Mayor asked if there was a motion to approve the presentation and move forward with the proposed alternative. Ron Coleman motioned to proceed with the PER as presented and proceed with the Distribution System - Alternative D2 (replace 12 - inch Transmission Main). Pattie Berg seconded the motion. Ron Coleman, Pattie Berg, and Rick Ellison all said Aye. Motion carried and passed.

### Montana Department of Transportation – Ted Jones – Request a permanent through traffic street closure of 5th Ave SW between the streets of SW Hancock St and SW Garfield St.

Discussion and/or Action

Continued discussion regarding need for street closure requested by Montana Department of Transportation (MDT) as to their property located between SW Hancock and SW Garfield which straddles 5th Ave SW and their plans for development of this property.

Accept Public Comment

Possible Motion: Move to grant street closure (2 gates) and bring matter back for formal Resolution; or Move to continue matter for further discussion.

The City Attorney, Susan Wordal, said that the first place to begin is with the Petition to Abandon. Susan Wordal, Montana Department of Transportation, Ted Jones, and DOT Attorney, Bart LaMont have been working together to get the necessary documents for the discontinuance of 5th Avenue SW between Hancock and Garfield. The Mayor, City Attorney, Department of Transportation discussed the Petition to Abandon a Portion, Notice of Hearing on Abandonment Petition, Private Access and Utility Easement with Reversion Clause to public Use and Deed Restriction, and the Utility Easement. Susan Wordal said that there are two easements. One is a general agreement about access into the abandoned street for purposes of any City utility work. The City wants to maintain that easement for water/sewer/etc., which requires we be able to access the area under certain situations. The second one is a reversion document which allows for the abandoned street and the easement to revert back to the City in the event the MDOT should decide to shift their operation out of that location and sell the street after MDOT and its successors in interest leave that site, it will be much less of a challenge if we retain a reversionary interest.

MT DOT said that they would like to start and demolish the current building shop in May and build a new shop that sets a little farther back and is closer to the street. MT DOT will be presenting the Council with the formal petition documents in April.

### 3. Freedom Days LLC - Labor Day Rodeo Street Closure/Alcohol Waiver

Discussion and/or Action

Continued from March 6th: Presentation as to Freedom Day's Rodeo event and the street closure/alcohol waiver request for the 4th of September.

Accept Public Comment

Possible Motion: Move to approve Freedom Day's Rodeo's Open Container Waiver for September 3<sup>rd</sup>
The Mayor said that Freedom Days LLC is not here, so this will be at the next meeting in April.

### F. Comments/Discussion

- 1. Future Business
- Mayor's Comments—Rick Nelson

The Mayor, Marc Pryor, and Heather Harrington met with the County Commissioners at 3:30 pm to talk about the Spay & Neuter Clinic happening June 17th, and they have agreed to contribute up to \$1,500, the cost of the clinic will be about \$2,350 for two vet teams. Local Motels have donated rooms, and others have donated beverages. The Spay & Neuter Clinic will be on the next agenda for the Council's approval of paying the same amount part of costs. The Mayor said that he also reminded the Commissioners that it was the County's turn to host the Clean Up Day. This will also be on the next agenda to coordinate with the County and come up with a date for Clean Up Day. May 2-4 in Bozeman will be the Montana Municipal Institute for Elected Officials, Clerks, Treasurers, & Finance Officers. The Mayor said that Ron Coleman and himself will be attending. Pattie Berg will look at the draft agenda and her calendar and let the office know if she will be attending or not. Assistant Clerk, Heather Harrington, will be attending the Institute this year. Clerk-Treasurer, Michelle Stidham, will not be attending the Institute this time due to the Audit that is scheduled for May 1-4 this year. The Mayor said that he will only be gone one of the days but would be there for the rest of Audit. The City Attorney, Susan Wordal, will be attending the Tillotson Service Program for Municipal Attorneys in Bozeman May 3-5, presented by Montana League of Cities and Towns and MMIA.

- 3. Council Comments/Discussion
- a. President of the Council—Ron Coleman

Nothing. Hopefully Spring will be coming soon.

b. Council Member—Lee Blanchard

Not in attendance.

c. Council Member-Pattie Berg

Working with Great West Engineering on the Parks. Waiting on the electricity Rotary Shelter Building for the quote. The Mayor said that the quote was forwarded onto Jen Frazer and the quote came in at \$2,500 plus up to 10% just in case needed.

Still would like to see Rocky Vinton's paperwork. The Mayor said that Rocky Vinton has it on his desk at the City Shop, but he is gone at Rural Water training in Great Falls this week. City Clerk-Treasurer registered and will be attending the Great Falls, Rural Water on March 22nd for the WASACT Funding Workshop 8:00-12:30 via live streaming.

d. Council Member-Rick Ellison

Via Zoom. Nothing to report, but it has been snowing and raining where he is at on his vacation.

### G. Council Review of Financials

Received a copy Budget Expenditure/Revenue February 2023

### H. Claims Signing/Motion to Approve the Bills

Will be included at the April 3rd meeting.

### I. Motion/Vote to Adjourn the Meeting

The Mayor asked the Council if there is a motion to adjourn the meeting. Pattie Berg motioned to adjourn the meeting. Ron Coleman seconded the motion. All said Aye. Meeting adjourned at 6:35 pm.

Michelle Stidham-Clerk-Treasurer

Mayor - Rick Nelson

# **Appendix L**

**MDEQ Sanitary Survey** 



January 17, 2023

City of White Sulphur Springs Attn: Michelle Stidham PO Box 442 White Sulphur Springs, MT 59645

Re: Sanitary Survey Inspection for the city of White Sulphur Springs (PWSID: MT0000360).

Dear system owners,

I would like to thank Jacob Gregory, Daryl Mesecher and staff for assisting my colleague, Josh Seekins and me during the sanitary survey inspection of the city of White Sulphur Springs. As a community public water supply system, your facility is required to have a sanitary survey inspection every three years. These regular inspections offer us an opportunity to look for sanitary deficiencies that have the potential to cause contamination in the water system, as well as pointing out operation and maintenance concerns. Below are a few comments relating to the sanitary survey conducted on November 29, 2022.

White Sulphur Springs is in Meagher County near the junction of Highway 12 and Highway 89. The town, located near the Smith River Canyon, was named after the white deposits that were formed by the hot springs that are in the city park. The town supports the local agricultural and recreation/tourism industries. The public water supply is classified as Community due to the nature of the population served.

### SOURCE(s): WL003 (Well 1), WL004 (Well 2) – IN002 – Intake Willow Creek

The White Sulphur Springs wells are completed in deep fractured siltstone. Source water recharge to the White Sulphur Springs wells mostly likely results from water percolating into more permeable zones of area limestone or fractured bedrock along area faults. Based on this information, the siltstone aquifer that supplies water to the White Sulphur Springs PWS wells has a low sensitivity to potential contaminant sources. The wells are equipped with submersible pumps and are controlled by the levels of the storage tank.

**(WL003)** Well 1 1986 was rotary drilled in June of 1986 to a total depth of 200 ft. The well is cased the entire depth with steel casing and developed with a screen from 90 ft. to 200 ft. The casing was grouted to a depth of 88 ft. with cement. According to the well log static water level at the time of completion was 19 ft. The well log for the 1986 well is on record in the Groundwater Information Center database (GWIC) 260672.

**(WL004)** Well 2 1998 was rotary drilled in April of 1999 to a total depth of 201 ft. The well is cased the entire depth with steel casing and developed with perforations from 145 ft to 195 ft. The casing was grouted to a depth of 35 ft. with cement. According to the well log static water level at the time of completion was 22 ft. The well log can be found in GWIC with number 172711.

(IN002) Intake Willow Creek consists of a concrete dam with earthen sides in the channel of Willow Creek that was the original sand filter for the water supply. Previous reports indicate that approximately 314,000 gallons of water are held behind the dam allowing infiltration into collection pipes that gather water underneath the historic sand filter. It is unknown what exists for collection piping, but the operator stated a valve at the site controls the water to the approximately three mile pipeline to the sand filter treatment plant and storage tank. Recharge to

Willow Creek appears to be from precipitation entering directly into the creek or from runoff that eventually flows into the creek.

### TREATMENT: TP002 & TP003

The public water supply uses ground water from well 1 (WL003) and well 2 (WL004) as the source for the community. The wells share a common header pipe with treatment plant **TP003** providing disinfection with gaseous chlorine.

The treatment plant (**TP002**) for Willow Creek SWTP consists of a sand filter. The treatment is shut down when turbidities exceed the slow sand filter capability of removal. The treatment plant was not used in 2022 for this reason.

Water is collected through piping submerged in the historic sand filter located behind the historic dam on Willow Creek. Willow Creek is a tributary of the Smith River that flows north from Castle Mountains south and east of White Sulphur Springs. Collected water flows through a transmission main of 6" or 8" piping to the treatment plant sand filter. Water enters the building in ductile iron pipe where the flow is split if desired and a perforated PVC header distributes the water across one or two sand filter chambers that interconnect with another two chambers allowing for isolation of chambers if needed. Finished water is then collected off the bottom of the sand filters via the underdrain system and four collection pipes, two per side where water then enters a concrete surge tank. The sand filter is desired due to its location providing pressure to the storage tank and system by elevation instead of pumping, and its operation is maximized under allowable turbidity requirements. Records, operation, maintenance, and overall management of the facility are well accomplished.

• Recommendations: The system needs to have a second portable chlorine analyzer for treatment and distribution operators. Disinfection requirement is to verify chlorine disinfection in the distribution system and verify on line monitoring equipment every 5 days.

### **DISTRIBUTION:** DS001

Distribution system pressures are adequately maintained. Piping consists of the typical mixture of dissimilar pipe types including Ductile Iron, Cast Iron, and PVC. No AC pipe is known to exist, and all repairs are completed with C 900 PVC. It was noted that the operators are sorting through records for as-built drawings of the system; they have started a hydrant flushing program and are concerned with operating the system in compliance and with the best management practices. Water pressure in the distribution system is maintained by gravity flow.

### **STORAGE: ST002**

ST002 storage reservoir rides the distribution system on a transmission main to town; it is approximately 2 miles to town. The site is secured with fencing and gates.

### **PUMPS, PUMP FACILITIES and CONTROLS:**

The variable frequency drive (VFD) submersible pumps from the wells are controlled by levels of the storage tank. The VFD submersible pumps moderate distribution pressure during events that require the storage reservoir ST002 to be taken offline.

### **MONITORING, REPORTING and DATA VERIFICATION:**

Monitoring and reporting were reviewed, and the system has 2 outstanding violations at the time of this inspection. VOC and arsenic samples need to be taken from TP002/EP502 as soon as possible to return those violations to compliance. The sand filter was not in operation at this time and reporting for surface water compliance was briefly discussed. The proper disinfection residuals were being monitored and reported regarding the wells and distribution system in use at the time of this inspection. Monitoring and reporting for the surface water treatment plant will be reviewed by the surface water treatment rule manager upon monthly submittal and discussed as needed.

### **MAINTENANCE, MANAGEMENT, SAFETY and OPERATION:**

The operators demonstrated extensive knowledge of the system and cooperated with this inspection. Maintenance and management of the existing equipment is proactively accomplished, and the operators conduct daily inspections of the tank, sources, and distribution system.

Montana DEQ PWS is committed to offering technical, managerial, and financial capacity assistance to all public water supplies across the state. Michael Kropp (406-755-8971) is the new Capacity Development Coordinator for the state, and he will be working with technical assistance providers RATES, MAP, MRWS, and other DEQ staff to meet the demand for facility-based training opportunities. DEQ Operator Certification is working with Mr. Kropp to provide operators an opportunity to earn CECs for completing facility-based capacity development training with one of the approved trainers. Please contact Mr. Kropp or one of the other approved trainers for additional information.

### **OPERATOR COMPLIANCE WITH STATE REQUIREMENTS:**

This PWS and its operators are following DEQ's operator certification requirements.

### SIGNIFICANT DEFICIENCIES

No significant deficiencies were observed during this inspection. However, recommendations should be promptly addressed.

### No changes have been made to Safe Drinking Water Information System (SDWIS) during this inspection.

Thank you very much for your time and for your dedication to protecting public health through proper management of your public water system. If you have any questions about this report or public water supply regulations, please give me a call at 406-444-5881.

Sincerely,

Gerard Gernand

Surface Water Treatment Inspector Public Water and Subdivision bureau

Phone: 406-444-5881 Email: ggernand@mt.gov



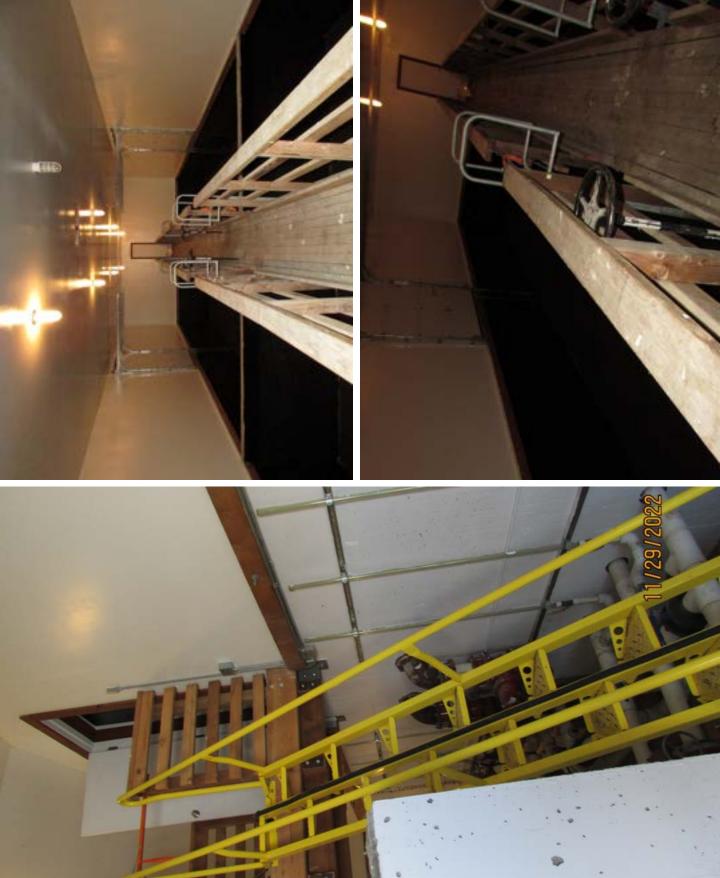


















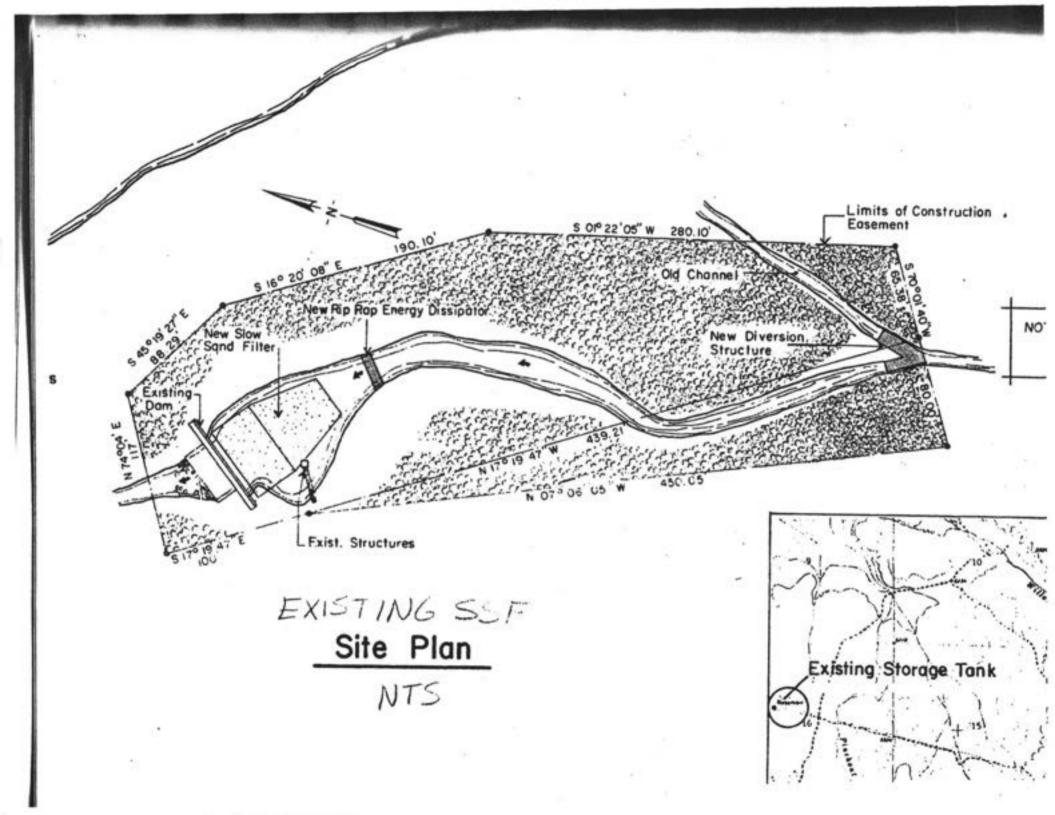


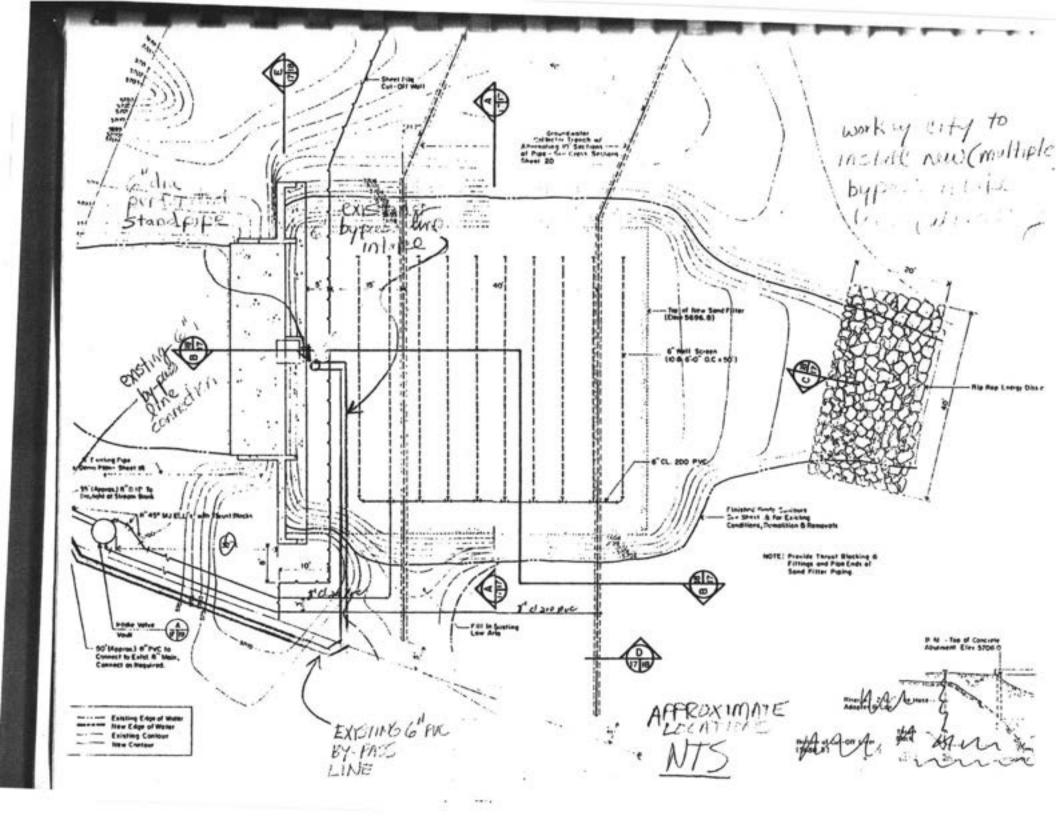


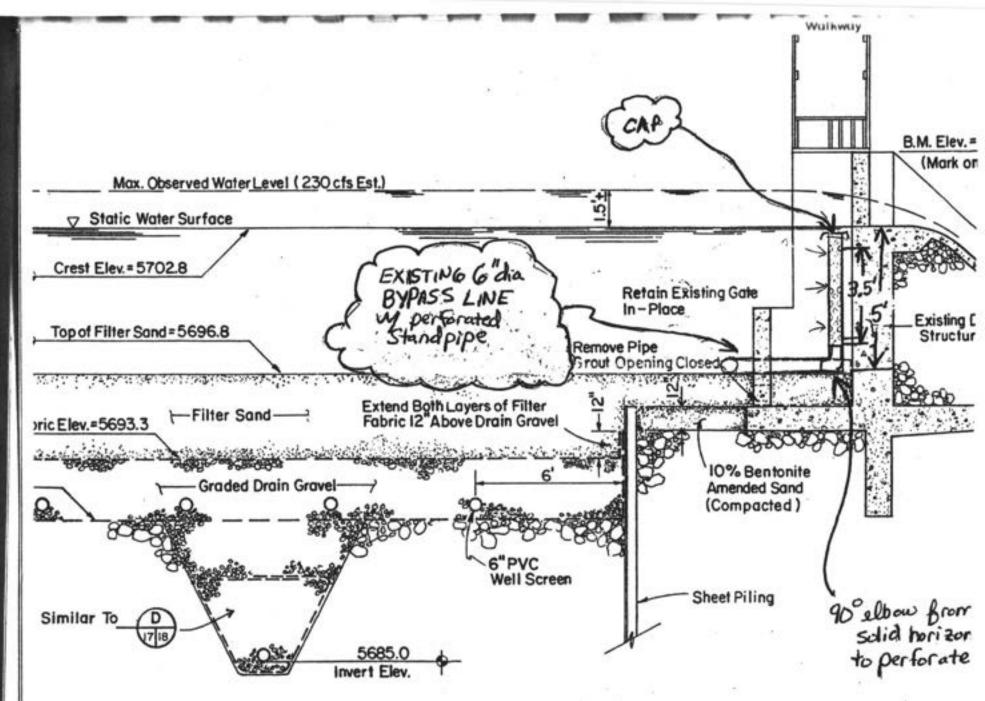







# **Appendix M**

Willow Creek Reservoir Sand Filter Schematics







NTS

7/1/02 sketch SITE VISIT @ Willow Creek Reserver in White Sulphin Springs EXISTING TO 6" WYE EXISTING SSF COLLECTOR EXISTING 6 dia PAC ASS 200 PUC EXISTING (NORAL ALLY CLOSED) BYPASS 235 (43) perfacted pipe 40.5 below water level EXISTING GW COLEXTION WATER 1/4" diam perforations Spaced l'around circumferent space 1/2" up&dow

# **Appendix N**

**Source and Metered Water Data** 

| 0   |              |       |            |        |
|-----|--------------|-------|------------|--------|
| CI  |              |       | Gallons PD |        |
| 8   | 1-26-19      | 12.04 | 165,000    | 2319.3 |
| 21  |              |       | 114,000    | 2328.8 |
| SI  | 1-28-19      | 12.49 | 213,000    | 2335.9 |
| 5   | 1-29-19      | 13.04 | 282,000    | 2345.3 |
| 2   | 1 200 [ ]    | 1237  | 201,000    | 2352.0 |
| 5   | 1-31-19      | 11.56 | 198,000    | 2358.6 |
| 2   | 1-19         | 13.12 | 282,000    | 23/8.0 |
| 2   | 7-2-19       | 12.06 | 225,000    | 2375.5 |
| 3   | 2-3-19       | 12.95 | 261,000    | 2384.2 |
|     | 4-4-17       | 11.57 | 168,000    | 2389.3 |
| 2   | 2-5-19       | 13.09 | 321,000    | 2400.5 |
| 5   | <b>1</b> 2-6 | 11127 | 183,000    | 2400.6 |
| 1   | -2-7-17      | 13,80 | 306,000    | 2416.8 |
| 5   | 2-8-19       | 11.08 | 171,000    | 2422,5 |
| 20  | 2419         | 11.78 | 318,000    | 2433.1 |
| 2   | 2-10-19      | 13.3c | 306,000    | 2443,3 |
| 5   |              | 13.18 | 195,000    | 2449.8 |
| 8   |              | 11.01 | 159,000    | 2455.1 |
| 5   |              | 3.87  | 303,000    | 2465.Z |
| 8   | 2-14-19      | 11.57 | 150,000    | 2470.2 |
|     |              | 12.35 | 222,000    | 2477.6 |
| 5   |              | 13.0> | 234,000    | 2485,4 |
| 2-3 | 2-17-18      | 11.42 | 144,000    | 2480.2 |
| 500 | 18-19        | 13,12 | 288,000    | 2499.8 |
| 20  | 1-19-19      | 13.15 | 189,000    | 2306.1 |
| 20  | 2-20-19      | 11.55 | 156,000    | 2511.3 |
| 10  |              |       |            |        |

|         |       | Gallon PD | ·       |     |                  |       | Gallons PD |                       |
|---------|-------|-----------|---------|-----|------------------|-------|------------|-----------------------|
| 1-21-19 | 13.48 | 270,000   | 2520.3  | 8   | 3-20-19          | 11.38 | 159,000    | 2715.8                |
| 1-22-19 | 12,43 | 177,000   | 2526.2  | 0   |                  |       | 273,000    | 2724,9                |
| 2-23-19 | 11,65 | 198,000   | 2532.8  | 0   | 3-22-19          | 12.25 | 189,000    | 273112                |
| 2-24-19 | 13.62 | 270,000   | 25418   |     | 3-23-19          | 12.35 | 234,000    | 2739.0                |
| 225-19  | 11.79 | 156,000   | 2547.0  |     | 3-24-19          | 12.58 | 231,000    | 2746.7                |
| 2-26-19 | 13.16 | 279,000   | 2536.3  |     | 3-25-19          | 11,70 | 159,000    | 27520                 |
| 2-27-19 | 12.98 | 177,000   | 2562,2  |     | 3-26-19          | 13.86 | 312,000    | 2762.4                |
| 2-28-19 | 11.35 | 156,000   | 2567.4  | 0   | 3-27-19          | 12.32 | 150,000    | 2767,4                |
| 31-19   | 13.46 | 282,000   | 2576.5  |     | 3-28-19          | 12.16 | 219,000    | 2774.7                |
| 52-19   | 12.29 | 180,000   | 2582.8  |     | 3-29-19          | 12.72 | 237,000    | 2782.6                |
| 3-3-19  | 11.92 | 210,000   | 2589.8  | 0   | 3-30-19          | 11.39 | 156,000    | 2787.8                |
| 349     | 13.10 | 261,000   | 2575, 5 |     | 3-71-19          | 13.68 | 324,000    | 2798.6                |
| 3-5-19  | 11.01 | 162,000   | 2603.9  |     | 4-1-19           | 11.57 | 159,000    | 2803.9                |
| 3-6-19  | 13.50 | 315,000   | 2614.4  |     | 4-2-19           | 13.70 | 306,000    | 2814.1                |
| 3-7-19  | 11.85 | 153,000   | 1619.5  |     | 4-3-19           | 11.68 | 165,000    | 2819.6                |
| 3.8.19  | 12.70 | 252,000   | 2627.9  |     | 4-19             | 12.30 | 222,000    | 2827.0                |
| 3-9-19  | 12.23 | 225,000   | 2635,4  |     | 4-5-19           | 12.75 | 243,000    | 2835.1                |
| 3-10-19 | 11.83 | 207,000   | 2642.3  |     | 46-19            | 11.19 | 168,000    | 2840,7                |
| 3-11-19 | 14.56 | 267,000   | 1651.7  |     | 4-7-19           | 13.64 | 300,000    | 2850.7                |
| 5-12-19 | 7,42  | 12,000    | 265/1   |     | 4-8-19           | 11,27 | 159,000    | 2856.0                |
| 3-13-19 | 11.45 | 354,000   | 2663,4  | 0   | 4-9-19           | 11.45 | 240,000    | 2864.0                |
| 2.14.19 | 13.44 | 312,000   | 2673.8  | 0   | 4-10-19          | 12.70 | 198,000    | 2870.6                |
| 3-15-19 | 12.15 | 156,000   | 2679    |     | 4-11-19          | 12.25 | 165,000    | 2876.1                |
| 3-16-19 | 12.87 | 321,000   | 268917  |     | <b>6</b> 4-12-49 |       | 231,000    | 2883.0                |
| 3-17-19 | 11.43 | 150,000   | 2694.7  |     | 4-13-19          |       | 84,000     | 2886.6                |
| 3-18    | 12.05 | 222,000   | 2702.1  | 6   | 4-14-19          | 10.19 | 321,000    | 2897.3                |
| , Y     | 12.96 | 252,000   | 270.5   | 100 | 4-15-19          | 14.80 | 504,000    | 2914.1 Did not urpate |

|          |          |            |        | •                        | -       |         |            |        |
|----------|----------|------------|--------|--------------------------|---------|---------|------------|--------|
|          |          |            |        |                          |         |         |            |        |
|          |          | Gallons PD |        |                          | -       |         | Gallons PD |        |
| 4-16-19  | 12.63    | 111,000    | 2917.8 |                          | 5-11-19 | 13.53   | 189,000    | 3078.5 |
| 4-17-19  | 14.97    | 429,000    | 2932.1 | Scaola<br>Did no TUPPate | 5-12-19 | 13.12   | 183,000    | 3085   |
| 4-18-19  | 12.83    | 99,000     | 2935,4 | •                        | 5-13-19 | 12.83   | 201,000    | 3091.7 |
| 4-19-19  | 12.80    | 183,000    | 2941.5 | 3                        | 5-1-19  | 12.31   | 195,000    | 309812 |
| 4-20-19  | 13,12    | 174,000    | 2947,3 | -                        | 5-15-19 | 12.19   | 186,000    | 3104.7 |
| 4-21-19  | 12.90    | 213,000    | 2954,4 | -                        | 5-16-19 | 12.03   | 207,000    | 31116  |
| 4-22-19  | 13.001   | 180,000    | 2960.4 |                          | 5-7-19  | 11.99   | 198,000    | 3118.2 |
| 7-23-19  | 13.38    | 189,000    | 2966.7 | •                        | 5-18-19 |         | 297,000    | 3,28,1 |
| 4.24-19  | 13.81    | 195,000    | 2973   | 7.2                      | 5-19-19 |         | 195,000    | 3134.6 |
| 4-25-19  | 13.69    | 162,000    | 2978.6 | -                        | 5-20-19 | 12.34   | 93,000     | 3137.7 |
| 4-26-19  | 12.18    | 144,000    | 2983.4 | •                        | 5.21.19 | 12.54   | 195,000    | 3144.2 |
| 4-27-19  | 13.46    | 288,000    | 2993.0 |                          | 5-224   | - OCAPC | 186,000    | 3150.4 |
| 4-28-19  |          | 93,000     | 2996.1 |                          | 5-23-19 | 10.00   | 192,000    | 3156.8 |
| 14-29-19 | 12.63    | 195,000    | 3002.6 | •                        | 5-24-19 | ,       | 195,000    | 3163.3 |
|          | 12.55    | 182,000    | 3602   |                          | 5-25-19 | 12.95   | 252,000    | 3171.7 |
| 4-30-19  | 12.80    | 189,000    | 3008,9 | •                        | 5-26-19 | 13.81   | 270,000    | 3150.7 |
| 5-1-11   | 12.44    | 189,000    | 3015,2 |                          | 5-27-19 | 11.62   | 132,000    | 3185.1 |
| 5-2-19   | 13.18    | 183,000    | 3021.3 | - A                      | 5-28-19 | 13.19   | 243,000    | 3193.2 |
| 5-3-19   | 13.13    | 192,000    | 3027.7 |                          | 5-29-19 | 11.92   | 156,000    | 3198.4 |
| 5-4-19   | 13.45    | 192,000    | 3034.1 |                          | 5-30-19 | 12.50   | 228,000    | 7206.0 |
| 5-5-15   | 13.52    | 192,000    | 3040.5 |                          | 5-31-19 | 13.11   | 255,000    | 3214.5 |
| 5-6-19   | (3.1)    | 195,000    | 3047.0 |                          | -0      |         |            |        |
| 5-7-14   | 13,35    | 189,000    | 3053,3 | 0                        | 6-1-19  | 12.33   | 180,000    | 3220.5 |
| 5-8-19   | 13.46    | 189,000    | 305716 | 0 6                      | 6-2-19  |         | 282,000    | 3229,9 |
| 5-9-19   | 13.19    | 189,000    | 3065,9 | 1 2 2                    |         | 13.47   | 309,000    | 3240.2 |
| 5-10-19  | 13.39    | 189,000    | 3072.2 | A Janes                  | 6-4-19  | 12.86   | 231,000    | 3247.9 |
|          | THE SAME |            |        | 11 3i                    |         |         |            |        |

| Total | For | This Page  |
|-------|-----|------------|
|       |     | 7,55 4,000 |

|          |        | ٠,٥٠٠ ١ |        |   |
|----------|--------|---------|--------|---|
| 5-5-19   | 12.24  | 282,000 | 3257.3 |   |
| 5-6-19   | 12.22  |         | 3268.1 |   |
| 5-7-19   | 11.89  |         | 3276.6 |   |
| 2-8-19   | 12.48  |         | 3285,2 |   |
| 6-9-19   | 13.90  |         | 3294,5 |   |
| 6-10-19  | 13.17  |         | 3302.3 |   |
| 6-11-19  | 12,26  |         | 3309.9 |   |
| 6-17-19  | 12.14  |         | 3319.2 |   |
| 10-13-19 | 12.31  |         | 3330.4 |   |
| 6-14-19  | 12.68  |         | 3342.1 |   |
| 0-15-19  | 13.29  |         | 3356.1 |   |
| 6-16-19  | 12.61  |         | 3363.7 |   |
| 6-17-19  | 12.85  |         | 3375.4 |   |
| 6-18-19  | -12,97 |         | 3387.5 |   |
| 6-19-19  | 12.28  |         | 3397.7 |   |
| 6-2019   | 12.47  |         | 3408.9 |   |
| 6-21-19  | 12.34  |         | 3418.1 | * |
| 6-22+9   | 13.79  |         | 3431   |   |
| 6-23-19  | 12.74  |         | 3438:8 |   |
| 6-24-19  | 11.77  |         | 3445.7 |   |
| 6-25-19  | 11.95  |         | 3454   |   |
| 6-26-19  | 11.73  |         | 3464.5 |   |
| 6 27-19  | 50.51  |         | 3476.4 |   |
| 6-28-19  | 13.73  |         | 3488.2 | 1 |
| 5-29-19  | 13.69  |         | 350104 |   |
| -30-19   | 12.81  |         | 3509.1 |   |
|          |        |         |        |   |

Total usage 7947000

|         | 101.        | 794,7000      |
|---------|-------------|---------------|
| 7-1-19  | 13.43       | 3520,1        |
| 7-2-19  | 11.419      | 3528,0        |
| 7-3-19  | 13.39       | 3543.1        |
| 7-4-19  | 13.27       | 3552.3        |
| 7-5-19  | 12.89       | 3561.5        |
| 7-6-19  | 13,64       | 3572.7        |
| 7-7-19  | 12.96       | 3581.0        |
| 7-8-19  | 1226        | 3588.8        |
| 7-9-19  | 11.74       | 3597,2        |
| 7-10-19 | 11.71       | 3606.7        |
| 7-11-19 | 11.80       | 3616.7        |
| 7-12    | 12.7Ko      | 3629.8        |
| 7-13    | 13.41       | 3640-7        |
| 7-1-1   | 13.84       | 3657, ≥       |
| 7-15    | 12.59       | 3658.2        |
| 716     | 12.56 11.64 | 3658.3-3666.0 |
| 7-17    | 12.30       | 3677,9        |
| 7-18    | 1302        | 3686.8        |
| 7-19    | 11.14       | 3695.2        |
| 1-20    | 13.02       | 371013        |
| 7-21    | 12.85       | 3720,5        |
| 7-22    | 11.43       | 3730.4        |
| 7-23    | 11,61       | 3743.0        |
| 7-24    | 13.00       | 3760.1        |
|         | 1147        | 3768,8        |
| 7-26    | 11.92       | 3785.0        |
|         |             |               |

| Total This | Page |  |
|------------|------|--|
|------------|------|--|

| 91 | 5 | 90 | 00 |  |
|----|---|----|----|--|
|    |   |    |    |  |

|         |            | 9159000 |
|---------|------------|---------|
| 7-23    | 12.13      | 3800    |
| 7-28    | 12.58      | 3815.2  |
| 7-29    | 11.79      | 3827.0  |
| 7-30    | 11,94      | 3841.7  |
| 7-31    | 11.65      | 3854,2  |
|         | 17 X.E. S. | 3869    |
| 8-1-19  | 11.58      | 3884.0) |
| 8-2-19  | 12.15      |         |
| 8-3-19  | 13.78      | 3900,2  |
| 8-4-19  | 13.08      | 39/1.8  |
| 8-5-19  | 11.87      | 3922.5  |
| 8-6-19  | 11.54      | 3935.3  |
| 8-7-19  | 11.58      | 3950, 2 |
| 8-8-19  | 14.47      | 3962.7  |
| 8-9-19  | 11.58      | 3976.8  |
| 8-10-19 | 13.41      | 3991.2  |
| 8-11-19 | 13.47      | 4000.0  |
| 8-17-19 | 12.05      | 4007.3  |
| 8-13-19 | 11.88      | 4016,4  |
| 8-14-19 | 12.36      | 4027    |
| 8-15-19 | 12.08      | 4038.7  |
| 6-16-19 | 12.79      | 4051.2  |
| 8-17-19 | 13.53      | 4062.5  |
| 3-18-19 | 11.58      | 4068,4  |
| 8-19-19 | 12.13      | 4081.3  |
| 1-20-19 | 11.86      | 4091.7  |
| 5-21-19 | 12.05      | 4105,3  |

## Total This Page

### 7947000

|                |       | . , . , 000 |        |
|----------------|-------|-------------|--------|
| 3-22-19        | 11,69 |             | 4115,2 |
| 8-23-19        | 11.64 |             | 4126.3 |
| 8-24-19        | 12.67 |             | 4138.2 |
| 8-25-19        | 12.69 |             | 41486  |
| 8-26-19        | 12.14 |             | 4156.1 |
| 8-27-19        | 14.97 |             | 4179   |
| 8-28-19        | 12.16 |             | 4187.4 |
| 8-29-19        | 11.38 |             | 4198.3 |
| 8-30-19        | 12.68 |             | 4213.5 |
| 8-31-19        | 13.35 |             | 4225,3 |
| <b>A</b> 011.0 |       |             |        |
| 9-1-19         | 13.02 |             | 4236.4 |
| 9-2-19         | 12,28 |             | 4246.4 |
| 9-3-14         | 11.51 |             | 4256.3 |
| 9-4-19         | 11.77 |             | 4271,0 |
| 9-5-19         | 11.81 |             | 4281.3 |
| 4-6-19         | 12.40 |             | 4296.5 |
| 9-7-19         | 11.72 |             | 4304.6 |
| 9-8-19         | 11,87 |             | 4314.5 |
| 9-9-19         | (2,93 |             | 4324.0 |
| 9-10-19        | 17.78 |             | 4333.6 |
| 9-11-19        | 13.07 |             | 4343.2 |
| 9-12-19        | 13.72 |             | 4353.1 |
| 9-13-19        | 13.67 |             | 4362   |
| 9-14-18        | 12.63 |             | 4370.2 |
| 9-15-79        | 13.09 |             | 4380.1 |
|                |       |             |        |

# Total This Page

| 221400 | 00 |
|--------|----|
|--------|----|

|          |       | 2214000 |         |
|----------|-------|---------|---------|
| 9-16-19  | 11.87 |         | 4386.3  |
| 9-17-19  | 11.51 |         | 4391.4  |
| 9-18-19  | 11.64 |         | 4395.6  |
| 9-19-19  | 12,18 |         | 4399,3  |
| 9-20-19  | 12.37 |         | 4403.7  |
| 9-21-19  | 11.79 |         | 4405.9  |
| 9-22-19  | 11.65 |         | 4409,1  |
| 9-23-19  | 14.01 |         | 4414,8  |
| 9-24-19  | 11.75 |         | 4414.8  |
| 9-25-49  | 12.92 |         | 4418,2  |
| 1-20-19  | 11.80 |         | 441818  |
| 7-27-19  | 14.97 |         | 4427.6  |
| 9-28-19  | 13-85 |         | 4427.6  |
| 9-29-19  | 12.90 |         | 4427.6. |
| 9-30-19  | 12.18 | 6       | 4427.6  |
| 15-1-19  | 14,97 |         | 4438.2  |
| 16-2-19  | 14,14 |         | 4438.2  |
| 10-3-19  | 13.95 |         | 4438,2  |
| 10-4-19  | 13.86 |         | 4441.3  |
| 10-5-19  | 12.87 |         | 4441.3  |
| 10-6-19  | 11.84 |         | 4441.3  |
| 10-7-19  | 13.70 |         | 4444.5  |
| 10-8-19  | 13.28 |         | 4444.5  |
| 10-9-19  | 12.99 |         | 4448.2  |
| 10-10-19 | 11.79 |         | 4452.3  |
| 10-11-12 | 13.33 |         | 4460.1  |
|          |       |         |         |

| -5       | 10-12-19  | 12.33        |
|----------|-----------|--------------|
| -        | 10-13-19  | 13.74        |
|          | 10-14-19  | ,            |
|          | 10-15-19  | 11,60        |
| -        | 10-16-19  | 13.23        |
|          | _         |              |
|          | 10.1719   | 12.04        |
| -        | 10-18-19  | 13.74        |
|          | 10-19-19  | 17.20        |
| -        | 10-20-19  | 1259         |
| -        | 10-21-19  | 13.23        |
| -        | 10-22-19  | 12.55        |
| 9 6      | 10-23     | 12,54        |
| 10       | 10-24     | 13.07        |
| -        | 10-25     | 11.74        |
| -        | 10-26     | 13.16        |
| 10       | 10-27     | 11.64        |
| -        | 10-28     | 13,57        |
| -        | 10-29     | 12.73        |
| -        | 10-30     | 11.79        |
|          |           |              |
|          | 10-31     | 13,48        |
|          | /1-1      | 11.54        |
|          |           | 9,13         |
| (6-19    | 11-3      | 11.72        |
| 6        | 11-4      | 13.40        |
| 3        | 11-5      | 11.62        |
| 0        | 11-6 1    | 2.72         |
| 5        |           | 1.57         |
| The same | ********* | TOTAL STREET |

| 432,3000 |         |
|----------|---------|
| 108,000  | 4464,1  |
| 218, 700 | 4472,2  |
| 105,300  | 4406.1  |
| 108,000  | 445011  |
| 213,300  | 4488.0  |
| 108,000  | 4492.0  |
| 202,500  | 4499.5  |
| 113,400  | 4503.7  |
| 159,300  | 4509.6  |
|          | 4515.7  |
|          | 4519.7  |
|          | 45,25.4 |
|          | 4531.5  |
|          | 4535,3  |
|          | 4543.1  |
|          | 4547    |
|          | 4554.1  |
|          | 4533,3  |
|          | 4559,6  |
|          | 4567,4  |
|          | 4571.4  |
|          | 6575,5  |
|          | 4583.6  |
|          | 4591.5  |
|          | 4596.2  |
|          | 4603.9  |
| - 1      | 4608.2  |

# Total This Page 179,4000

|        |        | 179,4000 |         |
|--------|--------|----------|---------|
| 11.8   | 13,30  | B        | 4616.0  |
| 11-9   | 11.63  |          | 4620.1  |
| 11-10  | 13.32  |          | 4628.0  |
| 11-11  | 13.21  |          | 4634.9  |
| 1112   | 13.66  |          | 4640.2  |
| 11-13  | 12.34  |          | 46441   |
| 11-14  | 13,17  |          | 4651,0  |
| 11-15- | 12.51  |          | 4656.0  |
| 11-16  | 12.70  |          | 4662.2  |
| 11-17  | 12.71  |          | 4668    |
| 11-18  | 11.67  |          | 4672.4  |
| 11-19  | 14.12  |          | He-75.5 |
| 11-20  | 14.14  |          | 4675.5  |
| 11-21  | 14.11  |          | 4675.6  |
| 11-22  | 14.07  |          | 46>5.6  |
| 11-23  | 13.98  | ь        | 4075.6  |
| 11-24  | 14,01  |          | 4675.6  |
| 11-25  | 13,72  |          | 4615.6  |
| 11-26  | 13.64  |          | 4675.6  |
| 11-27  | 13.61  |          | 4675.6  |
| 1-28   | 13.42  |          | 4675.4  |
| 11-29  | 13. 38 |          | 4675.6  |
| 11-30  | 13.04  |          | 4675.6  |
| 12-1   | 12.85  |          | 4673.6  |
| 12-2   | 12.61  |          | 46756   |
| 12-3-  | 12.73  |          | 4675 de |
| 12-4   | 12.82  |          | 4675.8  |
|        |        |          |         |

### Total This Page

| -        |                       | 7       |                     |
|----------|-----------------------|---------|---------------------|
|          |                       | Z (I) . | Sand Filter on line |
| 12-5-19  | 12.87                 | Gallons |                     |
| 12-6-19  | 12.69                 |         | 4675,8              |
| 12-7-19  | 12.60                 |         | 4675.8              |
| 12-8-19  |                       |         | 4675.8              |
| 12-9-19  | 12.30                 |         | 4675,8              |
| 12-10-19 |                       |         | 4675,8              |
| 12-11-19 | 12.43                 |         | 4675,8              |
| 12-12-19 |                       |         | 4675.8              |
| 12-13-19 | 12,57                 |         | 4675.8              |
| 12-14-19 | 12.62                 |         | 4675,8              |
| 12-15-19 | 12.61                 |         | 46.75,8             |
| 0/1-16   | 12.36                 |         | 4675.8              |
| 12-17    | 12.49                 |         | 4675.8              |
| 12-18    | 12.46                 |         | 4675.8              |
| 12-19    | 12.46                 |         | 4675.8              |
| 12-20    | 12.50                 |         | 4675.8              |
| 12-21    | 12.59                 |         | 4675-8              |
| 12-22    | 12.52                 |         | 4675.8              |
| 107 2    | 12.41                 |         | 4675.8              |
| 12-24-19 | 12.41                 |         | 4675.8              |
| 12-25-19 | 12,43                 |         | 46>5,9              |
| 12-26    | 12,50                 |         | 46>5,9              |
| 17 37    |                       |         | 4675,8              |
| 12-18    | 12.16                 |         | 4675.8              |
| 12-29    | _                     |         | 4675.8              |
| , ,      | <i>13.60</i><br>13.39 |         | 4678, 7             |
|          | 13.01                 | 59      | 461817              |
| muum     | 375 (                 |         | 4678.7              |

| 1-1-2020 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5. N     |        |         |         |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|---------|-------|
| 1-2-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2020     |        | Well 1  | ue/12   |       |
| 1-3-20   12.15   4678,7   1-4   12.19   4678,7   1-5   11.79   4681.5   1-6   14.08   4681.5   1-7   14.16   4685.4   4685.4   1-9-20   13.85   37687.6   4685.4   4685.4   1-14-20   13.29   4685.4   4685.4   1-14-20   13.29   4685.4   1-14-20   13.36   4185.4   1-15-20   13.36   4185.4   1-15-20   13.38   4685.4   1-15-20   13.38   4685.4   1-15-20   13.38   4685.4   1-15-20   13.38   4685.4   1-15-20   13.38   4685.4   1-15-20   13.07   4685.4   1-15-20   13.07   4685.4   1-15-20   12.97   4185.4   1-15-20   12.95   4185.4   1-15-20   12.95   4185.4   1-15-20   12.95   4185.4   1-15-20   12.90   4185.4   1-15-20   12.90   4185.4   1-15-20   12.90   4185.4   1-15-20   12.90   4185.4   1-15-20   12.90   4185.4   1-15-20   12.90   4185.4   1-15-20   12.90   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12.93   1-15-20   12 | 1-1-2020 | 12,70  | \$      | 4678,7  | •     |
| 1-4 12.19 1-5 11.79 1-6 14.08 1-7 14.16 1-8 14.25 1-9-20 13.85 1-10-20 13.48 1-12-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36 1-11-20 13.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-2-2020 | 12.22  |         | 4678.5  |       |
| 1-4 12.19 1-5 11.79 1-6 14.08 1-7 14.16 1-8 4681.5 1-7 14.16 1-9-20 13.85 1-9-20 13.48 1-12-20 13.36 1-12-20 13.38 1-12-20 13.38 1-13-20 13.38 1-14-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.38 1-15-20 13.98 1-15-20 13.98 1-15-20 13.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-3-20   | 12.15  |         | 4678.7  |       |
| -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-4      |        |         | 4678.7  |       |
| -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-5      | 11.79  |         | 418.7   |       |
| 1-8 14.25 1-9.20 13.85 37699.6 4685.4 1-10.20 13.46 1-11-20 13.58 1-12-20 13.48 1-13-20 13.27 1-14-20 13.36 1-15-20 13.36 1-17-20 13.36 1-18-20 13.38 1-18-20 13.38 1-18-20 13.78 1-18-20 13.97 1-20-20 12.97 1-20-20 12.97 1-20-20 12.97 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.96 1-20-20 12.97 1-20-20 12.95 1-20-20 12.97 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 14.08  |         | •       | •     |
| 1-9-20 13.85 37697.6 4685.4<br>1-10-20 13.48 4685.4<br>1-12-20 13.48 4685.4<br>1-13-20 13.29 4685.4<br>1-14-20 13.36 4685.4<br>1-16-20 13.30 4685.4<br>1-18-20 13.38 4685.4<br>1-18-20 13.38 4685.4<br>1-18-20 13.97 4685.4<br>1-20-20 12.97 4685.4<br>1-20-20 12.97 4685.4<br>1-21-22 12.95 4685.4<br>1-24-20 12.95 4685.4<br>1-24-20 12.95 4685.4<br>1-24-20 12.96 4685.4<br>1-24-20 12.93 4685.4<br>1-26-20 12.93 4685.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-7      | 14.16  |         | 4681,5  |       |
| 1-10-20 13.68 1-11-20 13.58 1-12-20 13.48 1-13-20 13.27 1-14-20 13.29 1-15-20 13.36 1-16-20 13.36 1-16-20 13.30 1-18-20 13.38 1-18-20 13.38 1-18-20 13.78 1-19-20 13.78 1-20-20 12.97 1-20-20 12.97 1-20-20 12.97 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96 1-21-20 12.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-8      | 14, 25 |         | 4681,5  |       |
| 1-11-20 13.58 1-12-20 13.48 1-12-20 13.27 1-14-20 13.29 1-15-20 13.36 1-16-20 13.36 1-16-20 13.30 1-18-20 13.38 1-18-20 13.78 1-18-20 13.78 1-20-20 12.97 1-20-20 12.97 1-20-20 12.97 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.95 1-21-20 12.96 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90 1-21-20 12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-9-20   | 13.85  | 37699.6 | 4685,4  |       |
| 1-12-20 13.48 1-13-20 13.27 1-14-20 13.29 1-15-20 13.36 1-15-20 13.36 1-17-20 13.30 1-18-20 13.38 1-18-20 13.78 1-19-20 13.07 1-20-20 12.97 1-21-20 12.97 1-21-20 12.95 1-22-20 12.95 1-24-20 12.95 1-24-20 12.95 1-24-20 12.95 1-25-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95 1-26-20 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-10 -39 | 13.46  |         | 4685,4  |       |
| 1-13-20 13.29 4685.4<br>1-15-20 13.36 4685.4<br>1-17-20 13.30 4685.4<br>1-18-20 13.38 4685.4<br>1-19-20 13.78 4685.4<br>1-20-20 12.97 4685.4<br>1-20-20 12.97 4685.4<br>1-20-20 12.95 4685.4<br>1-20-20 12.95 4685.4<br>1-20-20 12.95 4685.4<br>1-20-20 12.95 4685.4<br>1-20-20 12.95 4685.4<br>1-20-20 12.95 4685.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-11-20  | 13.58  |         | 4685: 4 |       |
| 1-14-20 13.29 1-15-20 13.36 1-16-20 13.36 1-17-20 13.30 1-18-20 13.38 1-18-20 13.07 1-20-20 12.97 1-20-20 12.97 1-20-20 12.97 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.95 1-20-20 12.93 1-20-20 12.93 1-20-20 12.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-12-20  | 13.48  |         |         |       |
| 1-15-20 13.36 1-16-20 13.35 1-17-20 13.30 1-18-20 13.38 1-18-20 13.07 1-20-20 12.97 1-20-20 12.97 1-20-20 12.95 1-21-20 12.95 1-22-20 12.95 1-24-20 12.90 1-25-20 12.93 1-35-20 12.52 1-35-20 12.52 1-35-20 12.52 1-35-20 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 13.27  | •       | 4685.4  | -     |
| 1-16-20 13.25<br>1-17-20 13.30<br>1-18-20 13.38<br>1-18-20 13.07<br>1-20-20 12.97<br>1-20-20 12.97<br>1-21-20 12.91<br>1-27-20 12.95<br>1-24-20 12.95<br>1-24-20 12.90<br>1-25-20 12.93<br>1-26-20 12.93<br>1-26-20 12.93<br>1-26-20 12.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-14-20  | 13,29  |         | 4685,4  | •     |
| 1-12-20 13.30 1-12-20 13.30 1-12-20 13.38 1-13-20 13.07 1-20-20 12.97 1-20-20 12.97 1-20-20 12.97 1-21-20 12.91 1-22-20 12.95 1-23-20 12.85 1-24-20 12.90 1-25-20 12.93 1-36-20 12.52 1-36-20 12.52 1-36-30 12.52 1-36-30 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-15-20  | 13.36  |         | 4685,41 | -     |
| 1-17-20 13.30  1-18-20 13.38  1-19-20 13.07  1-20-20 12.97  1-20-20 12.97  1-21-20 12.91  1-22-20 12.95  1-23-20 12.85  1-24-20 12.93  1-25-20 12.93  1-25-20 12.93  1-25-20 12.93  1-26-20 12.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-16-20  | 13.25  |         |         |       |
| 1-18-20 13.38 1-19-20 13.07 1-20-20 12.97 1-20-20 12.97 1-21-20 12.91 1-22-20 12.95 1-23-20 12.85 1-24-20 12.90 1-26-20 12.93 1-36-20 12.52 1-38-20 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-17-20  | 13.30  |         |         |       |
| 1-19-20 13,07 4683.4<br>1-20-20 12,97 4685.4<br>1-22-20 12.95 4685.4<br>1-23-20 12.85 4685.4<br>1-24-20 12.90 4685.4<br>1-25-20 12.93 4685.4<br>1-26-20 12.93 4685.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-18-20  | 13.38  |         |         | -     |
| 1-20-20 12.97 1-21-26 12.91 1-22-26 12.95 1-23-20 12.85 1-24-20 12.90 1-25-20 12.93 1-26-20 12.93 1-26-20 12.92 1-26-20 12.92 1-26-20 12.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-19-20  | 1307   |         |         |       |
| 1-22-20 12.95<br>1-23-20 12.85<br>1-24-20 12.90<br>1-24-20 12.90<br>1-25-20 12.93<br>1-36-20 12.52<br>1-36-20 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-20-20  | 12,97  |         |         |       |
| 1-23-20 12.85<br>1-24-20 12.90<br>1-25-20 12.93<br>1-26-20 1252<br>1-26-20 1252<br>4685.4<br>4685.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-21-26  | 12.51  |         |         | -     |
| 1-24-20 12.90<br>1-25-20 12.93<br>1-26-20 1252<br>1-26-20 1252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-2Z-ZC  | 12.95  |         | 4685.4  | •     |
| 1-26-20 12.93<br>1-26-20 1252 4685.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        |         | 4685.4  |       |
| 1-26-20 1252 4685.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        |         | 4685,4  | (b) 3 |
| 1-26-20 1252 4685.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1- 25-20 | 12.93  |         |         | (8    |
| 1.27-20 12.37 4685.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7      |        |         | 4685.4  | 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-27-20  | 12.37  |         | 4685.4  |       |

1-2-20 12.33 121-20 12.34 1-30-20 12.11 1-31-20 12.07 2-1-20 11.47 1402 2-2-20 2-3-20 13.74 2-4-20 13.55 2-5-20 13.71 2-6-20 13.90 2-7-20 13.56 9-2-8-0 13.90 2-9-20 13.74 2-10-20 13.11 2-11-20 12.95 2-12-20 12.88 2-13-20 13.02 2-14 13.20 2-15 13.48 2-16 13.53 13.54 2-17 2-18-20 13.73 2-19-20 13,93 1-20-20 14.10 2-21-20 14.27 2-22-20 14.19 2-23-26 13.57

4685.4 1685,4 4685.4 4685.4 4685.4 4688.2 4688.2 4688.2 4888,2 4688 = 2 4684.2 4688.2 4688.2 4688,2 4688,2 4688,2 4888.2 4688.2 4688.2 4688.2 4688.2 468812 4688,2 4688.2 4688.2 4698.2 4688.2

| 2-24    | 13.4/      | 4688.2  |
|---------|------------|---------|
| 2.25    | 13.19      | 4688.2  |
| 2-26    | 12.93      | 4658.2  |
| 2-27    | 12.84      | 4688,2  |
| 2-28    | 12.89      | 4688,2  |
| 2-29    | 12,96      | 4688.2  |
|         | 5/58 M - 3 |         |
| 3-1-20  | 12,76      | 4688.2  |
| 3-2-20  | 12.80      | 4688, 2 |
| 3-3-20  | 12.93      | 4688.2  |
| 460     | 13.17      | 488,2   |
| 3-5-20  | 13,12      | 488.2   |
| 3-6-20  | 13.16      | 4688,2  |
| 3-7-20  | 13,29      | 488, 2  |
| 3-8-20  | 13.26      | 48812   |
| 3-9-20  | 13.24      | 4688,2  |
| 3-10-20 | 13,37      | 4688.2  |
| 3-11-20 | 13,50      | 488,2   |
|         | 13,53      | 4688.2  |
| 3-13-20 | 13,65      | 4688.2  |
| 3-14-20 | 13.77      | 4688.2  |
| 3-15-20 | 13, 7      | 4658.2  |
| 3-16-20 | 1352       | 4658.2  |
| 3-17-20 | 13,57      | 4688.2  |
| 3-18-20 | 13.48      | 4688.2  |
| 3-19-20 | 13,25      | 4688.2  |
| 2 - 1 8 | 13/117     | 1688.2  |

```
3-21-20
          13.08
3-22-20
         12.95
3-23-20
         12.96
3-24-20
         12.82
3-25-20
         12.64
3-26-20
         12.53
3-27-20
         12.58
3-28-20
         12.70
3-29-20
         12.74
3-30-20 13,09
3-31-20 13,29
041-2013.51
 172-20 13,80
 4-3-20 13.91
 4-4-20 14.09
 4.5.20 14.19
  -1-20 14,51
 4.7-20 14,42
 4-8-20 14.73
 4-9-20
       1456
 4-10-20 14.97
 4-11-30 14.58
4-12-20 13.40
1326 12.43
  4-14-20 13.86
  4-15-20 12.02
 4-16-20 12.29
```

4688.2 4688.2 4688.2 4688.2 4685,2 4688,2 4688.2 4688,2 4688,2 4688, 2 18812 4688.2 4658.2 4688.2 4688.2 1685.2 4683,2 4688.2 4688,2 168812 4688.2 4688,2 4688.2 4671.8 4698.5 4701.5 4716.5

|      |       |        | -   |
|------|-------|--------|-----|
| 4-17 | 10.9> | 4717.6 | -   |
| 4-18 | 13.85 | 4726.7 |     |
| 4-19 | 12.41 | 4729.8 |     |
| 4.20 | 12.89 | 4736.1 |     |
| 4-21 | 13,80 | 4742,4 |     |
| 1,   | 12.36 | 4745.6 | -   |
| 4-23 | 12.78 | 4751.8 | -   |
| 4-24 | 13.66 | 4758.0 |     |
| 4-25 | 13.31 | 4763.6 | -   |
| 4-26 | 12.19 | 4768.0 | -   |
| 4-27 | 13.86 | 4774.1 | -   |
| 4-28 | 13.77 | 4780.1 |     |
| 4-29 | 12.24 | 4783.6 | -0  |
| 4-30 | 12.95 | 4790.2 | 6   |
| 6-1  | 13.11 | 4796.4 | -   |
| 5-2  | 13.93 | 4802.3 |     |
| 5-3  | 12.06 | 4806.4 |     |
| 5-4  | 12.32 | 4812.8 | 0   |
| 5-5  | 13.26 | 4819   | •   |
| 5-G  | 13.52 | 4825.3 |     |
| 5-7  | 12.88 | 4830.0 | -   |
| 5-8  | 12.61 | 4834,9 | 9   |
| 5-9  | 13.11 | 48411  | -   |
| 5-10 | 13.78 | 4847.7 | 40  |
| 5-11 | 12.31 | 451.4  | (4) |
| 5-12 | 12,57 | 4857.2 | 1   |
| 5-13 | 13.27 | 4563.5 | 0   |

| 5-14-20   | 13.53 |
|-----------|-------|
| 5-15-20   | 12,19 |
| 5-16-20   | 13.45 |
| 5-17-20   | 11.87 |
| 5-18      | 13.76 |
| 5-19      | 11.89 |
| 5.20      | 13.88 |
| 15.5      | 12.42 |
| 5 80      | 12,35 |
| 5-23      | 12.22 |
| 3-24      | 13.87 |
| 6575      | 13.35 |
| 5-26      | 12,21 |
| 5.27      | 12.15 |
| 5-28      | 12.40 |
| 5-29<br>- | 12.93 |
| 5-30      | 12,76 |
| 5-31      | 12,79 |
| 6-1-20    | 12.98 |
| 6-3-20    | 13.46 |
| 6-420     | 13.02 |
| 6-7-30    | ·     |
|           | 12.32 |
| 67-20     | 12.10 |
| 6-8-20    |       |
| W. United | 13.79 |

4869,3 4873.2 4880.2 4884.2 4892.6 4896.8 4905.1 4909.1 4921.2 4929,3 4933.2 4939.1 4947.0 49647 4974.0 4983.7 5005,2 5015,5 5025.6 5036.2 5048.5 5057,8 50679

|         |        |      |        | -        |       |        |
|---------|--------|------|--------|----------|-------|--------|
|         |        |      | 50 3   | 7-5-20   | 13.70 | 5315.0 |
| 6-9-20  | 11.72  |      | >2.3   | 7-6-20   | 13.02 | 5323.4 |
| 6-10-20 | 12.18  |      | 92,3   | 7-7-ZO   | 12,37 | 5332.5 |
| 6-11-20 | 12.81  |      | -      | 7-8-20   | 11.55 | 5341.3 |
| 6-12-20 | 12.62  |      | 93.7   | 7-9-20   | 12,90 | 5352.2 |
| 1-13 20 | 1303   |      | 4.7    | 7-10-20  | 12.56 | 5364.0 |
| 6-14-20 | 12.84  |      | 757.5  | 7-11-20  | 13,03 | 5373,6 |
| 6-15-20 |        | 5/3  |        | 7-12-20  | 0.56  | 5378.5 |
| 6-16-2  | 12.67  |      | 13.4   | 7-13-20  | 12.62 | 5394   |
| 6-17-20 | 12.53  |      | 37,3   | 7-14-20  | 11.68 | 5403   |
| 6-18-20 |        | 5160 |        | 7-15-20  |       | 5417   |
| 6-19-20 | 13.88  |      | 5170,2 | 67620    |       | 5429,6 |
| 6-20    | 12.43  |      | 777,4  | (0.75)   | 12.16 | 5442.0 |
| 6-21    | 11.78  |      | 5185,5 |          | 12,03 | 5453.6 |
| 6-22    | 13.16  | S    | 5195.7 |          | 12.45 | 5465.2 |
| 2-23    | 13-57  | 5    | 205.7  | 71-20-70 |       | 5478,7 |
| 6-24    |        | 5    | 5216.8 | 7-21-20  |       | 5492.Z |
|         | -13,62 |      | 5227,0 | 7-22     | _     | 5506.7 |
| 6-26    | 13,80  |      | 5237,3 |          | 13,26 | 5520,2 |
| 6-27    | 13.89  |      | 5248.7 |          | 13,73 | 5532./ |
| 6-28    | 13,88  |      | 5257,3 |          | *     | 5545,> |
| 6-29    | 12.10  |      | 5262.9 |          | 13.63 | 5538,2 |
| 6-30    | 13.46  |      | 5272.3 |          | 12.90 | 5573.3 |
| 7-1     | 13.32  |      | 5280,1 |          | 13.10 | 5585.8 |
| 7-2     | 11.63  |      | 5285,9 | 7-28     | 11.74 | 5601.7 |
| 7-3     | 12.27  |      | 5295.3 | 7-29     | 13.19 | 5615,3 |
| 7-4     | 13.18  |      | 5305.5 |          | 13.15 | 563/11 |
|         | 17.80  |      |        | 7-31     | 17/7  | 70/11  |

|           |         | ( -    |                    |      |       |        |
|-----------|---------|--------|--------------------|------|-------|--------|
|           |         |        |                    |      |       |        |
|           |         |        |                    |      |       |        |
|           |         | 10 75/ | Cum                |      |       |        |
|           | 8-1-20  | 13.78  | 5644.7             | 8-28 | 13.00 | 6017.0 |
|           | 8-200   | 1743   | 5667.1             | 8-29 | 12.48 | 6026.4 |
|           | ~3      | 12.48  | 56>3.3             | 8-30 | 13.05 | 6041,6 |
|           | 7-4     | 12.75  | 5688.0             | 8-31 | 13.85 | 6050,7 |
|           | 8-5     | 13,67  | 5704.4             | 9.1  |       |        |
|           | 8-6     | 13,59  | 5717.3             | 9-1  | 13,95 | 6061,4 |
|           | 7-7     | 1358   | . 5733.4           | 9-2  | 13.62 | 6071.8 |
| 8         | 8-8     | 12.78  | 5743.3             | 9-3  | 13,14 | 6081,6 |
| 8         | 5-9     | 13.57  | 5760.8             | 9-4  | 13.59 | 6095.3 |
| 8         | 5-10    | 17.07  | 5772.2             | 9-5  | 13.08 | 6106.1 |
|           | 2-11    | 13,50  | 5787,7             | 9-6  | 11.79 | 6116.2 |
| 1.0       | 8-12    | 13,89  | 5802,5             | 9-7  |       | 6129.3 |
|           | 8-13    | 13.14  | 5516.2             | 9-8  | 1279  | 613918 |
| 8         | 3-14    | 13.58  | 5828.1             | 9-9  | 13.74 | 6152.2 |
| 8         | 8-15    | 13.14  | 5847,3             | 9-10 | 14,97 | 6165,5 |
|           | 8-1.6   | 13.66  | 5857.1             | 9-11 | 12.26 | 6171.3 |
|           | 8-17    | 12.42  | 5870.1             | 9-12 | 12,57 | 6180,6 |
|           | 8-18    | 12.36  | 5886.3             | 9-13 | 13,90 | 6189,4 |
|           | 8-19    | 13.85  | 5703.5             | 9-14 | 13,86 | 6198,8 |
|           | 8-20    | 13.80  | 591572             | 9-15 |       | 6204.5 |
|           | 8-21    | 3.81   | 5930.7             | 9-16 | 13,9/ | 6215.2 |
|           | 8-22    | 13,95  | 5945.4             | 9-17 | 17.18 | 6221.1 |
|           | 8-23    | 11.68  | 5954.5             |      | 11.86 | 6228,8 |
| 8         | 9-24    | 13.59  | CC 15              | 9-19 | 17,36 | 6739.0 |
| 8         | 8-25    | 13.91  | 5 770,5<br>5 984.1 | 9-20 | 13.33 | 67448  |
| 8         | 3-26    | 13.67  | 3895.3             | 9-4  | 12:09 | 6249.9 |
| 111111111 | 8-27    | 13.26  | 6005.6             | 9-22 | 13.35 | 6258.1 |
|           | 1111111 |        |                    |      |       |        |
|           | ******* |        |                    |      |       |        |

| 9-23  | 12.22   | 6263,7  | 10-20  | 11.78       | 6421,4  |
|-------|---------|---------|--------|-------------|---------|
| 9-24  | 12.88   | 6270,8  | 16-21  | 13. 27      | 6428,5  |
| 9-25  | 12.83   | 6277,2  | 10-22  | 12.20       | 6432.2  |
| 9-26  | 12.50   | 6283.4  | 16-23  | 12.59       | 6437.9  |
| 9-27  | 12.61   | 6289.3  | 10-24  | 1320        | 6443,8  |
| 9-28  | 12.64   | 6295.7  | 10-25  | 11.77       | 6447.9  |
| 9-29  | 13.20   | 6302.5  | 10-26  | 13,49       | 6455,2  |
| 9-30  | 12,55   | 6308.0  | 10-27  | 12.77       | 6459,7  |
| 10-1  | 12,60   | 6314.2  | 10-28  | 11:72       | 6463.8  |
| 19-25 | 12.65   | 6320.3  | 10-29  | 13. 74      | 6471.4  |
| 10-3  | 11.51   | 6324,5  | 10-30  | 12,94       | 6475,14 |
| 10-4  | 12.64   | 6332.6  | 010-31 | 11.97       | 6479.4  |
| 10.5  | 13.90   | 6341.3  | 11-01  | 13.06       | 6485.9  |
| 10-6  | 12.55   | 6345.2  | 11-02  | 13.01       | 6491.2  |
| 10-7  | 12.74   | 6351.5  | 11-03  | 11,61       | 6495.1  |
| to-8  | 12.65   | 6357,5  | 11-04  | 13.85       | 6502.2  |
| 10-9  | 13.19   | 6364,1  | 11-05  | 12.51       | 6506.3  |
| 19-10 | 12,20   | 6369.5  | 11-0k  | 11.81       | W11.3   |
| 10-11 | 11.57   | 6373.5  | 11-07  | 13.12       | 6519,5  |
| 10-12 | 13.07   | 6381.4  | 11-8   | 11.60       | 6522.5  |
| 10-13 | 11.7    | 6.383.4 |        | 11.28       | 6528.6  |
| 16.14 | 13.73   | 6393.1  | 11-10  | HERE 141.97 | 6552.1  |
| 10-15 | 12.49   | 6397.2  | 11-11  | 13.52       | 6555,6  |
| 10-16 | 12.74   | 6401.2  | 11-12  | 13.28       | 6560.8  |
| 10-17 | 12.96   | 6402.3  | 11-13  | 12.02       | 6564.9  |
| 10-19 | 11,99   | 6412.4  |        | 14.97       | 6583    |
| 72    | II Para | 6416.9  | 11-15  | 12,15       | 6585    |

| 395     | \$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |         |
|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------|
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-3-21     |       | Soul 2  |
| 1-8-21  | 12.76   | 6894 . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 13.57 | 7041.3  |
| 1-9-21  | 12.62   | 6900.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-4-21     | 12.02 | 7045,9  |
| 1-10-21 | 12.49   | 6906.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-5-21     | 13,20 | 7052.7  |
| 1-11-21 |         | 6912.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-6-24     | 13.// | 7657.2  |
| 1-12-21 |         | 6916.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-7-24    | 11.73 | 7062.3  |
| 1-13-21 |         | 6924.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-8-21     | 13.38 | 7070,1  |
| 1-14-21 |         | 6929.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-9-21     | 11,94 | 7674.2  |
| 1-15-21 |         | 6933.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-10-21    | 13.50 | 7081.5  |
| 4-6-21  |         | 693812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-11-21    | 12.68 | 7086.2  |
| 1-17-21 | 13,33   | 6945,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-12-21    | 12.68 | 7092 3  |
| 1-18-01 | 1206    | 67496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5-13       | ?     | 7095.4  |
| 1-19-21 | 13.40   | 6957.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114        | 1115  | 71026   |
|         |         | 6961.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-13       | 13,04 | 7110.7  |
| 1-20-21 |         | 6967,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-16       | 1.35  | 7115.7  |
| 1-21-21 |         | 6973.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-17-21    | 12.94 | 7123.2  |
|         | 13.64   | 6977.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-18-21    | Ñ. 94 | 7127.2  |
| 1-23-21 |         | 6985.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-19-21    | 13.60 | 7135.3  |
| 1-24-21 |         | 6984.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-20       | 12.86 | 7140.6  |
| 1-25-2  |         | 6995.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-21       | 11.92 | 7148,2  |
|         | 12.50   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-22-21    | 13.73 | 7157.0  |
|         | 12.68   | 7001.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-23-21    | 11.67 | 7161.7  |
|         | 11.80   | 7006.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-24-21    | 12.14 | 7070.5  |
| 1-29-21 | 13,30   | 7013.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-25-21    | 13.09 | 7179.3  |
| 1-70-21 | 12.34   | 7019.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. 26 - 31 | 13,01 | 7186.5  |
| 1-31-21 | 13. 39  | A Company of the Comp | 3          | 12.93 |         |
| 02-61-2 | 1 12.25 | 7024.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-27-21    | 11.85 | 7192, 8 |
| 02-02-2 |         | 7034.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-28-21    | 13.25 | 7201.5  |
|         | 30.350  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |         |

| 6 | そ | 1    | 2 |
|---|---|------|---|
| - | • | -· * |   |

| 3-1-21   | 7.42  | 7202.3 |
|----------|-------|--------|
| 03-62-21 | 11.58 | 7214.5 |
| 3-09-21  | 12.88 | 7222.9 |
| 03-04-21 | 1377  | 7231.0 |
| 03-05-21 | 11.57 | 7236.3 |
| 3-6-21   | 12.58 | 7245.0 |
| 3-7-21   | 13.77 | 7253,3 |
| 03-08-21 | 11.86 | 7259.2 |
| 03-09-21 | 12.46 | 7267.3 |
| 03-10-21 | 13 48 | 7275.9 |
| 03-11-21 | 12.09 | 7281,6 |
| 3-12-21  | 12,42 | 7289,2 |
| 3-13     | 13.46 | 7297,0 |
| 7.19     | 54    | 7367.1 |
| 03-15-21 | 12.10 | 7311.4 |
| 03-16-21 | 12.86 | 7320.2 |
| 23-17-21 | 4.47  | 7327.7 |
| 3-13     | 10.35 | 73341  |
| 03-19-21 | 13.07 | 7343.8 |
| 03-20-21 | 13,49 | 7331.8 |
| 03-21-21 | 12.08 | 7357,2 |
| 03-22-21 | 12.64 | 7366.1 |
| 05-13-21 | 13,79 | 7374.4 |
| 13-24-21 | 11.77 | 7379.9 |
| 03-45-41 | 12 44 | 7388.1 |
| 3-26-21  | 13.98 | 7396.8 |
| 3 17-21  | 17-31 | 7403.5 |

| , 🔛          |        |
|--------------|--------|
| 325-2        | 11:71  |
| 3-29-21      | 1      |
| 03-30-21     | 12.45  |
| 03-31-21     |        |
| 00.3/2[      | 12.12  |
| #/ N 21      | 12 00  |
| 04-01-21     | 13.02  |
| 15-2-40      | 12,74  |
| 4-3-21       | 12.63  |
| 4-4-21       | 12.58  |
| 04-05-21     | 13.23  |
| 64-06-21     | 11.82  |
| <b>9</b> -17 | 1236   |
| 04-08-21     | 12.90  |
| 04-09-21     | 13,64  |
| 4-10         | 13.16  |
| 4-11         | 12.35  |
| 64-12-21     | 13.63  |
| 04-13-21     | 11.9.3 |
| 04-14-21     | 12:41  |
| 64-15-21     | 13,35  |
| 04-16-21     | 13.27  |
| 84-17-21     | 12.43  |
| 04-18-21     | 12.69  |
| 04/19/21     | 13.79  |
| 04-20-21     | 11.99  |
| 04-21-21     | 12 52  |
| 16-28-43     | 3.33   |
|              |        |

7410.3 7419.2 7425.4 7432.5 K 7441.2 7447.9 7457.3 7463.4 7472,5 7477.7 7485.8 7493.7 7502.2 75/0.3 7516.0 7.524.9 7530.2 7538. i 7534. 7 7568,5 75695 7578 6 7584 1 7591 ,8 7600.6

| 04-23-21 | 12.43 | 7606.8  |
|----------|-------|---------|
| 04-24-21 | 13.16 | 7617.1  |
| 4-25     | 12.00 | 7677.8  |
| 04-26-21 | 12.99 | 7630,1  |
| 04-27-21 | 11.93 | 76363   |
| 64-28-21 | 12 97 | 7644.9  |
| 04-29-21 | 13,43 | 7653.1  |
| 64-36-21 | 11.6  | 7658.5  |
| 5-1-21   | 12,32 | 7665.4  |
| 5-2-21   | 12,28 | 7676.3  |
| 05-03-21 | 12.94 | 7683.8  |
| 05-64-21 | 11.58 | 7690.5  |
| 05 05-21 | 1258  | 7699.3  |
| 05-06-21 | 13:15 | 7768 3  |
| 05-07-21 | 13.07 | 7716 2  |
| 5-8-21   | 12.5  | 77.25,9 |
|          | 12,73 | 7731.5  |
| 05-10-21 | 13.74 | 7740 1  |
| 05-11-21 | 11,66 | 7745.4  |
| 15-12-21 | 12.38 | 7754 2  |
| 5-13     | 13,06 | 7763.0  |
| 15-14-21 | 13.05 | 7770.7  |
| ST-15-21 | 11.52 | 7777.3  |
| 5-16-21  | 12,33 | 7787.2  |
| 5-17-21  | 12.67 | 7797.5  |
| 25-18-71 | 12.61 | 7807.1  |
| V-1.     |       |         |

| -    |              |   |       |
|------|--------------|---|-------|
| -    | 05-19-21     | r | 13.42 |
| -5   | 05-20-21     |   | 12.77 |
| -    | 05-21-21     |   | 12.24 |
|      | 5-22         |   | 13,33 |
|      | 5-23         |   | 13.16 |
| -    | 05-24-21     | , | 41 -  |
|      | 05-25-21     |   | 12 40 |
|      | 5-26-21      |   | 12.18 |
| •    | _            | 1 | 12.32 |
| -    | 5-27-        | 1 | 13.73 |
| -    | 5-28<br>5-29 | 1 | /1.82 |
|      | _            | ı | 11.61 |
| _    | 5-30         | 1 | 11.82 |
| -    | 5-31         | 1 | 12.28 |
|      | 5-1-21       | ı | 12.15 |
| -    | 06-02-21     | 1 | 12.65 |
|      | 06-03-21     | l | 11.62 |
| -    | 66-64-21     | 1 | 1.79  |
| -    | 6-5-21       | l | 2.60  |
| -    | 66-21        | 1 | 12.34 |
| -    | 6-7-21       | į | 13110 |
| -    | 6-8-21       | ļ | 13,37 |
| -    | 6-9-21       | 1 | 3,28  |
| 0    | 6-10-21      |   | 3,50  |
| - 00 | 91           |   | 3.61  |
| ob   |              |   | 3.87  |
| 100  | , 0.,        |   | ,99   |
| -    | , Al         | V | 7 1 1 |

7816,8 7823,4 7829.5 7838.1 7546.9 7850.8 7856.3 7863,5 7871.7 7877,2 7886.0 7895.4 7905.3 7916.3 7927.0 79.38.2 7951.7 7964,0 7976,4 7990,8 8003,9 8017.0 8630.5 8045.0 8059.8 8074.7

| 6-14-21  | 13,66 | 8092,0 |
|----------|-------|--------|
| 6-15-21  | 13.36 | 81895  |
| 6-16-21  | 12.13 | 8124.6 |
| 6-17-21  | 13.78 | 8143.5 |
| 6-18-21  | 12.28 | 8160.0 |
| 6-19-21  | 13.99 | 8178.2 |
| 6-20-21  | 12.54 | 8191.2 |
| 06-21-21 | 13.62 | 8203.4 |
| 06-22-21 | 12.78 | 8215.4 |
| 06-13-21 | 13,47 | 8231.6 |
| 06-24-21 | 12.82 | 8245.7 |
| ,6-25-21 | 13.61 | 8263.0 |
| 6-26-21  | 11.76 | 8272.3 |
| 6-27-21  | 13.49 | 8293.0 |
| 16-28-21 | 11.70 | 8306.7 |
| 06-29-21 | 13.33 | 8326.0 |
| 06-30-21 | 13.46 | 8344.4 |
| 17-1-21  | 14.29 | 8362,6 |
| 7-2-21   | 13.75 | 8382,2 |
| 7-3-21   | 13192 | 83991  |
| 7-4-21   | 14,24 | 8419,9 |
| 7-5-21   | 11.83 | 8432,4 |
| 7-6-21   | 13.41 | 84500  |
| 7-7-2-1  | 12.68 | 8467.8 |
| 7-8-4    | 13.05 | 8483.2 |
| 7-9-21   | 13.82 | 8501.3 |
| 7-10-21  | 13.97 | 8519.9 |

| - | •        |          |
|---|----------|----------|
| - | 07-11-21 | 1178     |
| - |          | 11.78    |
|   | 7-12-21  | 12.77    |
| • | 07-13-21 | 13.99    |
| 3 | 07-14-21 | 12.93    |
|   | 07-15-21 | 13.87    |
| • | 07-16-21 | 12.15    |
| • |          |          |
|   | 7-17-21  | 14.29    |
| • | 7-18-21  | 12.74    |
| • | 7-19-21  | 13.30    |
|   | 7-20-21  | 13,47    |
|   | 7-21-21  | 12.98    |
|   | _        |          |
|   | 7 922-21 | 13,98    |
|   | 7-23-21  | 15.22    |
|   | 7-24-21  | 12.43    |
|   | 7-25-21  | 12.96    |
|   | 7-26-21  |          |
|   |          | 13,49    |
| • | 7-27-2/  | 12.63    |
|   | 07-18-21 | 12.37    |
|   | 07-29-21 | 12,67    |
| • | 07-36-21 | 12.29    |
|   | 07-31-21 | 14.26    |
| • |          |          |
| • | 68-01-21 | 14.00    |
| • | 08-02-21 | 13,50    |
| • | 8-3-21   | 13,76    |
| 9 | 8-4-21   | 14.13    |
| 9 | 8-5-21   | 13.70    |
| 9 |          | ( - (()) |

8536a1 8552,2 8571.5 8583.5 8598.9 8613.9 8637,3 8654.1 8669.3 8688.4 8705.0 8723.9 8740.7 8755,5 8770,0 8785.8 8800.1 P. 17862 8832.5 8847.8 8362.( 8876,3 88899 8402.8 895.0 8926.0

|         |       |                   |         | •   |     | •        | 36 240  |
|---------|-------|-------------------|---------|-----|-----|----------|---------|
| 8-6-21  | 14.03 |                   | 8940.2  |     | -   | 9-1-21   | 14.06   |
| 8-7-21  | 14.01 |                   | 8952.4  |     | - S | 9-2-21   | 14.06   |
| 8-8-21  | 12.86 |                   | 8965.3  |     | -   | 9-3-21   | 13,09   |
| 8-9-21  | 8.53  |                   | 89702   |     |     | 9-4-21   | 12.61   |
| 8-10-21 | 14.11 |                   | 8988.6  |     |     | 9-5-21   | 12.55   |
| 8-11-21 | 13,25 |                   | 9000.1  |     | -   | 9-6-21   | 1267    |
| 8-12-21 |       |                   | 9012.8  |     | -   | 9-7-21   | 13.66   |
| 8-13-21 | 13.31 |                   | 9024,9  |     |     | 9-8-21   | 14.18   |
| 8-14-21 | 13.87 |                   | 9038.5  |     |     | 9-9-21   | 13.05   |
| 8-15    | 12.7( |                   | 9051,1  |     |     | 9-10-21  | 12.71   |
| 8-16    | 14.34 |                   | 9065.2  |     |     | 9-11-21  | 14.97   |
| 8-17    | 14,00 |                   | 9078.3  | •   |     | 9 012.21 | 14.93   |
| 8-18    | 13.79 |                   | 9090.3  |     | -   | 9-13-21  | 14,96   |
| 8-19    | 13.64 |                   | 9100,4  |     | •   | 9-14-21  | 14.35   |
| 8-20-21 | 12.46 | *Changed CHlorine | 9110,1  |     | -   | 9-15     |         |
| 8-21-21 | 14.31 |                   | 9122.7  |     | -   | Pump #1  | 11.53   |
| 8-12-21 | 14,69 |                   | 9132.0  |     | -   | 9-16     | 14.96   |
| 8-23-21 | 14.24 |                   | 9141.9  | 145 | -   | 9-17     | 14,97   |
| 3-24-21 | 13.39 |                   | 9151.5  |     | •   | 9-18     | 14,96   |
| 8-25-21 | 13.86 |                   | 9162.3  |     |     | 9-19     | 14.96   |
| 8-26-21 | 13.27 |                   | 9173.0  |     | -   | 9-20     | 14.98   |
| 8-27-21 | 12.96 |                   | 91842   |     | -   | 9-21     | 14.96   |
| 8-28-21 | 12.3  |                   | 99193.7 |     |     | 9-22-21  | 14.96   |
| 8-29-21 | 13.30 |                   | 9206.3  | Ф   | 0   | 923-     | 4 1496  |
| 8-30-21 | 12.97 |                   | 9216.6  | W _ | 14  | 9-242    | 1 14,96 |
| 9-31-21 | 13.14 |                   | 9227.1  | . 6 | 0   | 9-27-21  | 14,96   |
|         | 18 47 |                   |         |     | 90  | 9-28-21  | 14.96   |

9240.3 9252.2 9263,2 9273,9 9286.1 92991/ 93172, 9326.6 9337.1 93420 9362.6 9374.6 9336.1 9386.3

| a        |                            |                                                                    |                 |                    |          |
|----------|----------------------------|--------------------------------------------------------------------|-----------------|--------------------|----------|
| 段-27-21  | 14.97                      | well #1 Mangal                                                     | 10-26-21        | 14.29              | 9574.1   |
| 9-30-21  | 1497                       | well#I wanual                                                      | 10-27-21        | 11.98 update Reset | 9577.7   |
| 10-01-21 | 11.89 Well # 2 backon line | weil#1 off 88 PM                                                   | 450             | - <del>  </del>    |          |
| 10-02-21 | 12.85                      | 9403,2                                                             | 10-28-21        | 13.02              | 9586.1   |
| 10-03-21 | 12.33                      | 941110                                                             | 10-29-21        | 13.20              | 95-92, 3 |
| 10-4-21  | 12.61                      | 9418.8                                                             | 10-30-21        | 12.71              | 9599.6   |
| 10-5-21  | 12 73                      | 9426.4                                                             | 10-31-21        | 13.03              | 9606.4   |
| 10-6-21  | 12.42                      | 9432.7                                                             | 11-01-21        | 13.46              | 9613,3   |
| 10-7-21  | 12.99                      | 9442.2                                                             | 11-2-21         | 17.88              | 9620.0   |
| 10-8-21  | 13.06                      | 9448,1                                                             | 11-83-21        | 14.25              | 9626.8   |
| 10-7-21  | 13,19                      | 9455,                                                              |                 | 14.44              | 9633.9   |
| 10-10-21 | 1302                       | 94621                                                              | <b>11-05-21</b> | 12.89              | 9638,4   |
| 10-11-21 | 13.27                      | 9469,1                                                             | 116-21          | 12.3               | 9644,5   |
| 10-12-21 | 13.32                      | 9475.9                                                             | 11-7-21         | 12:69              | 9651,5   |
| 10-18-21 | 13.85                      | 9482.6                                                             | 11-8-21         | 12.73              | 9658.5   |
| 10-14-21 | 14.04                      | 9489,4                                                             | 11-9-21         | 13.06              | 9665.2   |
| 10-15-21 | 13.60                      | 9495.1                                                             | 11-10-21        | 13.28              | 9672.9   |
|          | 13.01                      | 9489.4<br>9495.1<br>9501.2<br>9507.5<br>9514.2<br>9521.6<br>9527.7 | 11-11-21        | 13 22              | 9678.7   |
| 10-17-21 | 12.52                      | 95075                                                              | . 11-12-21      | 13.54              | 9685,3   |
| 10-12-21 | 13.11                      | 95 14.2                                                            | 11-13-21        | 12.73              | 9692.2   |
| 16-19-21 | 13.16                      | 9521.6                                                             | 11-14-21        | 13.30              | 9699.0   |
| 10-20-20 | 13.29                      | 9527.7                                                             | 11-15-21        | 13.45              | 9705.8   |
| 10-21-21 | 14.73                      | 9535,7                                                             | 11-16-21        | 13.43              | 9712.7   |
| 10-22-21 | 14,97                      | 1548.1 D                                                           | 11 17-21        | 13,37              | 9719.4   |
| 10-23-21 | 13.86                      | 9534.3                                                             | 11 18-21        | 13.60              | 9726.2   |
| 10-24-21 |                            | 9560.1                                                             | 11-19-21        | 13.98              | 9733.0   |
| 10-25-21 | 12.95                      | 9565.8                                                             |                 |                    |          |

|          |                          |        | -                                   |          |          |
|----------|--------------------------|--------|-------------------------------------|----------|----------|
|          |                          |        |                                     |          |          |
|          | 51                       |        |                                     |          |          |
| 11-20-21 | 13.26                    | 9739.7 | 12-17-21                            | 12.35    | 9894.3   |
| 12-21-21 | 14.33                    | 9>46,5 | 12-18-2                             |          | 9900.1   |
| 11-22-21 | 12,69                    | 9750.0 | 12-19-21                            |          | 9908,4   |
| 11-23-21 | 13.28                    | 9756 3 | 12-20-5                             | 21 13.47 | 9915,1   |
| 11-24-21 | 13,83                    | 9763.1 |                                     | 13.86    | 9921.7   |
|          | 13.92                    | 9768,9 | 12-22-21                            | 14.06    | 9927.9   |
|          | 12.64                    | 9773,/ | 12-23-21<br>12-24<br>12-25<br>12-26 | 12.80    | 9931.0   |
| 11-27    | 12.78                    | 9779,7 | 12-24                               | 13.17    | 49385    |
| 11-28    | 13,27                    | 97863  | 12-25                               | 13.24    | 9945, 1  |
| 11-29    | 13.97                    | 9792.9 | 12-26                               | 13.91    | 9951.7   |
| 11-36    | 13.38                    | 9798.1 | 12-27                               | 12.54    | 9955.4   |
| 12-01    | 12.76                    | 9802.9 | 1 9-28                              | 12.69    | 9961.9   |
| 12-02    | 13.43                    | 9809 4 | 12-29                               | 13.10    | 9968.5   |
| 12-03    | 13.92                    | 9815.8 | 12-30                               | 13.88    | 9975.1   |
| 12-04    | 14.23                    | 9812.5 | 12-3/                               | 13.89    | 9981.2   |
| 12-05    | 12.60                    | 9825.8 | •                                   |          | 9988.3   |
| 12-06    | 13.26                    | 9832.6 | 1-1-22                              | 14.23    | 9995.2   |
| 1207     | 13.47                    | 1839,1 | 1-2-22                              | 14,37    | 9998.>   |
| 12-08    | 13.67                    | 9844.2 | 1-3-22                              | 13.01    | 4998.7   |
| 12-9     | 12.68                    | 9849,1 | 1-1-22                              | 13.42    | 10003,3  |
| 12-10.   | 13.3.3                   | 9855.7 | 1-5-12                              | 14.03    | 10012.0  |
| 12-11    | 13.35                    | 9862.1 | 1.6-22                              | 14.12    | 10018.3  |
| 12-12    | 14.76                    | 9868.3 | 1-7-22                              | 12.4[    | 10022.2  |
| 12-13    | 12.47                    | 9872.3 | 18-7                                |          | 10028,9  |
|          | 13.28                    | 1010.  | J. ( Not                            | 15,38    | 10035.5  |
|          | 11.30                    | 9882.4 | 0-22                                | 13.48    | 10042.12 |
| 12-16    | 10.46 Reset UPDate SKATA | 9887.4 |                                     | 9        |          |

| 1-11-22  | 13.77  | 10047.3 | 02-06-22 14.05  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|--------|---------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-12-22  | 12.34  | 10052.5 | 02-07-22 14.12  | 205 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-13-22  | 12.83  | 10059.1 | 2-8-22 12.31    | 211 .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1-14-12  | 13.15  | 10063.7 | 02-09-22 13.65  | 215.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-15-22  | 13,32  | 10072.3 | 2-10-22 12.35   | 218.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-16-22  | 13.64  | 10078.9 | 2-11-22 13.37   | 218.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-17-12  | 13.75  | 10085.7 | 2-12-22 14,24   | 221.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-18-12  | 12.50  | 10095,4 | 2-13-22 13,45   | 223, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1-19-22  | ARDY . | ·       | 2-14-22 12.69   | 223.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-20-22  | 12.94  | 102,9   | 2-15-22 14.17   | 223,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-21-22  | 13.56  | 10108.5 | 2-16-22 13.41   | 226.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-22-22  | 13.38  | 10115.0 | 2 0 17-22 12.79 | 226.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-23-22  | 14,16  | 10121.7 | 2-18-22 14,29   | 226.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-24-22  |        | 10125,2 | 2-19-22 13.36   | 229,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-25-22  |        | 10131.8 | 2-20-22 12,54   | 229,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-16-22  | 13.59  | 144, 3  | 4-21-22 13,81   | 2291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1-27-22  |        |         | 1.22.22 14.27   | 23/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-28-22  |        | 149.7   | 2-23-22 13,34   | 10234.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 129-22   |        | 156.2   | 2-24-22 12.41   | 10234.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-30-22  |        | 161.8   | 2-25-22 13.64   | 10234 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-31-22  | 13,37  | 10168.4 | 2-26-22 12.70   | 10237.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 72-W     | 21.38  | 10175.1 | 2-27-22 13.54   | 10237.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2-01-22  | 14.19  | 175,1   | 2-28-22 14.19   | 10139.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2-02-22  | 12.64  | 179 1   |                 | 242,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12-63-12 |        | 185.3   | 3-1-22 13,24    | 2 de la company |
| 2-04-22  |        | 191.9   | 12.27           | 242.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12-05-22 | 13.24  | 198.5   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|         |       |         | -   | 00                                              |          |           |          |        |
|---------|-------|---------|-----|-------------------------------------------------|----------|-----------|----------|--------|
|         |       |         |     |                                                 |          |           |          |        |
|         |       |         |     | -                                               | •        |           |          |        |
|         |       |         | •   | الاحتداد الاحتداد الاحتداد الاحتداد الاحتداد ال |          | 111 32 77 |          | 268,7  |
| 3-2-22  | 12.42 | 242.3   | - 1 | 1                                               | 3-29-22  | 14,37     |          |        |
| 3-3-22  | 13.98 | 10245.0 |     | STREET, S                                       | 3-30-22  | 12.83     |          | 268 .7 |
| 3-4-22  | 13.24 | 245.0   |     |                                                 | 3-31-22  | 13.32     |          | 275.2  |
| 3-5-22  | 12.60 | 245.4   |     | -                                               | 4-1-22   | 14.02     |          | 281 .7 |
| 3-6-22  | 13.55 | 247,6   |     | -                                               | 4-2-22   | 14,43     |          | 288,4  |
| 3-7-12  | 12.99 | 247,6   |     |                                                 | 4-3-22   | 13,12     |          | 293,2  |
| 3-8-22  | 12.51 | 247.6   | - 1 | -                                               | 4-4-22   | 12.73     | 114      | 298.3  |
| 3-9-22  | 14.28 | 250,2   | ,   | -                                               | 4-5-22   |           | <b>L</b> | 306 .4 |
| 7-11-22 | 13.52 | 250.2   |     | -                                               | 4-6-22   |           |          | 311 .4 |
| 3-11-22 | 12.91 | 250.2   |     | -                                               | 4-7-22   | 12.68     |          | 316.5  |
| 2-12-22 | 12.33 | 250.3   |     |                                                 |          | 12.62     |          | 322.4  |
| 3-13-22 | 13.91 | 252.9   |     |                                                 | 1 9-22   |           |          | 328,6  |
| 3-14-22 |       | 252.9   |     |                                                 |          |           |          | 334.9  |
| 3-15-22 |       | 255.6   |     | - 3                                             | 4-11-22  | 12.81     |          | 341 .1 |
| 3-16-22 |       | 255.6   |     |                                                 | 4-12-22  | 13.08     |          | 347.1  |
| 3-17-22 |       | 2571    |     |                                                 | 4-13-22  | 13,38     |          | 353.4  |
| 3-18-22 |       | 2383    |     |                                                 | 4-14-82  | <b>/</b>  |          | 359,1  |
| 3-19-22 | 12.71 | 258.3   |     |                                                 | 4-15-22  | 13.13     |          | 365.1  |
| 3-20-22 | 14.14 | 260.9   |     |                                                 | 4-16-22  | 12.95     |          | 371.1  |
| 3-11-22 |       | 260 9   |     |                                                 | 4-1>-12  | 12.70     |          | 3>>,2  |
| 3-22-22 | 19 70 | 260.9   |     |                                                 | 4-18-22  |           |          | 382 .1 |
| 3-23-22 |       | 263.5   |     | -                                               | 4-19-22  | 13.70     |          | 389, 1 |
| 3-24-22 |       | 263,5   |     | 0 0                                             | 4-20-22  | 13.51     |          | 395.0  |
| 3 25-22 |       | 263.5   | (D) | ST-13                                           | 4 21-12  | 13.16     |          | 400 .9 |
| 3-26-22 |       | 266.1   | D   |                                                 | 4- 22-22 | 13,40     |          | 406.8  |
| 3-27-22 |       | 266.1   |     | 5                                               | 4-23-22  |           |          | 412.8  |
| 3-23.22 | 12.70 | 266.1   |     |                                                 | 4-24-22  | 12.76     |          | 418.9  |

|          |         | C-5                     |         |         |       |
|----------|---------|-------------------------|---------|---------|-------|
|          |         | 0 0 0                   | •       |         |       |
|          |         | 0-0                     | -       |         |       |
| 4-25-22  | 13.20   | 425.0                   | 5-22-22 | 13,62   | 593.1 |
| 4-26-22  | 13,22   | 4131.0                  | 5-23-22 | 12.86   | 598,4 |
| 4-2722   | 13.14   | 436.9                   | 5-24-22 | 14.30   | 607.4 |
| 4-28-22  |         | 443.0                   | 5-25-22 | 14.37   | 613.8 |
| 4-29-22  | 13.27   | 448.1                   | 5-26-22 | 13.35   | 620.2 |
| 41-30-27 | 12.65   | 4537.)                  | 5-27-22 | 12.61   | 627.4 |
| 5-1-22   | - 12.71 | 461.2                   | 5-28-22 | 13.18   | 637.7 |
| -2-22    | 13.15   | 467,2                   | 5-29-22 | 12.99   | 644,4 |
| 5-3-22   | 13.15   | 473.4<br>479.0<br>485.1 | 5-30-22 |         | 657.2 |
| 5-4-22   | 12,59   | 479.0                   | 5-31-22 | 13.38   | 659.6 |
| 5-5-22   | 12.96   | 485.1                   | _       |         | 667.5 |
| 5-6-22   | 13.03   | 491.2<br>497.2<br>503,4 | 6-1-2   |         | 674,3 |
| 5-7-22   | 13.00   | 497,2                   | 5-2-2   |         | 680,2 |
| 5-8-22   | 1291    | 503,4                   |         | 2 14.21 | 685.1 |
| 5-9-22   | 12.87   | 509.6                   | 6-4-22  |         | 691,8 |
| 5-10-22  | 13.02   | 515.>                   |         | 12.97   | 699,4 |
| 5-11-22  |         | 521.3                   | 6-6-22  | · ·     | 708,4 |
| 5-12-22  |         | 527.2                   | 11-7-22 |         | 714.9 |
| 5-13-22  |         | 533,3                   | 6-8-22  |         | 722.6 |
| 5-14-22  | 13.55   | 541,7                   | 6-9-22  |         | 733.0 |
| 5-15-22  |         | 549.1                   | 6-10-22 | 13.21   | 740,5 |
| 5-16-22  |         | 552,2                   |         | 13,76   | 750,4 |
| 5-17-22  |         | 559.6                   | 6-12-22 |         | 257.3 |
| 5-18-22  |         | 566.2                   |         | 14,35   | 766.3 |
| 5-19-22  |         | 573,1                   | 6-14-22 | 13.70   | 7734  |
| 5-20-22  |         | 578.6                   | 6-15-22 |         | 780.3 |
| 5-21-22  | 12,54   | 584.8                   | 6-16-19 | 14.34   | 791.2 |

| 7       |               | -                                |               |           |            |
|---------|---------------|----------------------------------|---------------|-----------|------------|
|         |               |                                  |               |           |            |
|         |               |                                  |               |           |            |
|         | Level         | Us age                           | •             | 0 110     | 028        |
| 6-17-22 | å             | 799.0                            |               |           | 988,       |
| 6-18-12 | 13.53         | 809.9                            | 7-11-22       | 8.54      | 37849      |
|         | 12.55         | 819,7                            | 7-12-22       | 8,56      | 37873.6    |
| 6-20-22 | 14.28         | 10830.4                          | 7-13-22       | 12.78     | 32 897.7   |
|         | 13.02         | 837.4                            | EP            |           |            |
| 6-22-22 |               | 844.6                            | 7-14-29       |           | 992 well 2 |
| 6-13-22 |               | 857.7                            | 7-15-22       |           | 11005.2    |
| 6-24-22 |               | 844.6<br>857.7<br>867.9<br>878.3 | 7-16-22       | 13.22     | 11015,6    |
| 6-25-22 |               | 87813                            |               | 20        | 11027.9    |
| 6-26-22 |               | 887.9                            | 7-19-22       | 12.79     | MOS1.7     |
| 6-27-22 |               | 898,4                            |               | 13,48     | 106218     |
| 6-28-22 |               | 909.0                            | 9721-         |           | 11075.7    |
| 6-29-22 |               | 920.3                            | 107           | [3,1]     | 1/088.5    |
| 6-36-12 |               | 932.0                            | ,             | 12.95     | 102,6      |
| TOTAL S |               |                                  |               | 13.>>     | 117,2      |
| 7-1-22  | 14,35         | 945,5                            |               | 14.25     | 128,5      |
| P22-7-2 | 13.24         | 948,5<br>957.3<br>969.6          | 7.36          | 12.57     | 11(38.3    |
| 7-3     | 12.57         | 969.6                            |               | 14.28     | 154.2      |
| 7-4     | 14.02         | 980,3                            | 7-28          | 1257      | 166.3      |
| 7-5     | 13.32         | 988,1                            | 7.29          | 12.90     |            |
|         | bobb of       |                                  |               | 214.10    | 196,9      |
| well 1  | Marin Comment |                                  |               | 2 12 51   | 209.7      |
| 7-5-22  | CKA .         | 377030                           |               | 14,40     | 11227.3    |
| 7-6-22  | 11.92         | 37726                            | 8-2-6<br>8-4- |           | 265.4      |
| 2101    |               |                                  | •             |           | 280.1      |
| 7-8-22  | 8.87          | 938.1                            | 8-5-22        | 13.76     | 293.5      |
| 7-9-22  | 8.38          |                                  | -             | 1 2 1 7 6 |            |

|              | 12.67         | 209                                                |                  |         |
|--------------|---------------|----------------------------------------------------|------------------|---------|
| 8-7-22       | 12,57         | 302,9                                              | 9-2-22 14,59     |         |
| 8-8-22       |               | 317,3                                              | 9-3-22 14.9>     |         |
| 8-9-22       |               | 328.0<br>342.3                                     | 9-4-22 14.9>     |         |
| 8-10-22      |               | 9.1                                                | 9-5-22 14.96     |         |
| 8-11-22      |               | 356.7                                              | 9-6-22 14.96     |         |
| 8-12-22      |               | 368./                                              | 9-7-22 14.27     | -153    |
| 8-13-22      |               | 382.3<br>391.9                                     | 9-8-22 14.9>     | 38106.9 |
| 8-14-22      |               | 393.2                                              | 9-9-22 13,30     | 541,3   |
| 8-15-22      |               | 416,1                                              | 9-10-22 13.60    | 556.4   |
|              | 13, 9 26      | 430.2                                              | 9-11-22 12.57    | 562.9   |
| 11.00        | 13.99         | 443.5                                              | 9-12-22 14,16    | 575,5   |
| 6.18 22      |               | 456.8                                              | 9-13-22 12.62    | 583,4   |
| 8-19-22      |               | 467.9                                              | 9-14-22 13.97    | 595.2   |
|              | 12.98         | 482.4<br>482.4<br>494.0<br>505.5<br>517.3<br>529.6 | 9-15-22 12.69    | 602.6   |
|              | 13.83         | 494,0                                              | 9-1622 MAN 13,91 | 612.6   |
| 5-22         | 12.92         | 505,5                                              | 7-17-22 13,60    | 620,2   |
| 8-23         | 12.90         | 517,3                                              | 9-18-22 12,93    | 627,5   |
| 8-24         | 14.34         | 529.6                                              | 9.19-22 13.27    | 638,6   |
| 8-25<br>8-26 | 8,58<br>14,96 | 531.7                                              | 9-20-22 13.32    | CH5-1   |
| 8-27-        | 9,25          |                                                    | 9-21-22 12,53    | 651.8   |
| 8-28         |               |                                                    | 9-22-22 12,67    | 657.1   |
| 8.29         |               |                                                    | 9 23 22 13.68    | 667.0   |
| 8-30         | 14.96         | 37970                                              | 9-24-22 12.54    | 671,3   |
| 8-3/         | 14,97         | 21 000                                             | 9-7-5-29 13.86   | 680.4   |
|              | 47 (1)        | 37983<br>T                                         | 9-26-22 13,56    | 687,7   |
| M 9-1        | 14.97         | 38001                                              | 9-27-21 12.80    | 693 8   |
|              |               | 70-01                                              | 9.28 12.95       | 69918   |

| 10 52 |                                                             | 70/5                             |
|-------|-------------------------------------------------------------|----------------------------------|
|       |                                                             | 706.5                            |
| 12.80 |                                                             | 712,2                            |
| 12.88 |                                                             | 718.1                            |
| 12.73 |                                                             | 724.0                            |
| 12,63 |                                                             | 730,0                            |
| 13.05 |                                                             | 735,8                            |
| 13.03 | 1                                                           | 741.5                            |
|       | 12.73<br>12.80<br>12.88<br>12.73<br>12.63<br>13.05<br>13.03 | 12.80<br>12.88<br>12.73<br>12.63 |

|                        |                | Gal/Day               |                          | Well #2               |                                       |                          | Well #1               |                         |                                       |
|------------------------|----------------|-----------------------|--------------------------|-----------------------|---------------------------------------|--------------------------|-----------------------|-------------------------|---------------------------------------|
| Date                   | Tank Level     | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated)               | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day                         |
| 1/26/2019              | 12.04          | 165,000.00            | 2,319.30                 | (Hours)               | (Calculateu)                          | Tille (Hours)            | (Hours)               | (Calculateu)            |                                       |
| 1/27/2019              | .2.0           | 114,000.00            | 2,328.80                 | 9.50                  | 285,000                               |                          |                       |                         | 285.000                               |
| 1/28/2019              | 12.49          | 213,000.00            | 2,335.90                 | 7.10                  | 213.000                               |                          |                       |                         | 213,000                               |
| 1/29/2019              | 13.04          | 282,000.00            | 2,345.30                 | 9.40                  | 282,000                               |                          |                       |                         | 282,000                               |
| 1/30/2019              | 12.37          | 201,000.00            | 2,352.00                 | 6.70                  | 201,000                               |                          |                       |                         | 201,000                               |
| 1/31/2019              | 11.56          | 198,000.00            | 2,358.60                 | 6.60                  | 198,000                               |                          |                       |                         | 198,000                               |
| 2/1/2019               | 13.12          | 282,000.00            | 2,368.00                 | 9.40                  | 282.000                               |                          |                       |                         | 282.000                               |
| 2/1/2019               | 12.06          | 225,000.00            | 2,375.50                 | 7.50                  | 202,000                               |                          |                       |                         | 202,000                               |
| 2/3/2019               | 12.00          | 261,000.00            | 2,384.20                 | 8.70                  | 261.000                               |                          |                       |                         | 261,000                               |
| 2/4/2019               | 11.57          | 168,000.00            | 2,389.80                 | 5.60                  | 168,000                               |                          |                       |                         | 168,000                               |
|                        |                | ,                     | · '                      | 10.70                 | · · · · · · · · · · · · · · · · · · · |                          |                       |                         | · · · · · · · · · · · · · · · · · · · |
| 2/5/2019               | 13.09          | 321,000.00            | 2,400.50                 |                       | 321,000                               |                          |                       |                         | 321,000                               |
| 2/6/2019               | 11.27          | 183,000.00            | 2,406.60                 | 6.10                  | 183,000                               |                          |                       |                         | 183,000                               |
| 2/7/2019               | 13.80          | 306,000.00            | 2,416.80                 | 10.20                 | 306,000                               |                          |                       |                         | 306,000                               |
| 2/8/2019               | 11.08          | 171,000.00            | 2,422.50                 | 5.70                  | 171,000                               |                          |                       |                         | 171,000                               |
| 2/9/2019               | 11.78          | 318,000.00            | 2,433.10                 | 10.60                 | 318,000                               |                          |                       |                         | 318,000                               |
| 2/10/2019              | 13.30          | 306,000.00            | 2,443.30                 | 10.20                 | 306,000                               |                          |                       |                         | 306,000                               |
| 2/11/2019              | 13.18          | 195,000.00            | 2,449.80                 | 6.50                  | 195,000                               |                          |                       |                         | 195,000                               |
| 2/12/2019              | 11.01          | 159,000.00            | 2,455.10                 | 5.30                  | 159,000                               |                          |                       |                         | 159,000                               |
| 2/13/2019              | 13.87          | 303,000.00            | 2,465.20                 | 10.10                 | 303,000                               |                          |                       |                         | 303,000                               |
| 2/14/2019              | 11.57          | 150,000.00            | 2,470.20                 | 5.00                  | 150,000                               |                          |                       |                         | 150,000                               |
| 2/15/2019              | 12.25          | 222,000.00            | 2,477.60                 | 7.40                  | 222,000                               |                          |                       |                         | 222,000                               |
| 2/16/2019              | 13.07          | 234,000.00            | 2,485.40                 | 7.80                  | 234,000                               |                          |                       |                         | 234,000                               |
| 2/17/2019              | 11.42          | 144,000.00            | 2,490.20                 | 4.80                  | 144,000                               |                          |                       |                         | 144,000                               |
| 2/18/2019              | 13.12          | 288,000.00            | 2,499.80                 | 9.60                  | 288,000                               |                          |                       |                         | 288,000                               |
| 2/19/2019              | 13.15          | 189,000.00            | 2,506.10                 | 6.30                  | 189,000                               |                          |                       |                         | 189,000                               |
| 2/20/2019              | 11.55          | 156,000.00            | 2,511.30                 | 5.20                  | 156,000                               |                          |                       |                         | 156,000                               |
| 2/21/2019              | 13.48          | 270,000.00            | 2,520.30                 | 9.00                  | 270,000                               |                          |                       |                         | 270,000                               |
| 2/22/2019              | 12.43          | 177,000.00            | 2,526.20                 | 5.90                  | 177,000                               |                          |                       |                         | 177,000                               |
| 2/23/2019              | 11.65          | 198,000.00            | 2,532.80                 | 6.60                  | 198,000                               |                          |                       |                         | 198,000                               |
| 2/24/2019              | 13.62          | 270,000.00            | 2,541.80                 | 9.00                  | 270,000                               |                          |                       |                         | 270,000                               |
| 2/25/2019              | 11.79          | 156,000.00            | 2,547.00                 | 5.20                  | 156,000                               |                          |                       |                         | 156,000                               |
| 2/26/2019              | 13.16          | 279,000.00            | 2,556.30                 | 9.30                  | 279,000                               |                          |                       |                         | 279,000                               |
| 2/27/2019              | 12.98          | 177,000.00            | 2,562.20                 | 5.90                  | 177,000                               |                          |                       |                         | 177,000                               |
| 2/28/2019              | 11.35          | 156,000.00            | 2,567.40                 | 5.20                  | 156,000                               |                          |                       |                         | 156,000                               |
| 3/1/2019               | 13.46          | 282,000.00            | 2,576.80                 | 9.40                  | 282,000                               |                          |                       |                         | 282,000                               |
| 3/2/2019               | 12.29          | 180,000.00            | 2,582.80                 | 6.00                  | 180,000                               |                          |                       |                         | 180,000                               |
| 3/3/2019               | 11.92          | 210,000.00            | 2,589.80                 | 7.00                  | 210,000                               |                          |                       |                         | 210,000                               |
| 3/4/2019               | 13.10          | 261,000.00            | 2,598.50                 | 8.70                  | 261,000                               |                          |                       |                         | 261,000                               |
| 3/5/2019               | 11.01          | 162,000.00            | 2,603.90                 | 5.40                  | 162,000                               |                          |                       |                         | 162,000                               |
| 3/6/2019               | 13.50          | 315,000.00            | 2,614.40                 | 10.50                 | 315,000                               |                          |                       |                         | 315,000                               |
| 3/7/2019               | 11.85          | 153,000.00            | 2,619.50                 | 5.10                  | 153,000                               |                          |                       | 1                       | 153,000                               |
| 3/8/2019               | 12.70          | 252,000.00            | 2,627.90                 | 8.40                  | 252,000                               |                          |                       |                         | 252,000                               |
| 3/9/2019               | 12.23          | 225,000.00            | 2,635.40                 | 7.50                  | 225,000                               |                          |                       |                         | 225,000                               |
| 3/10/2019              | 11.83          | 207,000.00            | 2,642.30                 | 6.90                  | 207,000                               |                          |                       |                         | 207,000                               |
| 3/11/2019              | 14.56          | 267,000.00            | 2,651.20                 | 8.90                  | 267,000                               |                          |                       |                         | 267,000                               |
| 3/11/2019              | 7.42           | 12,000.00             | 2,651.60                 | 0.40                  | 12,000                                | <del> </del>             |                       | <del> </del>            | 12,000                                |
| 3/13/2019              | 11.45          | 354,000.00            | 2,663.40                 | 11.80                 | 354,000                               |                          |                       |                         | 354,000                               |
| 3/13/2019              | 13.44          | 312,000.00            | 2,673.80                 | 10.40                 | 312,000                               |                          |                       | 1                       | 312,000                               |
|                        |                | 1                     |                          | 5.20                  | 1                                     |                          |                       | 1                       | 1                                     |
| 3/15/2019<br>3/16/2019 | 12.15<br>12.87 | 156,000.00            | 2,679.00<br>2,689.70     |                       | 156,000                               | -                        |                       | -                       | 156,000                               |
|                        |                | 321,000.00            |                          | 10.70                 | 321,000                               |                          |                       |                         | 321,000                               |
| 3/17/2019              | 11.43          | 150,000.00            | 2,694.70                 | 5.00                  | 150,000                               |                          |                       |                         | 150,000                               |
| 3/18/2019              | 12.05          | 222,000.00            | 2,702.10                 | 7.40                  | 222,000                               | <u> </u>                 |                       |                         | 222,000                               |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 3/19/2019 | 12.96      | 252,000.00            | 2,710.50                 | 8.40                  | 252,000                 |                          |                       |                         | 252,000       |
| 3/20/2019 | 11.38      | 159,000.00            | 2,715.80                 | 5.30                  | 159,000                 |                          |                       |                         | 159,000       |
| 3/21/2019 | 13.22      | 273,000.00            | 2,724.90                 | 9.10                  | 273,000                 |                          |                       |                         | 273,000       |
| 3/22/2019 | 12.25      | 189,000.00            | 2,731.20                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 3/23/2019 | 12.35      | 234,000.00            | 2,739.00                 | 7.80                  | 234,000                 |                          |                       |                         | 234,000       |
| 3/24/2019 | 12.58      | 231,000.00            | 2,746.70                 | 7.70                  | 231,000                 |                          |                       |                         | 231,000       |
| 3/25/2019 | 11.70      | 159,000.00            | 2,752.00                 | 5.30                  | 159,000                 |                          |                       |                         | 159,000       |
| 3/26/2019 | 13.86      | 312,000.00            | 2,762.40                 | 10.40                 | 312,000                 |                          |                       |                         | 312,000       |
| 3/27/2019 | 12.32      | 150,000.00            | 2,767.40                 | 5.00                  | 150,000                 |                          |                       |                         | 150,000       |
| 3/28/2019 | 12.16      | 219,000.00            | 2,774.70                 | 7.30                  | 219,000                 |                          |                       |                         | 219,000       |
| 3/29/2019 | 12.72      | 237,000.00            | 2,782.60                 | 7.90                  | 237,000                 |                          |                       |                         | 237,000       |
| 3/30/2019 | 11.39      | 156,000.00            | 2,787.80                 | 5.20                  | 156,000                 |                          |                       |                         | 156,000       |
| 3/31/2019 | 13.68      | 324,000.00            | 2,798.60                 | 10.80                 | 324,000                 |                          |                       |                         | 324,000       |
| 4/1/2019  | 11.57      | 159,000.00            | 2,803.90                 | 5.30                  | 159,000                 |                          |                       |                         | 159,000       |
| 4/2/2019  | 13.70      | 306,000.00            | 2,814.10                 | 10.20                 | 306,000                 |                          |                       |                         | 306,000       |
| 4/3/2019  | 11.68      | 165,000.00            | 2,819.60                 | 5.50                  | 165,000                 |                          |                       |                         | 165,000       |
| 4/4/2019  | 12.20      | 222,000.00            | 2,827.00                 | 7.40                  | 222,000                 |                          |                       |                         | 222,000       |
| 4/5/2019  | 12.75      | 243,000.00            | 2,835.10                 | 8.10                  | 243,000                 |                          |                       |                         | 243,000       |
| 4/6/2019  | 11.19      | 168,000.00            | 2,840.70                 | 5.60                  | 168,000                 |                          |                       |                         | 168,000       |
| 4/7/2019  | 13.64      | 300,000.00            | 2,850.70                 | 10.00                 | 300,000                 |                          |                       |                         | 300,000       |
| 4/8/2019  | 11.27      | 159,000.00            | 2,856.00                 | 5.30                  | 159,000                 |                          |                       |                         | 159,000       |
| 4/9/2019  | 11.45      | 240,000.00            | 2,864.00                 | 8.00                  | 240,000                 |                          |                       |                         | 240,000       |
| 4/10/2019 | 12.70      | 198,000.00            | 2,870.60                 | 6.60                  | 198,000                 |                          |                       |                         | 198,000       |
| 4/11/2019 | 12.25      | 165,000.00            | 2,876.10                 | 5.50                  | 165,000                 |                          |                       |                         | 165,000       |
| 4/12/2019 | 12.46      | 231,000.00            | 2,883.80                 | 7.70                  | 231,000                 |                          |                       |                         | 231,000       |
| 4/13/2019 | 8.21       | 84,000.00             | 2,886.60                 | 2.80                  | 84,000                  |                          |                       |                         | 84,000        |
| 4/14/2019 | 10.19      | 321,000.00            | 2,897.30                 | 10.70                 | 321,000                 |                          |                       |                         | 321,000       |
| 4/15/2019 | 14.80      | 504,000.00            | 2,914.10                 | 16.80                 | 504,000                 |                          |                       |                         | 504,000       |
| 4/16/2019 | 12.63      | 111,000.00            | 2,917.80                 | 3.70                  | 111,000                 |                          |                       |                         | 111,000       |
| 4/17/2019 | 14.97      | 429.000.00            | 2,932.10                 | 14.30                 | 429,000                 |                          |                       |                         | 429,000       |
| 4/18/2019 | 12.83      | 99,000.00             | 2,935.40                 | 3.30                  | 99,000                  |                          |                       |                         | 99,000        |
| 4/19/2019 | 12.80      | 183,000.00            | 2,941.50                 | 6.10                  | 183,000                 |                          |                       |                         | 183,000       |
| 4/20/2019 | 13.12      | 174,000.00            | 2,947.30                 | 5.80                  | 174,000                 |                          |                       |                         | 174,000       |
| 4/21/2019 | 12.90      | 213,000.00            | 2,954.40                 | 7.10                  | 213,000                 |                          |                       |                         | 213,000       |
| 4/22/2019 | 13.04      | 180,000.00            | 2,960.40                 | 6.00                  | 180,000                 |                          |                       |                         | 180,000       |
| 4/23/2019 | 13.38      | 189,000.00            | 2,966.70                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 4/24/2019 | 13.81      | 195,000.00            | 2,973.20                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 4/25/2019 | 13.69      | 162,000.00            | 2,978.60                 | 5.40                  | 162,000                 |                          |                       |                         | 162,000       |
| 4/26/2019 | 12.18      | 144,000.00            | 2,983.40                 | 4.80                  | 144,000                 |                          |                       |                         | 144,000       |
| 4/27/2019 | 13.66      | 288,000.00            | 2,993.00                 | 9.60                  | 288,000                 |                          |                       |                         | 288,000       |
| 4/28/2019 | 12.44      | 93,000.00             | 2,996.10                 | 3.10                  | 93,000                  |                          |                       |                         | 93,000        |
| 4/29/2019 | 12.44      | 195,000.00            | 3,002.60                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 4/30/2019 | 12.80      | 189,000.00            | 3,002.00                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 5/1/2019  | 12.00      | 189,000.00            | 3,015.20                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 5/2/2019  | 13.18      | 183,000.00            | 3,021.30                 | 6.10                  | 183,000                 |                          |                       |                         | 183,000       |
| 5/3/2019  | 13.13      | 192,000.00            | 3,027.70                 | 6.40                  | 192,000                 |                          |                       |                         | 192,000       |
| 5/4/2019  | 13.48      | 192,000.00            | 3,034.10                 | 6.40                  | 192,000                 |                          |                       |                         | 192,000       |
| 5/5/2019  | 13.52      | 192,000.00            | 3,040.50                 | 6.40                  | 192,000                 |                          |                       |                         | 192,000       |
| 5/6/2019  | 13.11      | 195,000.00            | 3,047.00                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 5/7/2019  | 13.11      | 189,000.00            | 3,053.30                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 5/8/2019  | 13.40      | 189,000.00            | 3,059.60                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 5/9/2019  | 13.40      | 189,000.00            | 3,065.90                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 5/9/2019  | 13.19      | 109,000.00            | 3,003.90                 | 0.30                  | 109,000                 | j                        |                       |                         | 109,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 5/10/2019 | 13.39      | 189,000.00            | 3,072.20                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 5/11/2019 | 13.53      | 189,000.00            | 3,078.50                 | 6.30                  | 189,000                 |                          |                       |                         | 189,000       |
| 5/12/2019 | 13.12      | 183,000.00            | 3,085.00                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 5/13/2019 | 12.83      | 201,000.00            | 3,091.70                 | 6.70                  | 201,000                 |                          |                       |                         | 201,000       |
| 5/14/2019 | 12.31      | 195,000.00            | 3,098.20                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 5/15/2019 | 12.19      | 186,000.00            | 3,104.70                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 5/16/2019 | 12.03      | 207,000.00            | 3,111.60                 | 6.90                  | 207,000                 |                          |                       |                         | 207,000       |
| 5/17/2019 | 11.99      | 198,000.00            | 3,118.20                 | 6.60                  | 198,000                 |                          |                       |                         | 198,000       |
| 5/18/2019 | 13.25      | 297,000.00            | 3,128.10                 | 9.90                  | 297,000                 |                          |                       |                         | 297,000       |
| 5/19/2019 | 13.63      | 195,000.00            | 3,134.60                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 5/20/2019 | 12.34      | 93,000.00             | 3,137.70                 | 3.10                  | 93,000                  |                          |                       |                         | 93,000        |
| 5/21/2019 | 12.54      | 195,000.00            | 3,144.20                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 5/22/2019 | 12.60      | 186,000.00            | 3,150.40                 | 6.20                  | 186,000                 |                          |                       |                         | 186,000       |
| 5/23/2019 | 12.68      | 192,000.00            | 3,156.80                 | 6.40                  | 192,000                 |                          |                       |                         | 192,000       |
| 5/24/2019 | 12.30      | 195,000.00            | 3,163.30                 | 6.50                  | 195,000                 |                          |                       |                         | 195,000       |
| 5/25/2019 | 12.95      | 252,000.00            | 3,171.70                 | 8.40                  | 252,000                 |                          |                       |                         | 252,000       |
| 5/26/2019 | 13.81      | 270,000.00            | 3,180.70                 | 9.00                  | 270,000                 |                          |                       |                         | 270,000       |
| 5/27/2019 | 11.62      | 132,000.00            | 3,185.10                 | 4.40                  | 132,000                 |                          |                       |                         | 132,000       |
| 5/28/2019 | 13.19      | 243,000.00            | 3,193.20                 | 8.10                  | 243,000                 |                          |                       |                         | 243,000       |
| 5/29/2019 | 11.92      | 156,000.00            | 3,198.40                 | 5.20                  | 156,000                 |                          |                       |                         | 156,000       |
| 5/30/2019 | 12.50      | 228,000.00            | 3,206.00                 | 7.60                  | 228,000                 |                          |                       |                         | 228,000       |
| 5/31/2019 | 13.11      | 255,000.00            | 3,214.50                 | 8.50                  | 255,000                 |                          |                       |                         | 255,000       |
| 6/1/2019  | 12.33      | 180,000.00            | 3,220.50                 | 6.00                  | 180,000                 |                          |                       |                         | 180,000       |
| 6/2/2019  | 12.17      | 282,000.00            | 3,229.90                 | 9.40                  | 282,000                 |                          |                       |                         | 282,000       |
| 6/3/2019  | 13.47      | 309,000.00            | 3,240.20                 | 10.30                 | 309,000                 |                          |                       |                         | 309,000       |
| 6/4/2019  | 12.86      | 231,000.00            | 3,247.90                 | 7.70                  | 231,000                 |                          |                       |                         | 231,000       |
| 6/5/2019  | 12.24      | 282,000.00            | 3,257.30                 | 9.40                  | 282,000                 |                          |                       |                         | 282,000       |
| 6/6/2019  | 12.22      | 202,000.00            | 3,268.10                 | 10.80                 | 324,000                 |                          |                       |                         | 324,000       |
| 6/7/2019  | 11.89      |                       | 3,276.60                 | 8.50                  | 255,000                 |                          |                       |                         | 255,000       |
| 6/8/2019  | 12.48      |                       | 3,285.20                 | 8.60                  | 258,000                 |                          |                       |                         | 258,000       |
| 6/9/2019  | 13.90      |                       | 3,294.50                 | 9.30                  | 279,000                 |                          |                       |                         | 279,000       |
| 6/10/2019 | 13.17      |                       | 3,302.30                 | 7.80                  | 234,000                 |                          |                       |                         | 234,000       |
| 6/11/2019 | 12.26      |                       | 3,309.90                 | 7.60                  | 228,000                 |                          |                       |                         | 228,000       |
| 6/12/2019 | 12.14      |                       | 3,319.20                 | 9.30                  | 279,000                 |                          |                       |                         | 279,000       |
| 6/13/2019 | 12.31      |                       | 3,330.40                 | 11.20                 | 336,000                 |                          |                       |                         | 336,000       |
| 6/14/2019 | 12.68      |                       | 3,342.10                 | 11.70                 | 351,000                 |                          |                       |                         | 351,000       |
| 6/15/2019 | 13.29      |                       | 3,356.10                 | 14.00                 | 420,000                 |                          |                       |                         | 420,000       |
| 6/16/2019 | 12.61      |                       | 3,363.70                 | 7.60                  | 228,000                 |                          |                       |                         | 228,000       |
| 6/17/2019 | 12.85      |                       | 3,375.40                 | 11.70                 | 351,000                 |                          |                       |                         | 351,000       |
| 6/18/2019 | 12.97      |                       | 3,387.50                 | 12.10                 | 363,000                 |                          |                       |                         | 363,000       |
| 6/19/2019 | 12.28      |                       | 3,397.70                 | 10.20                 | 306,000                 | <del> </del>             |                       |                         | 306,000       |
| 6/20/2019 | 12.47      |                       | 3,408.90                 | 11.20                 | 336,000                 |                          |                       |                         | 336,000       |
| 6/21/2019 | 12.47      |                       | 3,418.10                 | 9.20                  | 276,000                 | <del> </del>             |                       |                         | 276,000       |
| 6/22/2019 | 13.79      |                       | 3,431.00                 | 12.90                 | 387,000                 |                          |                       |                         | 387,000       |
| 6/23/2019 | 12.74      |                       | 3,438.80                 | 7.80                  | 234,000                 | 1                        |                       |                         | 234,000       |
| 6/24/2019 | 11.77      |                       | 3,445.70                 | 6.90                  | 207,000                 |                          |                       |                         | 207,000       |
| 6/25/2019 | 11.95      |                       | 3,454.00                 | 8.30                  | 249,000                 |                          |                       |                         | 249,000       |
| 6/26/2019 | 11.73      |                       | 3,464.50                 | 10.50                 | 315,000                 | 1                        |                       |                         | 315,000       |
| 6/27/2019 | 12.62      |                       | 3,476.40                 | 11.90                 | 357,000                 |                          |                       |                         | 357,000       |
| 6/28/2019 | 13.73      |                       | 3,488.20                 | 11.80                 | 357,000                 |                          |                       |                         | 354,000       |
| 6/29/2019 | 13.69      |                       | 3,501.40                 | 13.20                 | 396,000                 | 1                        |                       |                         | 396,000       |
|           |            |                       | ļ                        |                       |                         |                          |                       |                         | +             |
| 6/30/2019 | 12.81      |                       | 3,509.10                 | 7.70                  | 231,000                 |                          |                       | 1                       | 231,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 7/1/2019  | 13.93      |                       | 3,520.10                 | 11.00                 | 330,000                 |                          |                       |                         | 330,000       |
| 7/2/2019  | 11.49      |                       | 3,528.00                 | 7.90                  | 237,000                 |                          |                       |                         | 237,000       |
| 7/3/2019  | 13.38      |                       | 3,543.10                 | 15.10                 | 453,000                 |                          |                       |                         | 453,000       |
| 7/4/2019  | 13.27      |                       | 3,552.30                 | 9.20                  | 276,000                 |                          |                       |                         | 276,000       |
| 7/5/2019  | 12.89      |                       | 3,561.50                 | 9.20                  | 276,000                 |                          |                       |                         | 276,000       |
| 7/6/2019  | 13.64      |                       | 3,572.70                 | 11.20                 | 336,000                 |                          |                       |                         | 336,000       |
| 7/7/2019  | 12.96      |                       | 3,581.00                 | 8.30                  | 249,000                 |                          |                       |                         | 249,000       |
| 7/8/2019  | 12.26      |                       | 3,588.80                 | 7.80                  | 234,000                 |                          |                       |                         | 234,000       |
| 7/9/2019  | 11.74      |                       | 3,597.20                 | 8.40                  | 252,000                 |                          |                       |                         | 252,000       |
| 7/10/2019 | 11.71      |                       | 3,606.70                 | 9.50                  | 285,000                 |                          |                       |                         | 285,000       |
| 7/11/2019 | 11.80      |                       | 3,616.70                 | 10.00                 | 300,000                 |                          |                       |                         | 300,000       |
| 7/12/2019 | 12.76      |                       | 3,629.80                 | 13.10                 | 393,000                 |                          |                       |                         | 393,000       |
| 7/13/2019 | 13.41      |                       | 3,640.70                 | 10.90                 | 327,000                 |                          |                       |                         | 327,000       |
| 7/14/2019 | 13.84      |                       | 3,651.20                 | 10.50                 | 315,000                 |                          |                       |                         | 315,000       |
| 7/15/2019 | 12.59      |                       | 3,658.20                 | 7.00                  | 210,000                 |                          |                       |                         | 210,000       |
| 7/16/2019 | 11.64      |                       | 3,666.00                 | 7.80                  | 234,000                 |                          |                       |                         | 234,000       |
| 7/17/2019 | 12.30      |                       | 3,677.90                 | 11.90                 | 357,000                 |                          |                       |                         | 357,000       |
| 7/18/2019 | 13.02      |                       | 3,686.80                 | 8.90                  | 267,000                 |                          |                       |                         | 267,000       |
| 7/19/2019 | 11.14      |                       | 3,695.20                 | 8.40                  | 252,000                 |                          |                       |                         | 252,000       |
| 7/20/2019 | 13.02      |                       | 3,710.30                 | 15.10                 | 453,000                 |                          |                       |                         | 453,000       |
| 7/21/2019 | 12.85      |                       | 3,720.50                 | 10.20                 | 306,000                 |                          |                       |                         | 306,000       |
| 7/22/2019 | 11.43      |                       | 3,730.40                 | 9.90                  | 297,000                 |                          |                       |                         | 297,000       |
| 7/23/2019 | 11.61      |                       | 3,743.00                 | 12.60                 | 378,000                 |                          |                       |                         | 378,000       |
| 7/24/2019 | 13.00      |                       | 3,760.10                 | 17.10                 | 513,000                 |                          |                       |                         | 513,000       |
| 7/25/2019 | 11.47      |                       | 3,768.80                 | 8.70                  | 261,000                 |                          |                       |                         | 261,000       |
| 7/26/2019 | 11.92      |                       | 3,785.00                 | 16.20                 | 486,000                 |                          |                       |                         | 486,000       |
| 7/27/2019 | 12.13      |                       | 3,800.00                 | 15.00                 | 450,000                 |                          |                       |                         | 450,000       |
| 7/28/2019 | 12.58      |                       | 3,815.20                 | 15.20                 | 456,000                 |                          |                       |                         | 456,000       |
| 7/29/2019 | 11.79      |                       | 3,827.00                 | 11.80                 | 354,000                 |                          |                       |                         | 354,000       |
| 7/30/2019 | 11.94      |                       | 3,841.70                 | 14.70                 | 441,000                 |                          |                       |                         | 441,000       |
| 7/31/2019 | 11.65      |                       | 3,854.20                 | 12.50                 | 375,000                 |                          |                       |                         | 375,000       |
| 8/1/2019  | 11.58      |                       | 3,869.00                 | 14.80                 | 444,000                 |                          |                       |                         | 444,000       |
| 8/2/2019  | 12.15      |                       | 3,884.00                 | 15.00                 | 450,000                 |                          |                       |                         | 450,000       |
| 8/3/2019  | 13.78      |                       | 3,900.20                 | 16.20                 | 486,000                 |                          |                       |                         | 486,000       |
| 8/4/2019  | 13.08      |                       | 3,911.80                 | 11.60                 | 348,000                 |                          |                       |                         | 348,000       |
| 8/5/2019  | 11.87      |                       | 3,922.50                 | 10.70                 | 321,000                 |                          |                       |                         | 321,000       |
| 8/6/2019  | 11.54      |                       | 3,935.30                 | 12.80                 | 384,000                 |                          |                       |                         | 384,000       |
| 8/7/2019  | 11.58      |                       | 3,950.20                 | 14.90                 | 447.000                 |                          |                       |                         | 447,000       |
| 8/8/2019  | 11.47      |                       | 3,962.70                 | 12.50                 | 375,000                 |                          |                       |                         | 375,000       |
| 8/9/2019  | 11.58      |                       | 3,976.80                 | 14.10                 | 423,000                 |                          |                       |                         | 423,000       |
| 8/10/2019 | 13.41      |                       | 3,991.20                 | 14.40                 | 432,000                 |                          |                       |                         | 432,000       |
| 8/11/2019 | 13.47      |                       | 4,000.00                 | 8.80                  | 264,000                 |                          |                       |                         | 264,000       |
| 8/12/2019 | 12.05      |                       | 4,007.30                 | 7.30                  | 219,000                 |                          |                       |                         | 219,000       |
| 8/13/2019 | 11.88      |                       | 4,016.40                 | 9.10                  | 273,000                 |                          |                       |                         | 273,000       |
| 8/14/2019 | 12.36      |                       | 4,027.00                 | 10.60                 | 318,000                 |                          |                       |                         | 318,000       |
| 8/15/2019 | 12.08      |                       | 4,038.70                 | 11.70                 | 351,000                 |                          |                       |                         | 351,000       |
| 8/16/2019 | 12.79      |                       | 4,051.20                 | 12.50                 | 375,000                 |                          |                       |                         | 375,000       |
| 8/17/2019 | 13.53      |                       | 4,062.50                 | 11.30                 | 339,000                 | <del> </del>             |                       | <del> </del>            | 339,000       |
| 8/18/2019 | 11.58      |                       | 4,068.40                 | 5.90                  | 177,000                 |                          |                       |                         | 177,000       |
| 8/19/2019 | 12.13      |                       | 4,000.40                 | 12.90                 | 387,000                 |                          |                       |                         | 387,000       |
| 8/20/2019 | 11.86      |                       | 4,001.30                 | 10.40                 | 312,000                 |                          |                       |                         | 312,000       |
| 8/21/2019 |            |                       | 4,105.30                 |                       | 1                       |                          |                       |                         | 408,000       |
| 0/27/2019 | 12.05      |                       | 4,105.30                 | 13.60                 | 408,000                 | l                        |                       |                         | 408,000       |

| al/Day<br>culated) | Total Gal/Day  297,000 333,000 357,000 312,000 225,000 687,000 252,000 327,000 456,000 354,000 300,000 297,000 441,000 309,000 456,000 243,000                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| culated)           | 333,000<br>357,000<br>312,000<br>225,000<br>687,000<br>252,000<br>327,000<br>456,000<br>333,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000 |
|                    | 333,000<br>357,000<br>312,000<br>225,000<br>687,000<br>252,000<br>327,000<br>456,000<br>333,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000 |
|                    | 357,000<br>312,000<br>225,000<br>687,000<br>252,000<br>327,000<br>456,000<br>354,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000            |
|                    | 312,000<br>225,000<br>687,000<br>252,000<br>327,000<br>456,000<br>354,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                       |
|                    | 225,000<br>687,000<br>252,000<br>327,000<br>456,000<br>354,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                                  |
|                    | 687,000<br>252,000<br>327,000<br>456,000<br>354,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                                             |
|                    | 252,000<br>327,000<br>456,000<br>354,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                                                        |
|                    | 327,000<br>456,000<br>354,000<br>333,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                                                        |
|                    | 456,000<br>354,000<br>333,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                                                                   |
|                    | 354,000<br>333,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                                                                              |
|                    | 333,000<br>300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                                                                                         |
|                    | 300,000<br>297,000<br>441,000<br>309,000<br>456,000<br>243,000                                                                                                    |
|                    | 297,000<br>441,000<br>309,000<br>456,000<br>243,000                                                                                                               |
|                    | 441,000<br>309,000<br>456,000<br>243,000                                                                                                                          |
|                    | 309,000<br>456,000<br>243,000                                                                                                                                     |
|                    | 456,000<br>243,000                                                                                                                                                |
|                    | 243,000                                                                                                                                                           |
|                    |                                                                                                                                                                   |
|                    |                                                                                                                                                                   |
|                    | 297,000                                                                                                                                                           |
|                    | 285,000                                                                                                                                                           |
|                    | 288,000                                                                                                                                                           |
|                    | 288,000                                                                                                                                                           |
|                    | 297,000                                                                                                                                                           |
|                    | 267,000                                                                                                                                                           |
|                    | 246,000                                                                                                                                                           |
|                    | 297,000                                                                                                                                                           |
|                    | 186,000                                                                                                                                                           |
|                    | 153,000                                                                                                                                                           |
|                    | 126,000                                                                                                                                                           |
|                    | 111,000                                                                                                                                                           |
|                    | 132,000                                                                                                                                                           |
|                    | 66,000                                                                                                                                                            |
|                    | 96,000                                                                                                                                                            |
|                    | 171,000                                                                                                                                                           |
|                    | 0                                                                                                                                                                 |
|                    | 102,000                                                                                                                                                           |
|                    | 18,000                                                                                                                                                            |
|                    | 264,000                                                                                                                                                           |
|                    | 0                                                                                                                                                                 |
|                    | 0                                                                                                                                                                 |
|                    | 0                                                                                                                                                                 |
|                    | 318,000                                                                                                                                                           |
|                    | 0                                                                                                                                                                 |
|                    | 0                                                                                                                                                                 |
|                    | 93,000                                                                                                                                                            |
|                    | 0                                                                                                                                                                 |
|                    | 0                                                                                                                                                                 |
|                    | 96,000                                                                                                                                                            |
|                    | 0                                                                                                                                                                 |
|                    | 111,000                                                                                                                                                           |
|                    | 123,000                                                                                                                                                           |
|                    | 234,000                                                                                                                                                           |
|                    | 120,000                                                                                                                                                           |
|                    |                                                                                                                                                                   |

|            |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|------------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date       | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 10/13/2019 | 13.74      | 218,700.00            | 4,472.20                 | 8.10                  | 243,000                 |                          |                       |                         | 243,000       |
| 10/14/2019 | 12.29      | 105,300.00            | 4,476.10                 | 3.90                  | 117,000                 |                          |                       |                         | 117,000       |
| 10/15/2019 | 11.10      | 108,000.00            | 4,480.10                 | 4.00                  | 120,000                 |                          |                       |                         | 120,000       |
| 10/16/2019 | 13.23      | 213,300.00            | 4,488.00                 | 7.90                  | 237,000                 |                          |                       |                         | 237,000       |
| 10/17/2019 | 12.04      | 108,000.00            | 4,492.00                 | 4.00                  | 120,000                 |                          |                       |                         | 120,000       |
| 10/18/2019 | 13.74      | 202,500.00            | 4,499.50                 | 7.50                  | 225,000                 |                          |                       |                         | 225,000       |
| 10/19/2019 | 12.20      | 113,400.00            | 4,503.70                 | 4.20                  | 126,000                 |                          |                       |                         | 126,000       |
| 10/20/2019 | 12.59      | 159,300.00            | 4,509.60                 | 5.90                  | 177,000                 |                          |                       |                         | 177,000       |
| 10/21/2019 | 13.23      |                       | 4,515.70                 | 6.10                  | 183,000                 |                          |                       |                         | 183,000       |
| 10/22/2019 | 12.55      |                       | 4,519.70                 | 4.00                  | 120,000                 |                          |                       |                         | 120,000       |
| 10/23/2019 | 12.54      |                       | 4,525.40                 | 5.70                  | 171,000                 |                          |                       |                         | 171,000       |
| 10/24/2019 | 13.07      |                       | 4,531.50                 | 6.10                  | 183,000                 |                          |                       |                         | 183,000       |
| 10/25/2019 | 11.74      |                       | 4,535.30                 | 3.80                  | 114,000                 |                          |                       |                         | 114,000       |
| 10/26/2019 | 13.16      |                       | 4,543.10                 | 7.80                  | 234,000                 |                          |                       |                         | 234,000       |
| 10/27/2019 | 11.64      |                       | 4,547.00                 | 3.90                  | 117,000                 |                          |                       |                         | 117,000       |
| 10/28/2019 | 13.57      |                       | 4,554.10                 | 7.10                  | 213,000                 |                          |                       |                         | 213,000       |
| 10/29/2019 | 12.73      |                       | 4,555.30                 | 1.20                  | 36,000                  |                          |                       |                         | 36,000        |
| 10/30/2019 | 11.79      |                       | 4,559.60                 | 4.30                  | 129,000                 |                          |                       |                         | 129,000       |
| 10/31/2019 | 13.48      |                       | 4,567.40                 | 7.80                  | 234,000                 |                          |                       |                         | 234,000       |
| 11/1/2019  | 11.54      |                       | 4,571.40                 | 4.00                  | 120,000                 |                          |                       |                         | 120,000       |
| 11/2/2019  | 9.13       |                       | 4,575.50                 | 4.10                  | 123,000                 |                          |                       |                         | 123,000       |
| 11/3/2019  | 11.72      |                       | 4,583.60                 | 8.10                  | 243,000                 |                          |                       |                         | 243,000       |
| 11/4/2019  | 13.40      |                       | 4,591.50                 | 7.90                  | 237,000                 |                          |                       |                         | 237,000       |
| 11/5/2019  | 11.62      |                       | 4,596.20                 | 4.70                  | 141,000                 |                          |                       |                         | 141,000       |
| 11/6/2019  | 12.72      |                       | 4,603.90                 | 7.70                  | 231,000                 |                          |                       |                         | 231,000       |
| 11/7/2019  | 11.57      |                       | 4,608.20                 | 4.30                  | 129,000                 |                          |                       |                         | 129,000       |
| 11/8/2019  | 13.30      |                       | 4,616.00                 | 7.80                  | 234,000                 |                          |                       |                         | 234,000       |
| 11/9/2019  | 11.63      |                       | 4,620.10                 | 4.10                  | 123,000                 |                          |                       |                         | 123,000       |
| 11/10/2019 | 13.32      |                       | 4,628.00                 | 7.90                  | 237,000                 |                          |                       |                         | 237,000       |
| 11/11/2019 | 13.21      |                       | 4,634.90                 | 6.90                  | 207,000                 |                          |                       |                         | 207,000       |
| 11/12/2019 | 13.66      |                       | 4,640.20                 | 5.30                  | 159,000                 |                          |                       |                         | 159,000       |
| 11/13/2019 | 12.34      |                       | 4,644.10                 | 3.90                  | 117,000                 |                          |                       |                         | 117,000       |
| 11/14/2019 | 13.17      |                       | 4,651.00                 | 6.90                  | 207,000                 |                          |                       |                         | 207,000       |
| 11/15/2019 | 12.51      |                       | 4,656.00                 | 5.00                  | 150,000                 |                          |                       |                         | 150,000       |
| 11/16/2019 | 12.70      |                       | 4,662.20                 | 6.20                  | 186,000                 |                          |                       |                         | 186,000       |
| 11/17/2019 | 12.71      |                       | 4,668.00                 | 5.80                  | 174,000                 |                          |                       |                         | 174,000       |
| 11/18/2019 | 11.67      |                       | 4,672.40                 | 4.40                  | 132,000                 |                          |                       |                         | 132,000       |
| 11/19/2019 | 14.12      |                       | 4,675.50                 | 3.10                  | 93,000                  |                          |                       |                         | 93,000        |
| 11/20/2019 | 14.14      |                       | 4,675.50                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/21/2019 | 14.11      |                       | 4,675.60                 | 0.10                  | 3,000                   |                          |                       |                         | 3,000         |
| 11/22/2019 | 14.07      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/23/2019 | 13.98      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/24/2019 | 14.01      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/25/2019 | 13.72      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/26/2019 | 13.64      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/27/2019 | 13.61      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/28/2019 | 13.42      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/29/2019 | 13.38      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 11/30/2019 | 13.04      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/1/2019  | 12.85      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/1/2019  | 12.63      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/3/2019  | 12.73      |                       | 4,675.60                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/3/2019  | 12.13      | l                     | 4,075.00                 | 0.00                  | U                       | Ì                        |                       |                         | U             |

|            |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|------------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date       | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 12/4/2019  | 12.82      |                       | 4,675.80                 | 0.20                  | 6,000                   |                          |                       |                         | 6,000         |
| 12/5/2019  | 12.87      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/6/2019  | 12.69      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/7/2019  | 12.60      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/8/2019  | 12.70      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/9/2019  | 12.30      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/10/2019 | 12.38      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/11/2019 | 12.43      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/12/2019 | 12.53      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/13/2019 | 12.57      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/14/2019 | 12.62      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/15/2019 | 12.61      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/16/2019 | 12.36      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/17/2019 | 12.49      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/18/2019 | 12.46      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/19/2019 | 12.46      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/20/2019 | 12.50      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/21/2019 | 12.59      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/22/2019 | 12.52      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/23/2019 | 12.41      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/24/2019 | 12.41      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/25/2019 | 12.43      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/26/2019 | 12.50      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/27/2019 | 12.16      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/28/2019 | 11.68      |                       | 4,675.80                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/29/2019 | 13.60      |                       | 4,678.70                 | 2.90                  | 87,000                  |                          |                       |                         | 87,000        |
| 12/30/2019 | 13.39      |                       | 4,678.70                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 12/31/2019 | 13.01      |                       | 4,678.70                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 1/1/2020   | 12.70      |                       | 4,678.70                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 1/2/2020   | 12.22      |                       | 4,678.70                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 1/3/2020   | 12.15      |                       | 4,678.70                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 1/4/2020   | 12.19      |                       | 4,678.70                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 1/5/2020   | 11.79      |                       | 4,678.70                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 1/6/2020   | 14.08      |                       | 4,681.50                 | 2.80                  | 84,000                  |                          |                       |                         | 84,000        |
| 1/7/2020   | 14.16      |                       | 4,681.50                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 1/8/2020   | 14.25      |                       | 4,681.50                 | 0.00                  | 0                       |                          |                       |                         | 0             |
| 1/9/2020   | 13.85      |                       | 4,685.40                 | 3.90                  | 117,000                 | 37,699.60                |                       |                         | 117,000       |
| 1/10/2020  | 13.66      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/11/2020  | 13.58      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/12/2020  | 13.48      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/13/2020  | 13.27      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/14/2020  | 13.29      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/15/2020  | 13.36      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/16/2020  | 13.25      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/17/2020  | 13.30      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/18/2020  | 13.38      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/19/2020  | 13.07      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/20/2020  | 12.97      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/20/2020  | 12.91      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/21/2020  | 12.95      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/23/2020  | 12.85      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/23/2020  |            |                       | 4,685.40                 |                       | 0                       | 37,699.60                |                       | 0                       | 0             |
| 1/24/2020  | 12.90      |                       | 4,000.40                 | 0.00                  | U                       | J1,099.0U                | 0.00                  | U                       | U             |

|            |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|------------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date       | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 1/25/2020  | 12.93      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/26/2020  | 12.52      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/27/2020  | 12.37      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/28/2020  | 12.33      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/29/2020  | 12.34      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/30/2020  | 12.11      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/31/2020  | 12.07      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/1/2020   | 11.97      |                       | 4,685.40                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/2/2020   | 14.02      |                       | 4,688.20                 | 2.80                  | 84,000                  | 37,699.60                | 0.00                  | 0                       | 84,000        |
| 2/3/2020   | 13.74      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/4/2020   | 13.55      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/5/2020   | 13.71      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/6/2020   | 13.90      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/7/2020   | 13.86      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/8/2020   | 13.90      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/9/2020   | 13.74      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/10/2020  | 13.11      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/11/2020  | 12.95      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/12/2020  | 12.88      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/13/2020  | 13.02      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/14/2020  | 13.20      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/15/2020  | 13.48      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/16/2020  | 13.53      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/17/2020  | 13.54      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/18/2020  | 13.73      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/19/2020  | 13.93      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/20/2020  | 14.10      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/21/2020  | 14.27      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/22/2020  | 14.19      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/23/2020  | 13.52      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/24/2020  | 13.41      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/25/2020  | 13.19      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/26/2020  | 12.93      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/27/2020  | 12.84      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/28/2020  | 12.89      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/29/2020  | 12.96      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/1/2020   | 12.76      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/2/2020   | 12.80      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/3/2020   | 12.93      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/4/2020   | 13.17      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/5/2020   | 13.12      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/6/2020   | 13.16      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/7/2020   | 13.29      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/8/2020   | 13.26      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/9/2020   | 13.24      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/10/2020  | 13.37      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/11/2020  | 13.50      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/12/2020  | 13.53      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/12/2020  | 13.65      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/13/2020  | 13.77      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/15/2020  | 13.71      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/16/2020  |            |                       | 4,688.20                 |                       | 0                       | 37,699.60                |                       | 0                       |               |
| 3/ 10/2020 | 13.52      |                       | 4,000.20                 | 0.00                  | l u                     | J1,099.0U                | 0.00                  | U                       | 0             |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 3/17/2020 | 13.57      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/18/2020 | 13.48      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/19/2020 | 13.29      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/20/2020 | 13.17      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/21/2020 | 13.08      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/22/2020 | 12.95      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/23/2020 | 12.96      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/24/2020 | 12.82      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/25/2020 | 12.64      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/26/2020 | 12.53      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/27/2020 | 12.58      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/28/2020 | 12.70      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/29/2020 | 12.74      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/30/2020 | 13.09      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/31/2020 | 13.29      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/1/2020  | 13.51      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/2/2020  | 13.80      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/3/2020  | 13.91      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/4/2020  | 14.09      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/5/2020  | 14.19      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/6/2020  | 14.51      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/7/2020  | 14.42      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/8/2020  | 14.73      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/9/2020  | 14.86      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/10/2020 | 14.97      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/11/2020 | 14.58      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/12/2020 | 13.40      |                       | 4,688.20                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 4/13/2020 | 12.43      |                       | 4,691.80                 | 3.60                  | 108,000                 | 37,699.60                | 0.00                  | 0                       | 108,000       |
| 4/14/2020 | 13.86      |                       | 4,698.50                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 4/15/2020 | 12.02      |                       | 4,701.50                 | 3.00                  | 90,000                  | 37,699.60                | 0.00                  | 0                       | 90,000        |
| 4/16/2020 | 12.29      |                       | 4,716.50                 | 15.00                 | 450,000                 | 37,699.60                | 0.00                  | 0                       | 450,000       |
| 4/17/2020 | 10.97      |                       | 4,717.60                 | 1.10                  | 33,000                  | 37,699.60                | 0.00                  | 0                       | 33,000        |
| 4/18/2020 | 13.85      |                       | 4,726.70                 | 9.10                  | 273,000                 | 37,699.60                | 0.00                  | 0                       | 273,000       |
| 4/19/2020 | 12.41      |                       | 4,729.80                 | 3.10                  | 93,000                  | 37,699.60                | 0.00                  | 0                       | 93,000        |
| 4/20/2020 | 12.89      |                       | 4,736.10                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 4/21/2020 | 13.80      |                       | 4,742.40                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 4/22/2020 | 12.36      |                       | 4,745.60                 | 3.20                  | 96,000                  | 37,699.60                | 0.00                  | 0                       | 96,000        |
| 4/23/2020 | 12.78      |                       | 4,751.80                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 4/24/2020 | 13.66      |                       | 4,758.00                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 4/25/2020 | 13.31      |                       | 4,763.60                 | 5.60                  | 168,000                 | 37,699.60                | 0.00                  | 0                       | 168,000       |
| 4/26/2020 | 12.19      |                       | 4,768.00                 | 4.40                  | 132,000                 | 37,699.60                | 0.00                  | 0                       | 132,000       |
| 4/27/2020 | 13.06      |                       | 4,774.10                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 4/28/2020 | 13.77      |                       | 4,780.10                 | 6.00                  | 180.000                 | 37,699.60                | 0.00                  | 0                       | 180,000       |
| 4/29/2020 | 12.24      |                       | 4,783.60                 | 3.50                  | 105,000                 | 37,699.60                | 0.00                  | 0                       | 105,000       |
| 4/30/2020 | 12.95      |                       | 4,790.20                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 5/1/2020  | 13.11      |                       | 4,796.40                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 5/2/2020  | 13.93      |                       | 4,802.30                 | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000       |
| 5/3/2020  | 12.06      |                       | 4,806.40                 | 4.10                  | 123,000                 | 37,699.60                | 0.00                  | 0                       | 123,000       |
| 5/4/2020  | 12.32      |                       | 4,812.80                 | 6.40                  | 192,000                 | 37,699.60                | 0.00                  | 0                       | 192,000       |
| 5/5/2020  | 13.26      |                       | 4,819.00                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 5/6/2020  | 13.52      |                       | 4,825.30                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 5/7/2020  | 12.88      |                       | 4,830.00                 | 4.70                  | 141,000                 | 37,699.60                | 0.00                  | 0                       | 141,000       |
| 3/1/2020  | 12.00      | ļ                     | 7,000.00                 | 4.70                  | 1+1,000                 | 00.660,10                | 0.00                  |                         | 1+1,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 5/8/2020  | 12.61      |                       | 4,834.90                 | 4.90                  | 147,000                 | 37,699.60                | 0.00                  | 0                       | 147,000       |
| 5/9/2020  | 13.11      |                       | 4,841.10                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 5/10/2020 | 13.78      |                       | 4,847.70                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 5/11/2020 | 12.31      |                       | 4,851.40                 | 3.70                  | 111,000                 | 37,699.60                | 0.00                  | 0                       | 111,000       |
| 5/12/2020 | 12.57      |                       | 4,857.20                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 5/13/2020 | 13.27      |                       | 4,863.50                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 5/14/2020 | 13.53      |                       | 4,869.30                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 5/15/2020 | 12.19      |                       | 4,873.20                 | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 5/16/2020 | 13.45      |                       | 4,880.20                 | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |
| 5/17/2020 | 11.87      |                       | 4,884.20                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 5/18/2020 | 13.76      |                       | 4,892.60                 | 8.40                  | 252,000                 | 37,699.60                | 0.00                  | 0                       | 252,000       |
| 5/19/2020 | 11.89      |                       | 4,896.80                 | 4.20                  | 126,000                 | 37,699.60                | 0.00                  | 0                       | 126,000       |
| 5/20/2020 | 13.88      |                       | 4,905.10                 | 8.30                  | 249,000                 | 37,699.60                | 0.00                  | 0                       | 249,000       |
| 5/21/2020 | 12.42      |                       | 4,909.10                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 5/22/2020 | 12.35      |                       | 4,914.60                 | 5.50                  | 165,000                 | 37,699.60                | 0.00                  | 0                       | 165,000       |
| 5/23/2020 | 12.22      |                       | 4,921.20                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 5/24/2020 | 13.87      |                       | 4,929.30                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 5/25/2020 | 13.35      |                       | 4,933.20                 | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 5/26/2020 | 12.21      |                       | 4,939.10                 | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000       |
| 5/27/2020 | 12.15      |                       | 4,947.00                 | 7.90                  | 237,000                 | 37,699.60                | 0.00                  | 0                       | 237,000       |
| 5/28/2020 | 12.40      |                       | 4,955.80                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 5/29/2020 | 12.93      |                       | 4,964.70                 | 8.90                  | 267,000                 | 37,699.60                | 0.00                  | 0                       | 267,000       |
| 5/30/2020 | 12.76      |                       | 4,974.00                 | 9.30                  | 279,000                 | 37,699.60                | 0.00                  | 0                       | 279,000       |
| 5/31/2020 | 12.29      |                       | 4,983.70                 | 9.70                  | 291,000                 | 37,699.60                | 0.00                  | 0                       | 291,000       |
| 6/1/2020  | 12.98      |                       | 4,994.30                 | 10.60                 | 318,000                 | 37,699.60                | 0.00                  | 0                       | 318,000       |
| 6/2/2020  | 13.46      |                       | 5,005.20                 | 10.90                 | 327,000                 | 37,699.60                | 0.00                  | 0                       | 327,000       |
| 6/3/2020  | 13.02      |                       | 5,015.50                 | 10.30                 | 309,000                 | 37,699.60                | 0.00                  | 0                       | 309,000       |
| 6/4/2020  | 12.95      |                       | 5,025.60                 | 10.10                 | 303,000                 | 37,699.60                | 0.00                  | 0                       | 303,000       |
| 6/5/2020  | 12.32      |                       | 5,036.20                 | 10.60                 | 318,000                 | 37,699.60                | 0.00                  | 0                       | 318,000       |
| 6/6/2020  | 11.97      |                       | 5,048.50                 | 12.30                 | 369,000                 | 37,699.60                | 0.00                  | 0                       | 369,000       |
| 6/7/2020  | 12.10      |                       | 5,057.80                 | 9.30                  | 279,000                 | 37,699.60                | 0.00                  | 0                       | 279,000       |
| 6/8/2020  | 13.79      |                       | 5,067.90                 | 10.10                 | 303,000                 | 37,699.60                | 0.00                  | 0                       | 303,000       |
| 6/9/2020  | 11.72      |                       | 5,072.30                 | 4.40                  | 132,000                 | 37,699.60                | 0.00                  | 0                       | 132,000       |
| 6/10/2020 | 12.18      |                       | 5,083.10                 | 10.80                 | 324,000                 | 37,699.60                | 0.00                  | 0                       | 324,000       |
| 6/11/2020 | 12.81      |                       | 5,092.30                 | 9.20                  | 276,000                 | 37,699.60                | 0.00                  | 0                       | 276,000       |
| 6/12/2020 | 12.62      |                       | 5,103.70                 | 11.40                 | 342,000                 | 37,699.60                | 0.00                  | 0                       | 342,000       |
| 6/13/2020 | 13.03      |                       | 5,114.70                 | 11.00                 | 330,000                 | 37,699.60                | 0.00                  | 0                       | 330,000       |
| 6/14/2020 | 12.84      |                       | 5,125.50                 | 10.80                 | 324,000                 | 37,699.60                | 0.00                  | 0                       | 324,000       |
| 6/15/2020 | 13.62      |                       | 5,136.10                 | 10.60                 | 318,000                 | 37,699.60                | 0.00                  | 0                       | 318,000       |
| 6/16/2020 | 12.67      |                       | 5,143.40                 | 7.30                  | 219,000                 | 37,699.60                | 0.00                  | 0                       | 219,000       |
| 6/17/2020 | 12.57      |                       | 5,151.30                 | 7.90                  | 237,000                 | 37,699.60                | 0.00                  | 0                       | 237,000       |
| 6/18/2020 | 13.61      |                       | 5,160.40                 | 9.10                  | 273,000                 | 37,699.60                | 0.00                  | 0                       | 273,000       |
| 6/19/2020 | 13.88      |                       | 5,170.20                 | 9.80                  | 294,000                 | 37,699.60                | 0.00                  | 0                       | 294,000       |
| 6/20/2020 | 12.43      |                       | 5,177.40                 | 7.20                  | 216,000                 | 37,699.60                | 0.00                  | 0                       | 216,000       |
| 6/21/2020 | 11.78      |                       | 5,185.50                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 6/22/2020 | 13.16      |                       | 5,195.70                 | 10.20                 | 306,000                 | 37,699.60                | 0.00                  | 0                       | 306,000       |
| 6/23/2020 | 13.57      |                       | 5,205.70                 | 10.00                 | 300,000                 | 37,699.60                | 0.00                  | 0                       | 300,000       |
| 6/24/2020 | 13.92      |                       | 5,216.80                 | 11.10                 | 333,000                 | 37,699.60                | 0.00                  | 0                       | 333,000       |
| 6/25/2020 | 13.62      |                       | 5,227.00                 | 10.20                 | 306,000                 | 37,699.60                | 0.00                  | 0                       | 306,000       |
| 6/26/2020 | 13.80      |                       | 5,237.30                 | 10.30                 | 309,000                 | 37,699.60                | 0.00                  | 0                       | 309,000       |
| 6/27/2020 | 13.89      |                       | 5,248.70                 | 11.40                 | 342,000                 | 37,699.60                | 0.00                  | 0                       | 342,000       |
| 6/28/2020 | 13.88      |                       | 5,257.30                 | 8.60                  | 258,000                 | 37,699.60                | 0.00                  | 0                       | 258,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 6/29/2020 | 12.10      |                       | 5,262.90                 | 5.60                  | 168,000                 | 37,699.60                | 0.00                  | 0                       | 168,000       |
| 6/30/2020 | 13.46      |                       | 5,272.30                 | 9.40                  | 282,000                 | 37,699.60                | 0.00                  | 0                       | 282,000       |
| 7/1/2020  | 13.32      |                       | 5,280.10                 | 7.80                  | 234,000                 | 37,699.60                | 0.00                  | 0                       | 234,000       |
| 7/2/2020  | 11.63      |                       | 5,285.90                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 7/3/2020  | 12.27      |                       | 5,295.30                 | 9.40                  | 282,000                 | 37,699.60                | 0.00                  | 0                       | 282,000       |
| 7/4/2020  | 13.18      |                       | 5,305.50                 | 10.20                 | 306,000                 | 37,699.60                | 0.00                  | 0                       | 306,000       |
| 7/5/2020  | 13.70      |                       | 5,315.00                 | 9.50                  | 285,000                 | 37,699.60                | 0.00                  | 0                       | 285,000       |
| 7/6/2020  | 13.02      |                       | 5,323.40                 | 8.40                  | 252,000                 | 37,699.60                | 0.00                  | 0                       | 252,000       |
| 7/7/2020  | 12.37      |                       | 5,332.50                 | 9.10                  | 273,000                 | 37,699.60                | 0.00                  | 0                       | 273,000       |
| 7/8/2020  | 11.55      |                       | 5,341.30                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 7/9/2020  | 12.90      |                       | 5,352.20                 | 10.90                 | 327,000                 | 37,699.60                | 0.00                  | 0                       | 327,000       |
| 7/10/2020 | 12.56      |                       | 5,364.00                 | 11.80                 | 354,000                 | 37,699.60                | 0.00                  | 0                       | 354,000       |
| 7/11/2020 | 13.03      |                       | 5,373.60                 | 9.60                  | 288,000                 | 37,699.60                | 0.00                  | 0                       | 288,000       |
| 7/12/2020 | 9.56       |                       | 5,378.50                 | 4.90                  | 147,000                 | 37,699.60                | 0.00                  | 0                       | 147,000       |
| 7/13/2020 | 12.62      |                       | 5,394.00                 | 15.50                 | 465,000                 | 37,699.60                | 0.00                  | 0                       | 465.000       |
| 7/14/2020 | 11.68      |                       | 5,403.00                 | 9.00                  | 270,000                 | 37,699.60                | 0.00                  | 0                       | 270,000       |
| 7/15/2020 | 12.44      |                       | 5,417.00                 | 14.00                 | 420,000                 | 37,699.60                | 0.00                  | 0                       | 420,000       |
| 7/16/2020 | 13.01      |                       | 5,429.60                 | 12.60                 | 378,000                 | 37,699.60                | 0.00                  | 0                       | 378,000       |
| 7/17/2020 | 12.16      |                       | 5,442.00                 | 12.40                 | 372,000                 | 37,699.60                | 0.00                  | 0                       | 372,000       |
| 7/18/2020 | 12.03      |                       | 5,453.60                 | 11.60                 | 348,000                 | 37,699.60                | 0.00                  | 0                       | 348,000       |
| 7/19/2020 | 12.45      |                       | 5,465.20                 | 11.60                 | 348,000                 | 37,699.60                | 0.00                  | 0                       | 348,000       |
| 7/20/2020 | 13.09      |                       | 5,478.70                 | 13.50                 | 405,000                 | 37,699.60                | 0.00                  | 0                       | 405,000       |
| 7/21/2020 | 13.03      |                       | 5,492.20                 | 13.50                 | 405,000                 | 37,699.60                | 0.00                  | 0                       | 405,000       |
| 7/21/2020 | 13.03      |                       | 5,506.70                 | 14.50                 | 435,000                 | 37,699.60                | 0.00                  | 0                       | 435,000       |
| 7/23/2020 | 13.26      |                       | 5,520.20                 | 13.50                 | 405,000                 | 37,699.60                | 0.00                  | 0                       | 405,000       |
| 7/24/2020 | 13.73      |                       | 5,532.10                 | 11.90                 | 357,000                 | 37,699.60                | 0.00                  | 0                       | 357,000       |
| 7/25/2020 | 13.63      |                       | 5,545.70                 | 13.60                 | 408,000                 | 37,699.60                | 0.00                  | 0                       | 408,000       |
| 7/26/2020 | 12.90      |                       | † · · · ·                | 12.50                 | <u> </u>                | 37,699.60                |                       | 0                       |               |
| 7/27/2020 | 13.10      |                       | 5,558.20<br>5,573.30     | 15.10                 | 375,000                 |                          | 0.00                  | 0                       | 375,000       |
| 7/28/2020 |            |                       | · '                      |                       | 453,000                 | 37,699.60                | 0.00                  |                         | 453,000       |
|           | 11.74      |                       | 5,585.80                 | 12.50                 | 375,000                 | 37,699.60                | 0.00                  | 0                       | 375,000       |
| 7/29/2020 | 13.19      |                       | 5,601.40                 | 15.60                 | 468,000                 | 37,699.60                | 0.00                  | 0                       | 468,000       |
| 7/30/2020 | 13.15      |                       | 5,615.30                 | 13.90                 | 417,000                 | 37,699.60                | 0.00                  | 0                       | 417,000       |
| 7/31/2020 | 13.35      |                       | 5,631.10                 | 15.80                 | 474,000                 | 37,699.60                | 0.00                  | 0                       | 474,000       |
| 8/1/2020  | 13.78      |                       | 5,644.70                 | 13.60                 | 408,000                 | 37,699.60                | 0.00                  | 0                       | 408,000       |
| 8/2/2020  | 13.63      |                       | 5,667.10                 | 22.40                 | 672,000                 | 37,699.60                | 0.00                  | 0                       | 672,000       |
| 8/3/2020  | 12.48      |                       | 5,673.30                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 8/4/2020  | 12.75      |                       | 5,688.00                 | 14.70                 | 441,000                 | 37,699.60                | 0.00                  | 0                       | 441,000       |
| 8/5/2020  | 13.67      |                       | 5,704.40                 | 16.40                 | 492,000                 | 37,699.60                | 0.00                  | 0                       | 492,000       |
| 8/6/2020  | 13.59      |                       | 5,717.30                 | 12.90                 | 387,000                 | 37,699.60                | 0.00                  | 0                       | 387,000       |
| 8/7/2020  | 13.58      |                       | 5,733.40                 | 16.10                 | 483,000                 | 37,699.60                | 0.00                  | 0                       | 483,000       |
| 8/8/2020  | 12.78      |                       | 5,743.50                 | 10.10                 | 303,000                 | 37,699.60                | 0.00                  | 0                       | 303,000       |
| 8/9/2020  | 13.57      |                       | 5,760.80                 | 17.30                 | 519,000                 | 37,699.60                | 0.00                  | 0                       | 519,000       |
| 8/10/2020 | 12.02      |                       | 5,772.20                 | 11.40                 | 342,000                 | 37,699.60                | 0.00                  | 0                       | 342,000       |
| 8/11/2020 | 13.50      |                       | 5,787.70                 | 15.50                 | 465,000                 | 37,699.60                | 0.00                  | 0                       | 465,000       |
| 8/12/2020 | 13.89      |                       | 5,802.50                 | 14.80                 | 444,000                 | 37,699.60                | 0.00                  | 0                       | 444,000       |
| 8/13/2020 | 13.14      |                       | 5,816.20                 | 13.70                 | 411,000                 | 37,699.60                | 0.00                  | 0                       | 411,000       |
| 8/14/2020 | 13.58      |                       | 5,828.10                 | 11.90                 | 357,000                 | 37,699.60                | 0.00                  | 0                       | 357,000       |
| 8/15/2020 | 13.14      |                       | 5,843.30                 | 15.20                 | 456,000                 | 37,699.60                | 0.00                  | 0                       | 456,000       |
| 8/16/2020 | 13.66      |                       | 5,857.10                 | 13.80                 | 414,000                 | 37,699.60                | 0.00                  | 0                       | 414,000       |
| 8/17/2020 | 12.42      |                       | 5,870.10                 | 13.00                 | 390,000                 | 37,699.60                | 0.00                  | 0                       | 390,000       |
| 8/18/2020 | 12.36      |                       | 5,886.30                 | 16.20                 | 486,000                 | 37,699.60                | 0.00                  | 0                       | 486,000       |
| 8/19/2020 | 13.85      |                       | 5,903.50                 | 17.20                 | 516,000                 | 37,699.60                | 0.00                  | 0                       | 516,000       |

|            |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|------------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date       | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 8/20/2020  | 13.80      |                       | 5,915.20                 | 11.70                 | 351,000                 | 37,699.60                | 0.00                  | 0                       | 351,000       |
| 8/21/2020  | 13.81      |                       | 5,930.70                 | 15.50                 | 465,000                 | 37,699.60                | 0.00                  | 0                       | 465,000       |
| 8/22/2020  | 13.95      |                       | 5,945.40                 | 14.70                 | 441,000                 | 37,699.60                | 0.00                  | 0                       | 441,000       |
| 8/23/2020  | 11.68      |                       | 5,954.50                 | 9.10                  | 273,000                 | 37,699.60                | 0.00                  | 0                       | 273,000       |
| 8/24/2020  | 13.59      |                       | 5,970.30                 | 15.80                 | 474,000                 | 37,699.60                | 0.00                  | 0                       | 474,000       |
| 8/25/2020  | 13.91      |                       | 5,984.10                 | 13.80                 | 414,000                 | 37,699.60                | 0.00                  | 0                       | 414,000       |
| 8/26/2020  | 13.67      |                       | 5,995.30                 | 11.20                 | 336,000                 | 37,699.60                | 0.00                  | 0                       | 336,000       |
| 8/27/2020  | 13.26      |                       | 6,005.60                 | 10.30                 | 309,000                 | 37,699.60                | 0.00                  | 0                       | 309,000       |
| 8/28/2020  | 13.00      |                       | 6,017.00                 | 11.40                 | 342,000                 | 37,699.60                | 0.00                  | 0                       | 342,000       |
| 8/29/2020  | 12.48      |                       | 6,026.40                 | 9.40                  | 282,000                 | 37,699.60                | 0.00                  | 0                       | 282,000       |
| 8/30/2020  | 13.05      |                       | 6,041.60                 | 15.20                 | 456,000                 | 37,699.60                | 0.00                  | 0                       | 456,000       |
| 8/31/2020  | 13.85      |                       | 6,050.70                 | 9.10                  | 273,000                 | 37,699.60                | 0.00                  | 0                       | 273,000       |
| 9/1/2020   | 13.95      |                       | 6,061.40                 | 10.70                 | 321,000                 | 37,699.60                | 0.00                  | 0                       | 321,000       |
| 9/2/2020   | 13.62      |                       | 6,071.80                 | 10.40                 | 312,000                 | 37,699.60                | 0.00                  | 0                       | 312,000       |
| 9/3/2020   | 13.14      |                       | 6,081.60                 | 9.80                  | 294,000                 | 37,699.60                | 0.00                  | 0                       | 294,000       |
| 9/4/2020   | 13.59      |                       | 6.095.30                 | 13.70                 | 411,000                 | 37,699.60                | 0.00                  | 0                       | 411,000       |
| 9/5/2020   | 13.08      |                       | 6,106.10                 | 10.80                 | 324,000                 | 37,699.60                | 0.00                  | 0                       | 324,000       |
| 9/6/2020   | 11.79      |                       | 6,116.20                 | 10.10                 | 303,000                 | 37,699.60                | 0.00                  | 0                       | 303,000       |
| 9/7/2020   | 12.44      |                       | 6,129.30                 | 13.10                 | 393,000                 | 37,699.60                | 0.00                  | 0                       | 393,000       |
| 9/8/2020   | 12.79      |                       | 6,139.80                 | 10.50                 | 315,000                 | 37,699.60                | 0.00                  | 0                       | 315,000       |
| 9/9/2020   | 13.74      |                       | 6,152.20                 | 12.40                 | 372,000                 | 37,699.60                | 0.00                  | 0                       | 372,000       |
| 9/10/2020  | 14.97      |                       | 6,165.50                 | 13.30                 | 399,000                 | 37,699.60                | 0.00                  | 0                       | 399,000       |
| 9/11/2020  | 12.26      |                       | 6,171.30                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 9/11/2020  | 12.20      |                       | 6,180.60                 | 9.30                  | 279,000                 | 37,699.60                | 0.00                  | 0                       | 279,000       |
| 9/12/2020  | 13.90      |                       | 6,189.40                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 9/13/2020  | 13.86      |                       | 6,198.80                 | 9.40                  | 282,000                 | 37,699.60                | 0.00                  | 0                       | 282,000       |
| 9/14/2020  | 13.00      |                       | 6,204.50                 | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000       |
| 9/16/2020  | 13.91      |                       |                          | 10.70                 | ,                       | 37,699.60                |                       | 0                       | 1             |
|            |            |                       | 6,215.20                 |                       | 321,000                 |                          | 0.00                  | 0                       | 321,000       |
| 9/17/2020  | 12.18      |                       | 6,221.10                 | 5.90                  | 177,000                 | 37,699.60                | 0.00                  |                         | 177,000       |
| 9/18/2020  | 11.86      |                       | 6,228.80                 | 7.70                  | 231,000                 | 37,699.60                | 0.00                  | 0                       | 231,000       |
| 9/19/2020  | 12.36      |                       | 6,239.00                 | 10.20                 | 306,000                 | 37,699.60                | 0.00                  | 0                       | 306,000       |
| 9/20/2020  | 13.33      |                       | 6,244.80                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 9/21/2020  | 12.09      |                       | 6,249.90                 | 5.10                  | 153,000                 | 37,699.60                | 0.00                  | 0                       | 153,000       |
| 9/22/2020  | 13.35      |                       | 6,258.10                 | 8.20                  | 246,000                 | 37,699.60                | 0.00                  | 0                       | 246,000       |
| 9/23/2020  | 12.22      |                       | 6,263.70                 | 5.60                  | 168,000                 | 37,699.60                | 0.00                  | 0                       | 168,000       |
| 9/24/2020  | 12.88      |                       | 6,270.80                 | 7.10                  | 213,000                 | 37,699.60                | 0.00                  | 0                       | 213,000       |
| 9/25/2020  | 12.83      |                       | 6,277.20                 | 6.40                  | 192,000                 | 37,699.60                | 0.00                  | 0                       | 192,000       |
| 9/26/2020  | 12.50      |                       | 6,283.40                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 9/27/2020  | 12.61      |                       | 6,289.30                 | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000       |
| 9/28/2020  | 12.64      |                       | 6,295.70                 | 6.40                  | 192,000                 | 37,699.60                | 0.00                  | 0                       | 192,000       |
| 9/29/2020  | 13.20      |                       | 6,302.50                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 9/30/2020  | 12.55      |                       | 6,308.00                 | 5.50                  | 165,000                 | 37,699.60                | 0.00                  | 0                       | 165,000       |
| 10/1/2020  | 12.60      |                       | 6,314.20                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 10/2/2020  | 12.65      |                       | 6,320.30                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 10/3/2020  | 11.51      |                       | 6,324.50                 | 4.20                  | 126,000                 | 37,699.60                | 0.00                  | 0                       | 126,000       |
| 10/4/2020  | 12.64      |                       | 6,332.60                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 10/5/2020  | 13.90      |                       | 6,341.30                 | 8.70                  | 261,000                 | 37,699.60                | 0.00                  | 0                       | 261,000       |
| 10/6/2020  | 12.55      |                       | 6,345.20                 | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 10/7/2020  | 12.74      |                       | 6,351.50                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 10/8/2020  | 12.65      |                       | 6,357.50                 | 6.00                  | 180,000                 | 37,699.60                | 0.00                  | 0                       | 180,000       |
| 10/9/2020  | 13.19      |                       | 6,364.10                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 10/10/2020 | 12.20      |                       | 6,369.50                 | 5.40                  | 162,000                 | 37,699.60                | 0.00                  | 0                       | 162,000       |

|            |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|------------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date       | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 10/11/2020 | 11.57      |                       | 6,373.50                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 10/12/2020 | 13.07      |                       | 6,381.40                 | 7.90                  | 237,000                 | 37,699.60                | 0.00                  | 0                       | 237,000       |
| 10/13/2020 | 11.71      |                       | 6,385.40                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 10/14/2020 | 13.73      |                       | 6,393.10                 | 7.70                  | 231,000                 | 37,699.60                | 0.00                  | 0                       | 231,000       |
| 10/15/2020 | 12.99      |                       | 6,397.20                 | 4.10                  | 123,000                 | 37,699.60                | 0.00                  | 0                       | 123,000       |
| 10/16/2020 | 12.12      |                       | 6,401.20                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 10/17/2020 | 12.74      |                       | 6,402.20                 | 1.00                  | 30,000                  | 37,699.60                | 0.00                  | 0                       | 30,000        |
| 10/18/2020 | 12.96      |                       | 6,412.40                 | 10.20                 | 306,000                 | 37,699.60                | 0.00                  | 0                       | 306,000       |
| 10/19/2020 | 11.99      |                       | 6,416.90                 | 4.50                  | 135,000                 | 37,699.60                | 0.00                  | 0                       | 135,000       |
| 10/20/2020 | 11.78      |                       | 6,421.40                 | 4.50                  | 135,000                 | 37,699.60                | 0.00                  | 0                       | 135,000       |
| 10/21/2020 | 13.27      |                       | 6,428.50                 | 7.10                  | 213,000                 | 37,699.60                | 0.00                  | 0                       | 213,000       |
| 10/22/2020 | 12.20      |                       | 6,432.20                 | 3.70                  | 111,000                 | 37,699.60                | 0.00                  | 0                       | 111,000       |
| 10/23/2020 | 12.59      |                       | 6,437.90                 | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000       |
| 10/24/2020 | 13.20      |                       | 6,443.80                 | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000       |
| 10/25/2020 | 11.77      |                       | 6,447.90                 | 4.10                  | 123,000                 | 37,699.60                | 0.00                  | 0                       | 123,000       |
| 10/26/2020 | 13.49      |                       | 6,455.20                 | 7.30                  | 219,000                 | 37,699.60                | 0.00                  | 0                       | 219,000       |
| 10/27/2020 | 12.77      |                       | 6,459.70                 | 4.50                  | 135,000                 | 37,699.60                | 0.00                  | 0                       | 135,000       |
| 10/28/2020 | 11.72      |                       | 6,463.80                 | 4.10                  | 123,000                 | 37,699.60                | 0.00                  | 0                       | 123,000       |
| 10/29/2020 | 13.74      |                       | 6,471.40                 | 7.60                  | 228,000                 | 37,699.60                | 0.00                  | 0                       | 228,000       |
| 10/30/2020 | 12.94      |                       | 6,475.40                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 10/31/2020 | 11.97      |                       | 6,479.40                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 11/1/2020  | 13.06      |                       | 6,485.90                 | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000       |
| 11/2/2020  | 13.01      |                       | 6,491.20                 | 5.30                  | 159,000                 | 37,699.60                | 0.00                  | 0                       | 159,000       |
| 11/3/2020  | 11.61      |                       | 6,495.10                 | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 11/4/2020  | 13.85      |                       | 6,502.20                 | 7.10                  | 213,000                 | 37,699.60                | 0.00                  | 0                       | 213,000       |
| 11/5/2020  | 12.51      |                       | 6,506.30                 | 4.10                  | 123,000                 | 37,699.60                | 0.00                  | 0                       | 123,000       |
| 11/6/2020  | 11.81      |                       | 6,511.30                 | 5.00                  | 150,000                 | 37,699.60                | 0.00                  | 0                       | 150,000       |
| 11/7/2020  | 13.12      |                       | 6,518.50                 | 7.20                  | 216,000                 | 37,699.60                | 0.00                  | 0                       | 216,000       |
| 11/8/2020  | 11.60      |                       | 6,522.50                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 11/9/2020  | 11.28      |                       | 6,528.60                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 11/10/2020 | 14.97      |                       | 6,552.10                 | 23.50                 | 705,000                 | 37,699.60                | 0.00                  | 0                       | 705,000       |
| 11/11/2020 | 13.52      |                       | 6,553.60                 | 1.50                  | 45,000                  | 37,699.60                | 0.00                  | 0                       | 45,000        |
| 11/12/2020 | 13.28      |                       | 6,560.80                 | 7.20                  | 216,000                 | 37,699.60                | 0.00                  | 0                       | 216,000       |
| 11/13/2020 | 12.02      |                       | 6,564.40                 | 3.60                  | 108,000                 | 37,699.60                | 0.00                  | 0                       | 108,000       |
| 11/14/2020 | 14.97      |                       | 6,583.00                 | 18.60                 | 558,000                 | 37,699.60                | 0.00                  | 0                       | 558,000       |
| 11/15/2020 | 12.15      |                       | 6,585.00                 | 2.00                  | 60,000                  | 37,699.60                | 0.00                  | 0                       | 60,000        |
| 11/16/2020 |            |                       |                          | -6,585.00             | -197,550,000            | 37,699.60                | 0.00                  | 0                       | -197,550,000  |
| 11/17/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/18/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/19/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/20/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/21/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/22/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/23/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/24/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/25/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/26/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/27/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/28/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/29/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 11/30/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/1/2020  | İ          |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |

|            |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|------------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date       | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 12/2/2020  |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/3/2020  |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/4/2020  |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/5/2020  |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/6/2020  |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/7/2020  |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/8/2020  |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/9/2020  |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/10/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/11/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/12/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/13/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/14/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/15/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/16/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/17/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/18/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/19/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/20/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/21/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/22/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/23/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/24/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/24/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/25/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/20/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/28/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 12/29/2020 |            |                       |                          |                       | 0                       | 37,699.60                |                       | 0                       | 0             |
|            |            |                       |                          | 0.00                  | 0                       | -                        | 0.00                  | 0                       | 0             |
| 12/30/2020 |            |                       |                          | 0.00                  |                         | 37,699.60                | 0.00                  |                         |               |
| 12/31/2020 |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/1/2021   |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/2/2021   |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/3/2021   |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/4/2021   |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/5/2021   |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/6/2021   |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/7/2021   |            |                       |                          | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/8/2021   | 12.76      |                       | 6,894.40                 | 6,894.40              | 206,832,000             | 37,699.60                | 0.00                  | 0                       | 206,832,000   |
| 1/9/2021   | 12.62      |                       | 6,900.20                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 1/10/2021  | 12.49      |                       | 6,906.50                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 1/11/2021  | 13.08      |                       | 6,912.00                 | 5.50                  | 165,000                 | 37,699.60                | 0.00                  | 0                       | 165,000       |
| 1/12/2021  | 11.99      |                       | 6,916.00                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 1/13/2021  | 13.87      |                       | 6,924.20                 | 8.20                  | 246,000                 | 37,699.60                | 0.00                  | 0                       | 246,000       |
| 1/14/2021  | 13.78      |                       | 6,929.70                 | 5.50                  | 165,000                 | 37,699.60                | 0.00                  | 0                       | 165,000       |
| 1/15/2021  | 12.52      |                       | 6,933.60                 | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 1/16/2021  | 11.83      |                       | 6,938.20                 | 4.60                  | 138,000                 | 37,699.60                | 0.00                  | 0                       | 138,000       |
| 1/17/2021  | 13.33      |                       | 6,945.60                 | 7.40                  | 222,000                 | 37,699.60                | 0.00                  | 0                       | 222,000       |
| 1/18/2021  | 12.06      |                       | 6,949.60                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 1/19/2021  | 13.90      |                       | 6,957.80                 | 8.20                  | 246,000                 | 37,699.60                | 0.00                  | 0                       | 246,000       |
| 1/20/2021  | 12.45      |                       | 6,961.70                 | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 1/21/2021  | 12.25      |                       | 6,967.00                 | 5.30                  | 159,000                 | 37,699.60                | 0.00                  | 0                       | 159,000       |
| 1/22/2021  | 13.64      |                       | 6,973.50                 | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 1/23/2021 | 11.94      |                       | 6,977.50                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 1/24/2021 | 13.04      |                       | 6,985.60                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 1/25/2021 | 12.34      |                       | 6,989.60                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 1/26/2021 | 12.50      |                       | 6,995.30                 | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000       |
| 1/27/2021 | 12.68      |                       | 7,001.60                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 1/28/2021 | 11.80      |                       | 7,006.30                 | 4.70                  | 141,000                 | 37,699.60                | 0.00                  | 0                       | 141,000       |
| 1/29/2021 | 13.30      |                       | 7,013.70                 | 7.40                  | 222,000                 | 37,699.60                | 0.00                  | 0                       | 222,000       |
| 1/30/2021 | 12.34      |                       | 7,019.30                 | 5.60                  | 168,000                 | 37,699.60                | 0.00                  | 0                       | 168,000       |
| 1/31/2021 | 13.39      |                       | 7,026.00                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 2/1/2021  | 12.25      |                       | 7,029.90                 | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 2/2/2021  | 12.07      |                       | 7,034.90                 | 5.00                  | 150,000                 | 37,699.60                | 0.00                  | 0                       | 150,000       |
| 2/3/2021  | 13.57      |                       | 7,041.30                 | 6.40                  | 192,000                 | 37,699.60                | 0.00                  | 0                       | 192,000       |
| 2/4/2021  | 12.02      |                       | 7,045.90                 | 4.60                  | 138,000                 | 37,699.60                | 0.00                  | 0                       | 138,000       |
| 2/5/2021  | 13.20      |                       | 7,052.70                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 2/6/2021  | 13.11      |                       | 7,057.20                 | 4.50                  | 135,000                 | 37,699.60                | 0.00                  | 0                       | 135,000       |
| 2/7/2021  | 11.73      |                       | 7,062.30                 | 5.10                  | 153,000                 | 37,699.60                | 0.00                  | 0                       | 153,000       |
| 2/8/2021  | 13.38      |                       | 7,070.10                 | 7.80                  | 234,000                 | 37,699.60                | 0.00                  | 0                       | 234,000       |
| 2/9/2021  | 11.94      |                       | 7,074.20                 | 4.10                  | 123,000                 | 37,699.60                | 0.00                  | 0                       | 123,000       |
| 2/10/2021 | 13.50      |                       | 7,081.50                 | 7.30                  | 219,000                 | 37,699.60                | 0.00                  | 0                       | 219,000       |
| 2/11/2021 | 12.68      |                       | 7,086.20                 | 4.70                  | 141,000                 | 37,699.60                | 0.00                  | 0                       | 141,000       |
| 2/11/2021 | 12.68      |                       | 7,092.30                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 2/12/2021 | 12.33      |                       | 7,098.40                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 2/13/2021 | 11.54      |                       | 7,102.60                 | 4.20                  | 126,000                 | 37,699.60                | 0.00                  | 0                       | 126,000       |
| 2/14/2021 | 13.04      |                       | 7,102.00                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 2/16/2021 | 11.55      |                       | 7,115.30                 | 4.60                  | 138,000                 | 37,699.60                | 0.00                  | 0                       | 138,000       |
| 2/17/2021 | 12.94      |                       | 7,113.30                 | 7.90                  | 237,000                 | 37,699.60                | 0.00                  | 0                       | 237,000       |
| 2/17/2021 | 11.94      |                       | 7,123.20                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 2/19/2021 | 13.60      |                       | 7,127.20                 |                       |                         | 37,699.60                |                       | 0                       | 1             |
| 2/19/2021 |            |                       |                          | 8.10                  | 243,000<br>159.000      | -                        | 0.00                  | 0                       | 243,000       |
|           | 12.06      |                       | 7,140.60                 | 5.30                  | ,                       | 37,699.60                | 0.00                  |                         | 159,000       |
| 2/21/2021 | 11.92      |                       | 7,148.20                 | 7.60                  | 228,000                 | 37,699.60                | 0.00                  | 0                       | 228,000       |
| 2/22/2021 | 13.73      |                       | 7,157.00                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 2/23/2021 | 11.67      |                       | 7,161.90                 | 4.90                  | 147,000                 | 37,699.60                | 0.00                  | 0                       | 147,000       |
| 2/24/2021 | 12.14      |                       | 7,170.50                 | 8.60                  | 258,000                 | 37,699.60                | 0.00                  | 0                       | 258,000       |
| 2/25/2021 | 13.09      |                       | 7,179.30                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 2/26/2021 | 12.93      |                       | 7,186.50                 | 7.20                  | 216,000                 | 37,699.60                | 0.00                  | 0                       | 216,000       |
| 2/27/2021 | 11.85      |                       | 7,192.80                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 2/28/2021 | 13.25      |                       | 7,201.50                 | 8.70                  | 261,000                 | 37,699.60                | 0.00                  | 0                       | 261,000       |
| 3/1/2021  | 7.42       |                       | 7,202.30                 | 0.80                  | 24,000                  | 37,699.60                | 0.00                  | 0                       | 24,000        |
| 3/2/2021  | 11.58      |                       | 7,214.50                 | 12.20                 | 366,000                 | 37,699.60                | 0.00                  | 0                       | 366,000       |
| 3/3/2021  | 12.88      |                       | 7,222.90                 | 8.40                  | 252,000                 | 37,699.60                | 0.00                  | 0                       | 252,000       |
| 3/4/2021  | 13.77      |                       | 7,231.00                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 3/5/2021  | 11.57      |                       | 7,236.30                 | 5.30                  | 159,000                 | 37,699.60                | 0.00                  | 0                       | 159,000       |
| 3/6/2021  | 12.58      |                       | 7,245.00                 | 8.70                  | 261,000                 | 37,699.60                | 0.00                  | 0                       | 261,000       |
| 3/7/2021  | 13.77      |                       | 7,253.30                 | 8.30                  | 249,000                 | 37,699.60                | 0.00                  | 0                       | 249,000       |
| 3/8/2021  | 11.86      |                       | 7,259.20                 | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000       |
| 3/9/2021  | 12.46      |                       | 7,267.30                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 3/10/2021 | 13.48      |                       | 7,275.90                 | 8.60                  | 258,000                 | 37,699.60                | 0.00                  | 0                       | 258,000       |
| 3/11/2021 | 12.09      |                       | 7,281.60                 | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000       |
| 3/12/2021 | 12.42      |                       | 7,289.20                 | 7.60                  | 228,000                 | 37,699.60                | 0.00                  | 0                       | 228,000       |
| 3/13/2021 | 13.46      |                       | 7,297.00                 | 7.80                  | 234,000                 | 37,699.60                | 0.00                  | 0                       | 234,000       |
| 3/14/2021 | 13.54      |                       | 7,302.10                 | 5.10                  | 153,000                 | 37,699.60                | 0.00                  | 0                       | 153,000       |
| 3/15/2021 | 12.10      |                       | 7,311.40                 | 9.30                  | 279,000                 | 37,699.60                | 0.00                  | 0                       | 279,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 3/16/2021 | 12.86      |                       | 7,320.20                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 3/17/2021 | 12.47      |                       | 7,327.70                 | 7.50                  | 225,000                 | 37,699.60                | 0.00                  | 0                       | 225,000       |
| 3/18/2021 | 12.25      |                       | 7,334.90                 | 7.20                  | 216,000                 | 37,699.60                | 0.00                  | 0                       | 216,000       |
| 3/19/2021 | 13.07      |                       | 7,343.80                 | 8.90                  | 267,000                 | 37,699.60                | 0.00                  | 0                       | 267,000       |
| 3/20/2021 | 13.49      |                       | 7,351.80                 | 8.00                  | 240,000                 | 37,699.60                | 0.00                  | 0                       | 240,000       |
| 3/21/2021 | 12.08      |                       | 7,357.20                 | 5.40                  | 162,000                 | 37,699.60                | 0.00                  | 0                       | 162,000       |
| 3/22/2021 | 12.64      |                       | 7,366.10                 | 8.90                  | 267,000                 | 37,699.60                | 0.00                  | 0                       | 267,000       |
| 3/23/2021 | 13.79      |                       | 7,374.90                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 3/24/2021 | 11.77      |                       | 7,379.90                 | 5.00                  | 150,000                 | 37,699.60                | 0.00                  | 0                       | 150,000       |
| 3/25/2021 | 12.44      |                       | 7,388.10                 | 8.20                  | 246,000                 | 37,699.60                | 0.00                  | 0                       | 246,000       |
| 3/26/2021 | 13.98      |                       | 7,396.80                 | 8.70                  | 261,000                 | 37,699.60                | 0.00                  | 0                       | 261,000       |
| 3/27/2021 | 12.81      |                       | 7,403.80                 | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |
| 3/28/2021 | 11.71      |                       | 7,410.30                 | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000       |
| 3/29/2021 | 13.32      |                       | 7,419.20                 | 8.90                  | 267,000                 | 37,699.60                | 0.00                  | 0                       | 267,000       |
| 3/30/2021 | 12.45      |                       | 7,425.40                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 3/31/2021 | 12.12      |                       | 7,432.50                 | 7.10                  | 213,000                 | 37,699.60                | 0.00                  | 0                       | 213,000       |
| 4/1/2021  | 13.02      |                       | 7,441.20                 | 8.70                  | 261,000                 | 37,699.60                | 0.00                  | 0                       | 261,000       |
| 4/2/2021  | 12.74      |                       | 7,449.90                 | 8.70                  | 261,000                 | 37,699.60                | 0.00                  | 0                       | 261,000       |
| 4/3/2021  | 12.63      |                       | 7,457.30                 | 7.40                  | 222,000                 | 37,699.60                | 0.00                  | 0                       | 222,000       |
| 4/4/2021  | 12.58      |                       | 7,463.40                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 4/5/2021  | 13.83      |                       | 7,472.50                 | 9.10                  | 273,000                 | 37,699.60                | 0.00                  | 0                       | 273,000       |
| 4/6/2021  | 11.82      |                       | 7,477.70                 | 5.20                  | 156,000                 | 37,699.60                | 0.00                  | 0                       | 156,000       |
| 4/7/2021  | 12.36      |                       | 7,485.80                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 4/8/2021  | 12.90      |                       | 7,493.70                 | 7.90                  | 237,000                 | 37,699.60                | 0.00                  | 0                       | 237,000       |
| 4/9/2021  | 13.69      |                       | 7,502.20                 | 8.50                  | 255,000                 | 37,699.60                | 0.00                  | 0                       | 255,000       |
| 4/10/2021 | 13.16      |                       | 7,510.30                 | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000       |
| 4/11/2021 | 12.35      |                       | 7,516.00                 | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000       |
| 4/12/2021 | 13.63      |                       | 7,524.90                 | 8.90                  | 267,000                 | 37,699.60                | 0.00                  | 0                       | 267,000       |
| 4/13/2021 | 11.93      |                       | 7,530.20                 | 5.30                  | 159,000                 | 37,699.60                | 0.00                  | 0                       | 159,000       |
| 4/14/2021 | 12.41      |                       | 7,538.10                 | 7.90                  | 237,000                 | 37,699.60                | 0.00                  | 0                       | 237,000       |
| 4/15/2021 | 13.35      |                       | 7,546.80                 | 8.70                  | 261,000                 | 37,699.60                | 0.00                  | 0                       | 261,000       |
| 4/16/2021 | 13.27      |                       | 7,554.70                 | 7.90                  | 237,000                 | 37,699.60                | 0.00                  | 0                       | 237,000       |
| 4/17/2021 | 12.43      |                       | 7,568.50                 | 13.80                 | 414,000                 | 37,699.60                | 0.00                  | 0                       | 414,000       |
| 4/18/2021 | 12.69      |                       | 7,569.50                 | 1.00                  | 30,000                  | 37,699.60                | 0.00                  | 0                       | 30,000        |
| 4/19/2021 | 13.79      |                       | 7,578.60                 | 9.10                  | 273,000                 | 37,699.60                | 0.00                  | 0                       | 273,000       |
| 4/20/2021 | 11.99      |                       | 7,584.10                 | 5.50                  | 165,000                 | 37,699.60                | 0.00                  | 0                       | 165,000       |
| 4/21/2021 | 12.52      |                       | 7,591.80                 | 7.70                  | 231,000                 | 37,699.60                | 0.00                  | 0                       | 231,000       |
| 4/22/2021 | 13.33      |                       | 7,600.60                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 4/23/2021 | 12.43      |                       | 7,606.80                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 4/24/2021 | 13.16      |                       | 7,617.10                 | 10.30                 | 309,000                 | 37,699.60                | 0.00                  | 0                       | 309,000       |
| 4/25/2021 | 12.00      |                       | 7,622.80                 | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000       |
| 4/26/2021 | 12.99      |                       | 7,630.10                 | 7.30                  | 219,000                 | 37,699.60                | 0.00                  | 0                       | 219,000       |
| 4/27/2021 | 11.93      |                       | 7,636.30                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 4/28/2021 | 12.97      |                       | 7,644.90                 | 8.60                  | 258,000                 | 37,699.60                | 0.00                  | 0                       | 258,000       |
| 4/29/2021 | 13.43      |                       | 7,653.10                 | 8.20                  | 246,000                 | 37,699.60                | 0.00                  | 0                       | 246,000       |
| 4/30/2021 | 11.61      |                       | 7,658.50                 | 5.40                  | 162,000                 | 37,699.60                | 0.00                  | 0                       | 162,000       |
| 5/1/2021  | 12.32      |                       | 7,665.40                 | 6.90                  | 207,000                 | 37,699.60                | 0.00                  | 0                       | 207,000       |
| 5/2/2021  | 12.28      |                       | 7,676.30                 | 10.90                 | 327,000                 | 37,699.60                | 0.00                  | 0                       | 327,000       |
| 5/3/2021  | 12.94      |                       | 7,683.80                 | 7.50                  | 225,000                 | 37,699.60                | 0.00                  | 0                       | 225,000       |
| 5/4/2021  | 11.58      |                       | 7,690.50                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 5/5/2021  | 12.58      |                       | 7,699.30                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 5/6/2021  | 13.15      |                       | 7,708.30                 | 9.00                  | 270,000                 | 37,699.60                | 0.00                  | 0                       | 270,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 5/7/2021  | 13.07      |                       | 7,716.20                 | 7.90                  | 237,000                 | 37,699.60                | 0.00                  | 0                       | 237,000       |
| 5/8/2021  | 12.68      |                       | 7,725.90                 | 9.70                  | 291,000                 | 37,699.60                | 0.00                  | 0                       | 291,000       |
| 5/9/2021  | 12.73      |                       | 7,731.50                 | 5.60                  | 168,000                 | 37,699.60                | 0.00                  | 0                       | 168,000       |
| 5/10/2021 | 13.74      |                       | 7,740.10                 | 8.60                  | 258,000                 | 37,699.60                | 0.00                  | 0                       | 258,000       |
| 5/11/2021 | 11.66      |                       | 7,745.40                 | 5.30                  | 159,000                 | 37,699.60                | 0.00                  | 0                       | 159,000       |
| 5/12/2021 | 12.38      |                       | 7,754.20                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 5/13/2021 | 13.06      |                       | 7,763.00                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 5/14/2021 | 13.05      |                       | 7,770.70                 | 7.70                  | 231,000                 | 37,699.60                | 0.00                  | 0                       | 231,000       |
| 5/15/2021 | 11.52      |                       | 7,777.30                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 5/16/2021 | 12.33      |                       | 7,787.20                 | 9.90                  | 297,000                 | 37,699.60                | 0.00                  | 0                       | 297,000       |
| 5/17/2021 | 12.67      |                       | 7,797.50                 | 10.30                 | 309,000                 | 37,699.60                | 0.00                  | 0                       | 309,000       |
| 5/18/2021 | 12.61      |                       | 7,807.10                 | 9.60                  | 288,000                 | 37,699.60                | 0.00                  | 0                       | 288,000       |
| 5/19/2021 | 13.42      |                       | 7,816.80                 | 9.70                  | 291,000                 | 37,699.60                | 0.00                  | 0                       | 291,000       |
| 5/20/2021 | 12.77      |                       | 7,823.40                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 5/21/2021 | 12.24      |                       | 7,829.50                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 5/22/2021 | 13.33      |                       | 7,838.10                 | 8.60                  | 258,000                 | 37,699.60                | 0.00                  | 0                       | 258,000       |
| 5/23/2021 | 13.16      |                       | 7,846.90                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 5/24/2021 | 12.90      |                       | 7,850.80                 | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 5/25/2021 | 12.18      |                       | 7,856.30                 | 5.50                  | 165,000                 | 37,699.60                | 0.00                  | 0                       | 165,000       |
| 5/26/2021 | 12.32      |                       | 7,863.50                 | 7.20                  | 216,000                 | 37,699.60                | 0.00                  | 0                       | 216,000       |
| 5/27/2021 | 13.73      |                       | 7,876.70                 | 13.20                 | 396,000                 | 37,699.60                | 0.00                  | 0                       | 396,000       |
| 5/28/2021 | 11.82      |                       | 7,877.20                 | 0.50                  | 15,000                  | 37,699.60                | 0.00                  | 0                       | 15,000        |
| 5/29/2021 | 11.61      |                       | 7,886.00                 | 8.80                  | 264,000                 | 37,699.60                | 0.00                  | 0                       | 264,000       |
| 5/30/2021 | 11.82      |                       | 7,895.40                 | 9.40                  | 282,000                 | 37,699.60                | 0.00                  | 0                       | 282,000       |
| 5/31/2021 | 12.28      |                       | 7,905.30                 | 9.90                  | 297,000                 | 37,699.60                | 0.00                  | 0                       | 297,000       |
| 6/1/2021  | 12.15      |                       | 7,916.30                 | 11.00                 | 330,000                 | 37,699.60                | 0.00                  | 0                       | 330,000       |
| 6/2/2021  | 12.05      |                       | 7,927.00                 | 10.70                 | 321,000                 | 37,699.60                | 0.00                  | 0                       | 321,000       |
| 6/3/2021  | 11.62      |                       | 7,938.20                 | 11.20                 | 336,000                 | 37,699.60                | 0.00                  | 0                       | 336,000       |
| 6/4/2021  | 11.79      |                       | 7,951.70                 | 13.50                 | 405,000                 | 37,699.60                | 0.00                  | 0                       | 405,000       |
| 6/5/2021  | 12.60      |                       | 7,964.00                 | 12.30                 | 369,000                 | 37,699.60                | 0.00                  | 0                       | 369,000       |
| 6/6/2021  | 12.34      |                       | 7,976.40                 | 12.40                 | 372,000                 | 37,699.60                | 0.00                  | 0                       | 372,000       |
| 6/7/2021  | 13.10      |                       | 7,990.80                 | 14.40                 | 432,000                 | 37,699.60                | 0.00                  | 0                       | 432,000       |
| 6/8/2021  | 13.37      |                       | 8,003.90                 | 13.10                 | 393,000                 | 37,699.60                | 0.00                  | 0                       | 393,000       |
| 6/9/2021  | 13.28      |                       | 8,017.00                 | 13.10                 | 393,000                 | 37,699.60                | 0.00                  | 0                       | 393,000       |
| 6/10/2021 | 13.50      |                       | 8,030.50                 | 13.50                 | 405,000                 | 37,699.60                | 0.00                  | 0                       | 405,000       |
| 6/11/2021 | 13.61      |                       | 8,045.00                 | 14.50                 | 435,000                 | 37,699.60                | 0.00                  | 0                       | 435,000       |
| 6/12/2021 | 13.87      |                       | 8,059.80                 | 14.80                 | 444,000                 | 37,699.60                | 0.00                  | 0                       | 444,000       |
| 6/13/2021 | 12.99      |                       | 8,074.70                 | 14.90                 | 447,000                 | 37,699.60                | 0.00                  | 0                       | 447,000       |
| 6/14/2021 | 13.66      |                       | 8,092.00                 | 17.30                 | 519,000                 | 37,699.60                | 0.00                  | 0                       | 519,000       |
| 6/15/2021 | 13.30      |                       | 8,109.50                 | 17.50                 | 525,000                 | 37,699.60                | 0.00                  | 0                       | 525,000       |
| 6/16/2021 | 12.13      |                       | 8,124.60                 | 15.10                 | 453,000                 | 37,699.60                | 0.00                  | 0                       | 453,000       |
| 6/17/2021 | 13.78      |                       | 8,143.50                 | 18.90                 | 567,000                 | 37,699.60                | 0.00                  | 0                       | 567,000       |
| 6/18/2021 | 12.28      |                       | 8,160.00                 | 16.50                 | 495,000                 | 37,699.60                | 0.00                  | 0                       | 495,000       |
| 6/19/2021 | 13.99      |                       | 8,178.20                 | 18.20                 | 546,000                 | 37,699.60                | 0.00                  | 0                       | 546,000       |
| 6/20/2021 | 12.54      |                       | 8,191.20                 | 13.00                 | 390,000                 | 37,699.60                | 0.00                  | 0                       | 390,000       |
| 6/21/2021 | 13.62      |                       | 8,203.40                 | 12.20                 | 366,000                 | 37,699.60                | 0.00                  | 0                       | 366,000       |
| 6/22/2021 | 12.78      |                       | 8,215.40                 | 12.00                 | 360,000                 | 37,699.60                | 0.00                  | 0                       | 360,000       |
| 6/23/2021 | 13.47      |                       | 8,231.60                 | 16.20                 | 486,000                 | 37,699.60                | 0.00                  | 0                       | 486,000       |
| 6/24/2021 | 12.82      |                       | 8,245.70                 | 14.10                 | 423,000                 | 37,699.60                | 0.00                  | 0                       | 423,000       |
| 6/25/2021 | 13.61      |                       | 8,263.00                 | 17.30                 | 519,000                 | 37,699.60                | 0.00                  | 0                       | 519,000       |
| 6/26/2021 | 11.76      |                       | 8,277.30                 | 14.30                 | 429,000                 | 37,699.60                | 0.00                  | 0                       | 429,000       |
| 6/27/2021 | 13.49      |                       | 8,293.00                 | 15.70                 | 471,000                 | 37,699.60                | 0.00                  | 0                       | 471,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 6/28/2021 | 11.70      |                       | 8,306.70                 | 13.70                 | 411,000                 | 37,699.60                | 0.00                  | 0                       | 411,000       |
| 6/29/2021 | 13.33      |                       | 8,326.00                 | 19.30                 | 579,000                 | 37,699.60                | 0.00                  | 0                       | 579,000       |
| 6/30/2021 | 13.46      |                       | 8,344.40                 | 18.40                 | 552,000                 | 37,699.60                | 0.00                  | 0                       | 552,000       |
| 7/1/2021  | 14.29      |                       | 8,362.60                 | 18.20                 | 546,000                 | 37,699.60                | 0.00                  | 0                       | 546,000       |
| 7/2/2021  | 13.75      |                       | 8,382.20                 | 19.60                 | 588,000                 | 37,699.60                | 0.00                  | 0                       | 588,000       |
| 7/3/2021  | 13.92      |                       | 8,399.10                 | 16.90                 | 507,000                 | 37,699.60                | 0.00                  | 0                       | 507,000       |
| 7/4/2021  | 14.24      |                       | 8,419.90                 | 20.80                 | 624,000                 | 37,699.60                | 0.00                  | 0                       | 624,000       |
| 7/5/2021  | 11.83      |                       | 8,432.40                 | 12.50                 | 375,000                 | 37,699.60                | 0.00                  | 0                       | 375,000       |
| 7/6/2021  | 13.41      |                       | 8,450.00                 | 17.60                 | 528,000                 | 37,699.60                | 0.00                  | 0                       | 528,000       |
| 7/7/2021  | 12.68      |                       | 8,467.80                 | 17.80                 | 534,000                 | 37,699.60                | 0.00                  | 0                       | 534,000       |
| 7/8/2021  | 13.05      |                       | 8,483.20                 | 15.40                 | 462,000                 | 37,699.60                | 0.00                  | 0                       | 462,000       |
| 7/9/2021  | 12.88      |                       | 8,501.30                 | 18.10                 | 543,000                 | 37,699.60                | 0.00                  | 0                       | 543,000       |
| 7/10/2021 | 13.97      |                       | 8,519.90                 | 18.60                 | 558,000                 | 37,699.60                | 0.00                  | 0                       | 558,000       |
| 7/11/2021 | 11.78      |                       | 8,536.10                 | 16.20                 | 486,000                 | 37,699.60                | 0.00                  | 0                       | 486,000       |
| 7/12/2021 | 12.77      |                       | 8,552.20                 | 16.10                 | 483,000                 | 37,699.60                | 0.00                  | 0                       | 483,000       |
| 7/13/2021 | 13.99      |                       | 8,571.50                 | 19.30                 | 579,000                 | 37,699.60                | 0.00                  | 0                       | 579,000       |
| 7/14/2021 | 12.93      |                       | 8,583.50                 | 12.00                 | 360.000                 | 37,699.60                | 0.00                  | 0                       | 360,000       |
| 7/15/2021 | 13.87      |                       | 8,598.90                 | 15.40                 | 462,000                 | 37,699.60                | 0.00                  | 0                       | 462,000       |
| 7/16/2021 | 12.15      |                       | 8,613.90                 | 15.00                 | 450,000                 | 37,699.60                | 0.00                  | 0                       | 450.000       |
| 7/17/2021 | 14.29      |                       | 8.637.30                 | 23.40                 | 702,000                 | 37,699.60                | 0.00                  | 0                       | 702,000       |
| 7/18/2021 | 12.74      |                       | 8,654.10                 | 16.80                 | 504,000                 | 37,699.60                | 0.00                  | 0                       | 504,000       |
| 7/19/2021 | 13.30      |                       | 8,669.30                 | 15.20                 | 456,000                 | 37,699.60                | 0.00                  | 0                       | 456,000       |
| 7/20/2021 | 13.47      |                       | 8,688.40                 | 19.10                 | 573,000                 | 37,699.60                | 0.00                  | 0                       | 573,000       |
| 7/20/2021 | 12.98      |                       | 8,705.00                 | 16.60                 | 498,000                 | 37,699.60                | 0.00                  | 0                       | 498,000       |
| 7/21/2021 | 13.98      |                       | 8,723.90                 | 18.90                 | 567,000                 | 37,699.60                | 0.00                  | 0                       | 567,000       |
| 7/23/2021 | 13.22      |                       | 8,740.70                 | 16.80                 | 504,000                 | 37,699.60                | 0.00                  | 0                       | 504,000       |
| 7/24/2021 | 12.43      |                       | 8,755.50                 | 14.80                 | 444,000                 | 37,699.60                | 0.00                  | 0                       | 444,000       |
| 7/25/2021 | 12.43      |                       | 8,770.00                 | 14.50                 | 435,000                 | 37,699.60                | 0.00                  | 0                       | 435,000       |
| 7/26/2021 | 13.49      |                       | 8,785.00                 | 15.00                 | 450,000                 | 37,699.60                | 0.00                  | 0                       | 450,000       |
| 7/27/2021 | 12.63      |                       | 8.800.10                 | 15.10                 | 453,000                 | 37,699.60                | 0.00                  | 0                       | 453,000       |
| 7/28/2021 | 12.03      |                       | 8,817.90                 | 17.80                 | 534,000                 | 37,699.60                | 0.00                  | 0                       | 534,000       |
| 7/29/2021 | 12.57      |                       | 8,832.50                 | 14.60                 | 438,000                 | 37,699.60                | 0.00                  | 0                       | 438,000       |
| 7/30/2021 | 12.07      |                       | 8,847.80                 | 15.30                 | 459,000                 | 37,699.60                | 0.00                  | 0                       | 459,000       |
|           |            |                       |                          |                       | · ·                     | · '                      |                       |                         | ,             |
| 7/31/2021 | 14.26      |                       | 8,862.10                 | 14.30                 | 429,000                 | 37,699.60                | 0.00                  | 0                       | 429,000       |
| 8/1/2021  | 14.00      |                       | 8,876.30                 | 14.20                 | 426,000                 | 37,699.60                | 0.00                  | 0                       | 426,000       |
| 8/2/2021  | 13.50      |                       | 8,889.90                 | 13.60                 | 408,000                 | 37,699.60                | 0.00                  | 0                       | 408,000       |
| 8/3/2021  | 13.76      |                       | 8,902.80                 | 12.90                 | 387,000                 | 37,699.60                | 0.00                  | 0                       | 387,000       |
| 8/4/2021  | 14.13      |                       | 8,915.00                 | 12.20                 | 366,000                 | 37,699.60                | 0.00                  | 0                       | 366,000       |
| 8/5/2021  | 13.70      |                       | 8,926.00                 | 11.00                 | 330,000                 | 37,699.60                | 0.00                  | 0                       | 330,000       |
| 8/6/2021  | 14.03      |                       | 8,940.20                 | 14.20                 | 426,000                 | 37,699.60                | 0.00                  | 0                       | 426,000       |
| 8/7/2021  | 14.01      |                       | 8,952.40                 | 12.20                 | 366,000                 | 37,699.60                | 0.00                  | 0                       | 366,000       |
| 8/8/2021  | 12.86      |                       | 8,965.30                 | 12.90                 | 387,000                 | 37,699.60                | 0.00                  | 0                       | 387,000       |
| 8/9/2021  | 8.53       |                       | 8,970.20                 | 4.90                  | 147,000                 | 37,699.60                | 0.00                  | 0                       | 147,000       |
| 8/10/2021 | 14.11      |                       | 8,988.60                 | 18.40                 | 552,000                 | 37,699.60                | 0.00                  | 0                       | 552,000       |
| 8/11/2021 | 13.85      |                       | 9,000.10                 | 11.50                 | 345,000                 | 37,699.60                | 0.00                  | 0                       | 345,000       |
| 8/12/2021 | 13.91      |                       | 9,012.80                 | 12.70                 | 381,000                 | 37,699.60                | 0.00                  | 0                       | 381,000       |
| 8/13/2021 | 13.31      |                       | 9,024.90                 | 12.10                 | 363,000                 | 37,699.60                | 0.00                  | 0                       | 363,000       |
| 8/14/2021 | 13.87      |                       | 9,038.50                 | 13.60                 | 408,000                 | 37,699.60                | 0.00                  | 0                       | 408,000       |
| 8/15/2021 | 12.71      |                       | 9,051.10                 | 12.60                 | 378,000                 | 37,699.60                | 0.00                  | 0                       | 378,000       |
| 8/16/2021 | 14.34      |                       | 9,065.20                 | 14.10                 | 423,000                 | 37,699.60                | 0.00                  | 0                       | 423,000       |
| 8/17/2021 | 14.00      |                       | 9,078.30                 | 13.10                 | 393,000                 | 37,699.60                | 0.00                  | 0                       | 393,000       |
| 8/18/2021 | 13.79      |                       | 9,090.30                 | 12.00                 | 360,000                 | 37,699.60                | 0.00                  | 0                       | 360,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 8/19/2021 | 13.64      |                       | 9,100.40                 | 10.10                 | 303,000                 | 37,699.60                | 0.00                  | 0                       | 303,000       |
| 8/20/2021 | 12.46      |                       | 9,110.10                 | 9.70                  | 291,000                 | 37,699.60                | 0.00                  | 0                       | 291,000       |
| 8/21/2021 | 14.31      |                       | 9,122.70                 | 12.60                 | 378,000                 | 37,699.60                | 0.00                  | 0                       | 378,000       |
| 8/22/2021 | 14.69      |                       | 9,132.00                 | 9.30                  | 279,000                 | 37,699.60                | 0.00                  | 0                       | 279,000       |
| 8/23/2021 | 14.24      |                       | 9,141.90                 | 9.90                  | 297,000                 | 37,699.60                | 0.00                  | 0                       | 297,000       |
| 8/24/2021 | 13.39      |                       | 9,151.50                 | 9.60                  | 288,000                 | 37,699.60                | 0.00                  | 0                       | 288,000       |
| 8/25/2021 | 13.86      |                       | 9,162.30                 | 10.80                 | 324,000                 | 37,699.60                | 0.00                  | 0                       | 324,000       |
| 8/26/2021 | 13.27      |                       | 9,173.00                 | 10.70                 | 321,000                 | 37,699.60                | 0.00                  | 0                       | 321,000       |
| 8/27/2021 | 12.96      |                       | 9,184.20                 | 11.20                 | 336,000                 | 37,699.60                | 0.00                  | 0                       | 336,000       |
| 8/28/2021 | 12.30      |                       | 9,193.70                 | 9.50                  | 285,000                 | 37,699.60                | 0.00                  | 0                       | 285,000       |
| 8/29/2021 | 13.30      |                       | 9,206.30                 | 12.60                 | 378,000                 | 37,699.60                | 0.00                  | 0                       | 378,000       |
| 8/30/2021 | 12.97      |                       | 9,216.60                 | 10.30                 | 309,000                 | 37,699.60                | 0.00                  | 0                       | 309,000       |
| 8/31/2021 | 13.14      |                       | 9,227.10                 | 10.50                 | 315,000                 | 37,699.60                | 0.00                  | 0                       | 315,000       |
| 9/1/2021  | 14.06      |                       | 9,240.30                 | 13.20                 | 396,000                 | 37,699.60                | 0.00                  | 0                       | 396,000       |
| 9/2/2021  | 14.06      |                       | 9,252.20                 | 11.90                 | 357,000                 | 37,699.60                | 0.00                  | 0                       | 357,000       |
| 9/3/2021  | 13.09      |                       | 9,263.20                 | 11.00                 | 330,000                 | 37,699.60                | 0.00                  | 0                       | 330.000       |
| 9/4/2021  | 12.61      |                       | 9,273.90                 | 10.70                 | 321.000                 | 37.699.60                | 0.00                  | 0                       | 321,000       |
| 9/5/2021  | 12.55      |                       | 9,286.10                 | 12.20                 | 366,000                 | 37,699.60                | 0.00                  | 0                       | 366,000       |
| 9/6/2021  | 12.67      |                       | 9,299.10                 | 13.00                 | 390,000                 | 37,699.60                | 0.00                  | 0                       | 390,000       |
| 9/7/2021  | 13.66      |                       | 9.317.20                 | 18.10                 | 543.000                 | 37,699.60                | 0.00                  | 0                       | 543,000       |
| 9/8/2021  | 14.18      |                       | 9,326.60                 | 9.40                  | 282,000                 | 37,699.60                | 0.00                  | 0                       | 282,000       |
| 9/9/2021  | 13.05      |                       | 9,337.10                 | 10.50                 | 315,000                 | 37,699.60                | 0.00                  | 0                       | 315,000       |
| 9/10/2021 | 12.71      |                       | 9,349.00                 | 11.90                 | 357,000                 | 37,699.60                | 0.00                  | 0                       | 357,000       |
| 9/10/2021 | 14.97      |                       | 9,362.60                 | 13.60                 | 408,000                 | 37,699.60                | 0.00                  | 0                       | 408,000       |
| 9/11/2021 | 14.97      |                       | 9,374.60                 | 12.00                 | 360,000                 | 37,699.60                | 0.00                  | 0                       | 360,000       |
| 9/13/2021 | 14.95      |                       | 9,386.10                 | 11.50                 | 345,000                 | 37,699.60                | 0.00                  | 0                       | 345,000       |
| 9/13/2021 | 14.35      |                       | 9,396.30                 | 10.20                 | 306,000                 | 37,699.60                | 0.00                  | 0                       | 306,000       |
| 9/14/2021 | 11.53      |                       | 9,396.30                 |                       | 0                       | 37,699.60                |                       | 0                       | · ·           |
| 9/16/2021 |            |                       |                          | 0.00                  | 0                       |                          | 0.00                  | 0                       | 0             |
|           | 14.96      |                       | 9,396.30                 | 0.00                  |                         | 37,699.60                | 0.00                  |                         |               |
| 9/17/2021 | 14.97      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/18/2021 | 14.96      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/19/2021 | 14.96      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/20/2021 | 14.98      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/21/2021 | 14.96      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/22/2021 | 14.96      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/23/2021 | 14.96      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/24/2021 | 14.96      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/25/2021 |            |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/26/2021 | 44.00      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/27/2021 | 14.96      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/28/2021 | 14.96      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/29/2021 | 14.97      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 9/30/2021 | 14.97      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 10/1/2021 | 11.89      |                       | 9,396.30                 | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 10/2/2021 | 12.85      |                       | 9,403.20                 | 6.90                  | 207,000                 | 37,699.60                | 0.00                  | 0                       | 207,000       |
| 10/3/2021 | 12.33      |                       | 9,411.00                 | 7.80                  | 234,000                 | 37,699.60                | 0.00                  | 0                       | 234,000       |
| 10/4/2021 | 12.61      |                       | 9,418.80                 | 7.80                  | 234,000                 | 37,699.60                | 0.00                  | 0                       | 234,000       |
| 10/5/2021 | 12.73      |                       | 9,426.40                 | 7.60                  | 228,000                 | 37,699.60                | 0.00                  | 0                       | 228,000       |
| 10/6/2021 | 12.42      |                       | 9,432.70                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 10/7/2021 | 12.99      |                       | 9,442.20                 | 9.50                  | 285,000                 | 37,699.60                | 0.00                  | 0                       | 285,000       |
| 10/8/2021 | 13.06      |                       | 9,448.10                 | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000       |
| 10/9/2021 | 13.19      |                       | 9,455.10                 | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |

|            |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|------------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date       | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 10/10/2021 | 13.02      |                       | 9,462.10                 | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |
| 10/11/2021 | 13.27      |                       | 9,469.10                 | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |
| 10/12/2021 | 13.32      |                       | 9,475.90                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 10/13/2021 | 13.85      |                       | 9,482.60                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 10/14/2021 | 14.04      |                       | 9,489.40                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 10/15/2021 | 13.60      |                       | 9,495.10                 | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000       |
| 10/16/2021 | 13.01      |                       | 9,501.20                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 10/17/2021 | 12.52      |                       | 9,507.50                 | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 10/18/2021 | 13.11      |                       | 9,514.20                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 10/19/2021 | 13.16      |                       | 9,521.00                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 10/20/2021 | 13.29      |                       | 9,527.70                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 10/21/2021 | 14.73      |                       | 9,535.70                 | 8.00                  | 240,000                 | 37,699.60                | 0.00                  | 0                       | 240,000       |
| 10/22/2021 | 14.97      |                       | 9,548.10                 | 12.40                 | 372,000                 | 37,699.60                | 0.00                  | 0                       | 372,000       |
| 10/23/2021 | 13.86      |                       | 9,554.30                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 10/24/2021 | 13.12      |                       | 9,560.10                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 10/25/2021 | 12.95      |                       | 9,565.80                 | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000       |
| 10/26/2021 | 14.29      |                       | 9,574.10                 | 8.30                  | 249,000                 | 37,699.60                | 0.00                  | 0                       | 249,000       |
| 10/27/2021 | 11.98      |                       | 9,577.70                 | 3.60                  | 108,000                 | 37,699.60                | 0.00                  | 0                       | 108,000       |
| 10/28/2021 | 13.02      |                       | 9,586.10                 | 8.40                  | 252,000                 | 37,699.60                | 0.00                  | 0                       | 252,000       |
| 10/29/2021 | 13.20      |                       | 9,592.30                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 10/30/2021 | 12.71      |                       | 9,599.60                 | 7.30                  | 219,000                 | 37,699.60                | 0.00                  | 0                       | 219,000       |
| 10/31/2021 | 13.03      |                       | 9,606.40                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 11/1/2021  | 13.46      |                       | 9,613.30                 | 6.90                  | 207,000                 | 37,699.60                | 0.00                  | 0                       | 207,000       |
| 11/2/2021  | 13.88      |                       | 9,620.00                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 11/3/2021  | 14.25      |                       | 9,626.80                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 11/4/2021  | 14.44      |                       | 9,633.90                 | 7.10                  | 213,000                 | 37,699.60                | 0.00                  | 0                       | 213,000       |
| 11/5/2021  | 12.99      |                       | 9,638.40                 | 4.50                  | 135,000                 | 37,699.60                | 0.00                  | 0                       | 135,000       |
| 11/6/2021  | 12.31      |                       | 9,644.50                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 11/7/2021  | 12.69      |                       | 9,651.50                 | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |
| 11/8/2021  | 12.83      |                       | 9,658.50                 | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |
| 11/9/2021  | 13.06      |                       | 9,665.20                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 11/10/2021 | 13.28      |                       | 9,672.90                 | 7.70                  | 231,000                 | 37,699.60                | 0.00                  | 0                       | 231,000       |
| 11/11/2021 | 13.22      |                       | 9,678.70                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 11/12/2021 | 13.54      |                       | 9,685.30                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 11/13/2021 | 12.73      |                       | 9,692.20                 | 6.90                  | 207,000                 | 37,699.60                | 0.00                  | 0                       | 207,000       |
| 11/14/2021 | 13.30      |                       | 9,699.00                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 11/15/2021 | 13.45      |                       | 9,705.80                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 11/16/2021 | 13.43      |                       | 9,712.70                 | 6.90                  | 207,000                 | 37,699.60                | 0.00                  | 0                       | 207,000       |
| 11/17/2021 | 13.37      |                       | 9,719.40                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 11/18/2021 | 13.60      |                       | 9,726.20                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 11/19/2021 | 13.98      |                       | 9,733.00                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 11/20/2021 | 13.26      |                       | 9,739.70                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 11/21/2021 | 14.33      |                       | 9,746.50                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 11/22/2021 | 12.69      |                       | 9,750.00                 | 3.50                  | 105,000                 | 37,699.60                | 0.00                  | 0                       | 105,000       |
| 11/23/2021 | 13.28      |                       | 9,756.50                 | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000       |
| 11/24/2021 | 13.83      |                       | 9,763.10                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 11/25/2021 | 13.92      |                       | 9,768.90                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174,000       |
| 11/26/2021 | 12.64      |                       | 9,773.10                 | 4.20                  | 126,000                 | 37,699.60                | 0.00                  | 0                       | 126,000       |
| 11/27/2021 | 12.78      |                       | 9,779.70                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 11/28/2021 | 13.27      |                       | 9,786.30                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 11/29/2021 | 13.97      |                       | 9,792.90                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 11/30/2021 | 13.38      |                       | 9,798.10                 | 5.20                  | 156,000                 | 37,699.60                | 0.00                  | 0                       | 156,000       |

|            |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|------------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date       | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 12/1/2021  | 12.76      |                       | 9,802.90                 | 4.80                  | 144,000                 | 37,699.60                | 0.00                  | 0                       | 144,000       |
| 12/2/2021  | 13.43      |                       | 9,809.40                 | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000       |
| 12/3/2021  | 13.92      |                       | 9,815.80                 | 6.40                  | 192,000                 | 37,699.60                | 0.00                  | 0                       | 192,000       |
| 12/4/2021  | 14.23      |                       | 9,822.50                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 12/5/2021  | 12.60      |                       | 9,825.80                 | 3.30                  | 99,000                  | 37,699.60                | 0.00                  | 0                       | 99,000        |
| 12/6/2021  | 13.26      |                       | 9,832.60                 | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 12/7/2021  | 13.47      |                       | 9,839.10                 | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000       |
| 12/8/2021  | 13.67      |                       | 9,844.20                 | 5.10                  | 153,000                 | 37,699.60                | 0.00                  | 0                       | 153,000       |
| 12/9/2021  | 12.68      |                       | 9,849.10                 | 4.90                  | 147,000                 | 37,699.60                | 0.00                  | 0                       | 147,000       |
| 12/10/2021 | 13.33      |                       | 9,855.70                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 12/11/2021 | 13.35      |                       | 9,862.10                 | 6.40                  | 192,000                 | 37,699.60                | 0.00                  | 0                       | 192,000       |
| 12/12/2021 | 14.36      |                       | 9,868.30                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 12/13/2021 | 12.47      |                       | 9,872.30                 | 4.00                  | 120,000                 | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 12/14/2021 | 13.28      |                       | 9,878.90                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 12/15/2021 | 11.30      |                       | 9,882.40                 | 3.50                  | 105.000                 | 37.699.60                | 0.00                  | 0                       | 105,000       |
| 12/16/2021 | 10.46      |                       | 9,889.40                 | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |
| 12/17/2021 | 12.35      |                       | 9,894.30                 | 4.90                  | 147,000                 | 37,699.60                | 0.00                  | 0                       | 147,000       |
| 12/18/2021 | 12.68      |                       | 9,900.10                 | 5.80                  | 174,000                 | 37,699.60                | 0.00                  | 0                       | 174.000       |
| 12/19/2021 | 13.76      |                       | 9,908.40                 | 8.30                  | 249,000                 | 37,699.60                | 0.00                  | 0                       | 249,000       |
| 12/20/2021 | 13.47      |                       | 9.915.10                 | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201.000       |
| 12/21/2021 | 13.86      |                       | 9,921.70                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 12/22/2021 | 14.06      |                       | 9,927.90                 | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 12/23/2021 | 12.80      |                       | 9,931.00                 | 3.10                  | 93,000                  | 37,699.60                | 0.00                  | 0                       | 93,000        |
| 12/23/2021 | 13.17      |                       | 9,931.00                 | 7.50                  | 225,000                 | 37,699.60                | 0.00                  | 0                       | 225,000       |
| 12/24/2021 | 13.17      |                       | 9,935.30                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 12/25/2021 | 13.24      |                       | 9,943.10                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 12/20/2021 | 12.54      |                       | 9,955.40                 | 3.70                  | 111,000                 | 37,699.60                | 0.00                  | 0                       | 111,000       |
| 12/28/2021 | 12.54      |                       | 9,961.90                 | 6.50                  | <u> </u>                | 37,699.60                |                       | 0                       | · ·           |
| 12/29/2021 |            |                       |                          |                       | 195,000                 |                          | 0.00                  | 0                       | 195,000       |
|            | 13.10      |                       | 9,968.50                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  |                         | 198,000       |
| 12/30/2021 | 13.88      |                       | 9,975.10                 | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 12/31/2021 | 13.89      |                       | 9,981.20                 | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 1/1/2022   | 14.23      |                       | 9,988.30                 | 7.10                  | 213,000                 | 37,699.60                | 0.00                  | 0                       | 213,000       |
| 1/2/2022   | 14.37      |                       | 9,995.20                 | 6.90                  | 207,000                 | 37,699.60                | 0.00                  | 0                       | 207,000       |
| 1/3/2022   | 13.01      |                       | 9,998.70                 | 3.50                  | 105,000                 | 37,699.60                | 0.00                  | 0                       | 105,000       |
| 1/4/2022   | 13.42      |                       | 10,005.30                | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 1/5/2022   | 14.03      |                       | 10,012.00                | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 1/6/2022   | 14.12      |                       | 10,018.30                | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000       |
| 1/7/2022   | 12.41      |                       | 10,022.20                | 3.90                  | 117,000                 | 37,699.60                | 0.00                  | 0                       | 117,000       |
| 1/8/2022   | 12.58      |                       | 10,028.90                | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 1/9/2022   | 13.38      |                       | 10,035.50                | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 1/10/2022  | 13.48      |                       | 10,042.20                | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 1/11/2022  | 13.77      |                       | 10,047.30                | 5.10                  | 153,000                 | 37,699.60                | 0.00                  | 0                       | 153,000       |
| 1/12/2022  | 12.34      |                       | 10,052.50                | 5.20                  | 156,000                 | 37,699.60                | 0.00                  | 0                       | 156,000       |
| 1/13/2022  | 12.83      |                       | 10,059.10                | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 1/14/2022  | 13.15      |                       | 10,063.70                | 4.60                  | 138,000                 | 37,699.60                | 0.00                  | 0                       | 138,000       |
| 1/15/2022  | 13.32      |                       | 10,072.30                | 8.60                  | 258,000                 | 37,699.60                | 0.00                  | 0                       | 258,000       |
| 1/16/2022  | 13.64      |                       | 10,078.90                | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 1/17/2022  | 13.75      |                       | 10,085.70                | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 1/18/2022  | 12.50      |                       | 10,095.40                | 9.70                  | 291,000                 | 37,699.60                | 0.00                  | 0                       | 291,000       |
| 1/19/2022  |            |                       | 10,095.40                | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/20/2022  | 12.94      |                       | 10,102.90                | 7.50                  | 225,000                 | 37,699.60                | 0.00                  | 0                       | 225,000       |
| 1/21/2022  | 13.56      |                       | 10,108.50                | 5.60                  | 168,000                 | 37,699.60                | 0.00                  | 0                       | 168,000       |

|           |            | Gal/Day               |                          | Well #2               |                                       |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|---------------------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated)               | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 1/22/2022 | 13.38      |                       | 10,115.00                | 6.50                  | 195,000                               | 37,699.60                | 0.00                  | 0                       | 195,000       |
| 1/23/2022 | 14.16      |                       | 10,121.70                | 6.70                  | 201,000                               | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 1/24/2022 | 12.37      |                       | 10,125.20                | 3.50                  | 105,000                               | 37,699.60                | 0.00                  | 0                       | 105,000       |
| 1/25/2022 | 13.17      |                       | 10,131.80                | 6.60                  | 198,000                               | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 1/26/2022 | 13.59      |                       | 10,144.30                | 12.50                 | 375,000                               | 37,699.60                | 0.00                  | 0                       | 375,000       |
| 1/27/2022 | 14.11      |                       | 10,144.30                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 1/28/2022 | 12.88      |                       | 10,149.70                | 5.40                  | 162.000                               | 37.699.60                | 0.00                  | 0                       | 162,000       |
| 1/29/2022 | 12.97      |                       | 10,156.20                | 6.50                  | 195,000                               | 37,699.60                | 0.00                  | 0                       | 195,000       |
| 1/30/2022 | 12.76      |                       | 10,161.80                | 5.60                  | 168,000                               | 37.699.60                | 0.00                  | 0                       | 168,000       |
| 1/31/2022 | 13.37      |                       | 10,168.40                | 6.60                  | 198,000                               | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 2/1/2022  | 14.19      |                       | 10,175.10                | 6.70                  | 201,000                               | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 2/2/2022  | 12.64      |                       | 10,179.10                | 4.00                  | 120,000                               | 37,699.60                | 0.00                  | 0                       | 120,000       |
| 2/3/2022  | 12.69      |                       | 10,185.30                | 6.20                  | 186,000                               | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 2/4/2022  | 13.25      |                       | 10.191.90                | 6.60                  | 198,000                               | 37.699.60                | 0.00                  | 0                       | 198,000       |
| 2/5/2022  | 13.24      |                       | 10,191.50                | 6.60                  | 198,000                               | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 2/6/2022  | 14.05      |                       | 10,196.30                | 6.60                  | 198,000                               | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 2/7/2022  | 14.05      |                       | 10,205.10                | 6.20                  | 186,000                               | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 2/8/2022  | -          |                       | · · · · · ·              | 4.10                  | · · · · · · · · · · · · · · · · · · · | · · · · · ·              |                       | 0                       |               |
|           | 12.31      |                       | 10,215.40                |                       | 123,000                               | 37,699.60                | 0.00                  | 0                       | 123,000       |
| 2/9/2022  | 13.65      |                       | 10,218.40                | 3.00                  | 90,000                                | 37,699.60                | 0.00                  |                         | 90,000        |
| 2/10/2022 | 12.35      |                       | 10,218.40                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/11/2022 | 13.37      |                       | 10,221.20                | 2.80                  | 84,000                                | 37,699.60                | 0.00                  | 0                       | 84,000        |
| 2/12/2022 | 14.24      |                       | 10,223.80                | 2.60                  | 78,000                                | 37,699.60                | 0.00                  | 0                       | 78,000        |
| 2/13/2022 | 13.45      |                       | 10,223.80                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/14/2022 | 12.69      |                       | 10,223.80                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/15/2022 | 14.17      |                       | 10,226.40                | 2.60                  | 78,000                                | 37,699.60                | 0.00                  | 0                       | 78,000        |
| 2/16/2022 | 13.41      |                       | 10,226.50                | 0.10                  | 3,000                                 | 37,699.60                | 0.00                  | 0                       | 3,000         |
| 2/17/2022 | 12.79      |                       | 10,226.50                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/18/2022 | 14.29      |                       | 10,229.30                | 2.80                  | 84,000                                | 37,699.60                | 0.00                  | 0                       | 84,000        |
| 2/19/2022 | 13.36      |                       | 10,229.70                | 0.40                  | 12,000                                | 37,699.60                | 0.00                  | 0                       | 12,000        |
| 2/20/2022 | 12.54      |                       | 10,229.70                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/21/2022 | 13.81      |                       | 10,231.70                | 2.00                  | 60,000                                | 37,699.60                | 0.00                  | 0                       | 60,000        |
| 2/22/2022 | 14.27      |                       | 10,234.40                | 2.70                  | 81,000                                | 37,699.60                | 0.00                  | 0                       | 81,000        |
| 2/23/2022 | 13.34      |                       | 10,234.40                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/24/2022 | 12.41      |                       | 10,234.40                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/25/2022 | 13.64      |                       | 10,237.10                | 2.70                  | 81,000                                | 37,699.60                | 0.00                  | 0                       | 81,000        |
| 2/26/2022 | 12.70      |                       | 10,237.10                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 2/27/2022 | 13.54      |                       | 10,239.80                | 2.70                  | 81,000                                | 37,699.60                | 0.00                  | 0                       | 81,000        |
| 2/28/2022 | 14.19      |                       | 10,242.30                | 2.50                  | 75,000                                | 37,699.60                | 0.00                  | 0                       | 75,000        |
| 3/1/2022  | 13.24      |                       | 10,242.30                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/2/2022  | 12.42      |                       | 10,242.30                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/3/2022  | 13.98      |                       | 10,245.00                | 2.70                  | 81,000                                | 37,699.60                | 0.00                  | 0                       | 81,000        |
| 3/4/2022  | 13.24      |                       | 10,245.00                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/5/2022  | 12.60      |                       | 10,245.40                | 0.40                  | 12,000                                | 37,699.60                | 0.00                  | 0                       | 12,000        |
| 3/6/2022  | 13.55      |                       | 10,247.60                | 2.20                  | 66,000                                | 37,699.60                | 0.00                  | 0                       | 66,000        |
| 3/7/2022  | 12.99      |                       | 10,247.60                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/8/2022  | 12.51      |                       | 10,247.60                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/9/2022  | 14.28      |                       | 10,250.20                | 2.60                  | 78,000                                | 37,699.60                | 0.00                  | 0                       | 78,000        |
| 3/10/2022 | 13.52      |                       | 10,250.20                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/11/2022 | 12.91      |                       | 10,250.20                | 0.00                  | 0                                     | 37,699.60                | 0.00                  | 0                       | 0             |
| 3/11/2022 | 12.33      |                       | 10,250.20                | 0.10                  | 3,000                                 | 37,699.60                | 0.00                  | 0                       | 3,000         |
| 3/13/2022 | 13.91      |                       | 10,252.90                | 2.60                  | 78,000                                | 37,699.60                | 0.00                  | 0                       | 78,000        |
| 3/13/2022 | 13.91      |                       | 10,252.90                |                       | -                                     | 37,699.60                |                       | 1                       |               |
| 3/14/2022 | 13.03      |                       | 10,252.90                | 0.00                  | 0                                     | 37,099.00                | 0.00                  | 0                       | 0             |

|           |            | Gal/Day               |                                       | Well #2               |                         |                          | Well #1               |                         |                                       |
|-----------|------------|-----------------------|---------------------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------------------------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours)              | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day                         |
| 3/15/2022 | 14.24      |                       | 10,255.60                             | 2.70                  | 81,000                  | 37,699.60                | 0.00                  | 0                       | 81,000                                |
| 3/16/2022 | 13.19      |                       | 10,255.60                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/17/2022 | 13.51      |                       | 10,257.10                             | 1.50                  | 45,000                  | 37,699.60                | 0.00                  | 0                       | 45,000                                |
| 3/18/2022 | 13.45      |                       | 10,258.30                             | 1.20                  | 36,000                  | 37,699.60                | 0.00                  | 0                       | 36,000                                |
| 3/19/2022 | 12.71      |                       | 10,258.30                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/20/2022 | 14.14      |                       | 10,260.90                             | 2.60                  | 78,000                  | 37,699.60                | 0.00                  | 0                       | 78,000                                |
| 3/21/2022 | 13.32      |                       | 10,260.90                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/22/2022 | 12.70      |                       | 10,260.90                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/23/2022 | 14.35      |                       | 10,263.50                             | 2.60                  | 78,000                  | 37,699.60                | 0.00                  | 0                       | 78,000                                |
| 3/24/2022 | 13.60      |                       | 10,263.50                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/25/2022 | 12.94      |                       | 10,263.50                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/26/2022 | 14.18      |                       | 10,266.10                             | 2.60                  | 78,000                  | 37,699.60                | 0.00                  | 0                       | 78,000                                |
| 3/27/2022 | 13.34      |                       | 10,266.10                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/28/2022 | 12.71      |                       | 10,266.10                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/29/2022 | 14.37      |                       | 10,268.70                             | 2.60                  | 78,000                  | 37,699.60                | 0.00                  | 0                       | 78,000                                |
| 3/30/2022 | 12.83      |                       | 10,268.70                             | 0.00                  | 0                       | 37,699.60                | 0.00                  | 0                       | 0                                     |
| 3/31/2022 | 13.32      |                       | 10,275.20                             | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000                               |
| 4/1/2022  | 14.02      |                       | 10.281.70                             | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000                               |
| 4/2/2022  | 14.43      |                       | 10,288.40                             | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000                               |
| 4/3/2022  | 13.12      |                       | 10,293.20                             | 4.80                  | 144,000                 | 37.699.60                | 0.00                  | 0                       | 144,000                               |
| 4/4/2022  | 12.73      |                       | 10,298.30                             | 5.10                  | 153,000                 | 37,699.60                | 0.00                  | 0                       | 153,000                               |
| 4/5/2022  | 14.11      |                       | 10,306.40                             | 8.10                  | 243,000                 | 37,699.60                | 0.00                  | 0                       | 243,000                               |
| 4/6/2022  | 13.36      |                       | 10,311.40                             | 5.00                  | 150,000                 | 37,699.60                | 0.00                  | 0                       | 150,000                               |
| 4/7/2022  | 12.68      |                       | 10,311.40                             | 5.10                  | 153,000                 | 37,699.60                | 0.00                  | 0                       | 153,000                               |
| 4/8/2022  | 12.62      |                       | 10,310.30                             | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000                               |
| 4/9/2022  | 12.73      |                       | 10,322.40                             | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000                               |
| 4/10/2022 | 12.73      |                       | 10,326.00                             | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000                               |
| 4/11/2022 | 12.81      |                       | 10,334.90                             | 6.20                  | · '                     | 37,699.60                |                       | 0                       | · · · · · · · · · · · · · · · · · · · |
| 4/11/2022 | 13.08      |                       | 10,341.10                             | 6.00                  | 186,000                 |                          | 0.00                  | 0                       | 186,000                               |
|           | 13.38      |                       | · · · · · · · · · · · · · · · · · · · |                       | 180,000                 | 37,699.60                | 0.00                  |                         | 180,000                               |
| 4/13/2022 | -          |                       | 10,353.40                             | 6.30                  | 189,000                 | 37,699.60                | 0.00                  | 0                       | 189,000                               |
| 4/14/2022 | 13.17      |                       | 10,359.10                             | 5.70<br>6.00          | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000                               |
| 4/15/2022 | 13.13      |                       | 10,365.10                             |                       | 180,000                 | 37,699.60                | 0.00                  |                         | 180,000                               |
| 4/16/2022 | 12.95      |                       | 10,371.10                             | 6.00                  | 180,000                 | 37,699.60                | 0.00                  | 0                       | 180,000                               |
| 4/17/2022 | 12.70      |                       | 10,377.20                             | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000                               |
| 4/18/2022 | 13.47      |                       | 10,382.10                             | 4.90                  | 147,000                 | 37,699.60                | 0.00                  | 0                       | 147,000                               |
| 4/19/2022 | 13.70      |                       | 10,389.10                             | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000                               |
| 4/20/2022 | 13.51      |                       | 10,395.00                             | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000                               |
| 4/21/2022 | 13.16      |                       | 10,400.90                             | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000                               |
| 4/22/2022 | 13.40      |                       | 10,406.80                             | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000                               |
| 4/23/2022 | 13.07      |                       | 10,412.80                             | 6.00                  | 180,000                 | 37,699.60                | 0.00                  | 0                       | 180,000                               |
| 4/24/2022 | 12.76      |                       | 10,418.90                             | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000                               |
| 4/25/2022 | 13.20      |                       | 10,425.00                             | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000                               |
| 4/26/2022 | 13.22      |                       | 10,431.00                             | 6.00                  | 180,000                 | 37,699.60                | 0.00                  | 0                       | 180,000                               |
| 4/27/2022 | 13.14      |                       | 10,436.90                             | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000                               |
| 4/28/2022 | 13.23      |                       | 10,443.00                             | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000                               |
| 4/29/2022 | 13.27      |                       | 10,448.10                             | 5.10                  | 153,000                 | 37,699.60                | 0.00                  | 0                       | 153,000                               |
| 4/30/2022 | 12.65      |                       | 10,455.50                             | 7.40                  | 222,000                 | 37,699.60                | 0.00                  | 0                       | 222,000                               |
| 5/1/2022  | 12.71      |                       | 10,461.20                             | 5.70                  | 171,000                 | 37,699.60                | 0.00                  | 0                       | 171,000                               |
| 5/2/2022  | 13.15      |                       | 10,467.20                             | 6.00                  | 180,000                 | 37,699.60                | 0.00                  | 0                       | 180,000                               |
| 5/3/2022  | 13.15      |                       | 10,473.40                             | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000                               |
| 5/4/2022  | 12.59      |                       | 10,479.00                             | 5.60                  | 168,000                 | 37,699.60                | 0.00                  | 0                       | 168,000                               |
| 5/5/2022  | 12.96      |                       | 10,485.10                             | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000                               |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 5/6/2022  | 13.03      |                       | 10,491.20                | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 5/7/2022  | 13.00      |                       | 10,497.20                | 6.00                  | 180,000                 | 37,699.60                | 0.00                  | 0                       | 180,000       |
| 5/8/2022  | 12.91      |                       | 10,503.40                | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 5/9/2022  | 12.87      |                       | 10,509.60                | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 5/10/2022 | 13.02      |                       | 10,515.70                | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 5/11/2022 | 12.69      |                       | 10,521.30                | 5.60                  | 168,000                 | 37,699.60                | 0.00                  | 0                       | 168,000       |
| 5/12/2022 | 12.76      |                       | 10,527.20                | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000       |
| 5/13/2022 | 12.70      |                       | 10,533.30                | 6.10                  | 183,000                 | 37,699.60                | 0.00                  | 0                       | 183,000       |
| 5/14/2022 | 13.55      |                       | 10,541.70                | 8.40                  | 252,000                 | 37,699.60                | 0.00                  | 0                       | 252,000       |
| 5/15/2022 | 14.14      |                       | 10,549.10                | 7.40                  | 222,000                 | 37,699.60                | 0.00                  | 0                       | 222,000       |
| 5/16/2022 | 12.51      |                       | 10,552.20                | 3.10                  | 93,000                  | 37,699.60                | 0.00                  | 0                       | 93,000        |
| 5/17/2022 | 12.67      |                       | 10,559.60                | 7.40                  | 222,000                 | 37,699.60                | 0.00                  | 0                       | 222,000       |
| 5/18/2022 | 12.57      |                       | 10,566.20                | 6.60                  | 198,000                 | 37,699.60                | 0.00                  | 0                       | 198,000       |
| 5/19/2022 | 12.92      |                       | 10,573.10                | 6.90                  | 207,000                 | 37,699.60                | 0.00                  | 0                       | 207,000       |
| 5/20/2022 | 12.51      |                       | 10,578.60                | 5.50                  | 165,000                 | 37,699.60                | 0.00                  | 0                       | 165,000       |
| 5/21/2022 | 12.54      |                       | 10,584.80                | 6.20                  | 186,000                 | 37,699.60                | 0.00                  | 0                       | 186,000       |
| 5/22/2022 | 13.62      |                       | 10,593.10                | 8.30                  | 249,000                 | 37,699.60                | 0.00                  | 0                       | 249,000       |
| 5/23/2022 | 12.86      |                       | 10,598.40                | 5.30                  | 159,000                 | 37,699.60                | 0.00                  | 0                       | 159,000       |
| 5/24/2022 | 14.30      |                       | 10,607.40                | 9.00                  | 270,000                 | 37,699.60                | 0.00                  | 0                       | 270,000       |
| 5/25/2022 | 14.37      |                       | 10,613.80                | 6.40                  | 192,000                 | 37,699.60                | 0.00                  | 0                       | 192,000       |
| 5/26/2022 | 13.35      |                       | 10,620.20                | 6.40                  | 192,000                 | 37,699.60                | 0.00                  | 0                       | 192,000       |
| 5/27/2022 | 12.61      |                       | 10,627.40                | 7.20                  | 216,000                 | 37,699.60                | 0.00                  | 0                       | 216,000       |
| 5/28/2022 | 13.18      |                       | 10,637.70                | 10.30                 | 309,000                 | 37,699.60                | 0.00                  | 0                       | 309,000       |
| 5/29/2022 | 12.99      |                       | 10,644.40                | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 5/30/2022 | 12.98      |                       | 10,651.20                | 6.80                  | 204,000                 | 37,699.60                | 0.00                  | 0                       | 204,000       |
| 5/31/2022 | 13.38      |                       | 10,659.60                | 8.40                  | 252,000                 | 37,699.60                | 0.00                  | 0                       | 252,000       |
| 6/1/2022  | 13.59      |                       | 10,674.30                | 14.70                 | 441,000                 | 37,699.60                | 0.00                  | 0                       | 441,000       |
| 6/2/2022  | 12.97      |                       | 10,680.20                | 5.90                  | 177,000                 | 37,699.60                | 0.00                  | 0                       | 177,000       |
| 6/3/2022  | 14.21      |                       | 10,685.10                | 4.90                  | 147,000                 | 37,699.60                | 0.00                  | 0                       | 147,000       |
| 6/4/2022  | 13.15      |                       | 10,691.80                | 6.70                  | 201,000                 | 37,699.60                | 0.00                  | 0                       | 201,000       |
| 6/5/2022  | 12.97      |                       | 10,699.40                | 7.60                  | 228,000                 | 37,699.60                | 0.00                  | 0                       | 228,000       |
| 6/6/2022  | 14.21      |                       | 10,708.40                | 9.00                  | 270,000                 | 37,699.60                | 0.00                  | 0                       | 270,000       |
| 6/7/2022  | 13.52      |                       | 10,714.90                | 6.50                  | 195,000                 | 37,699.60                | 0.00                  | 0                       | 195,000       |
| 6/8/2022  | 12.68      |                       | 10,722.60                | 7.70                  | 231,000                 | 37,699.60                | 0.00                  | 0                       | 231,000       |
| 6/9/2022  | 14.41      |                       | 10,733.00                | 10.40                 | 312,000                 | 37,699.60                | 0.00                  | 0                       | 312,000       |
| 6/10/2022 | 13.21      |                       | 10,740.50                | 7.50                  | 225,000                 | 37,699.60                | 0.00                  | 0                       | 225,000       |
| 6/11/2022 | 13.76      |                       | 10,750.40                | 9.90                  | 297,000                 | 37,699.60                | 0.00                  | 0                       | 297,000       |
| 6/12/2022 | 8.00       |                       | 10,751.30                | 0.90                  | 27,000                  | 37,699.60                | 0.00                  | 0                       | 27,000        |
| 6/13/2022 | 14.35      |                       | 10,766.30                | 15.00                 | 450,000                 | 37,699.60                | 0.00                  | 0                       | 450,000       |
| 6/14/2022 | 13.40      |                       | 10,773.40                | 7.10                  | 213,000                 | 37,699.60                | 0.00                  | 0                       | 213,000       |
| 6/15/2022 | 12.57      |                       | 10,780.30                | 6.90                  | 207,000                 | 37,699.60                | 0.00                  | 0                       | 207,000       |
| 6/16/2022 | 14.34      |                       | 10,791.20                | 10.90                 | 327,000                 | 37,699.60                | 0.00                  | 0                       | 327,000       |
| 6/17/2022 | 12.95      |                       | 10,799.00                | 7.80                  | 234,000                 | 37,699.60                | 0.00                  | 0                       | 234,000       |
| 6/18/2022 | 13.53      |                       | 10,809.00                | 10.00                 | 300,000                 | 37,699.60                | 0.00                  | 0                       | 300,000       |
| 6/19/2022 | 12.55      |                       | 10,819.70                | 10.70                 | 321,000                 | 37,699.60                | 0.00                  | 0                       | 321,000       |
| 6/20/2022 | 14.28      |                       | 10,830.40                | 10.70                 | 321,000                 | 37,699.60                | 0.00                  | 0                       | 321,000       |
| 6/21/2022 | 13.02      |                       | 10,837.40                | 7.00                  | 210,000                 | 37,699.60                | 0.00                  | 0                       | 210,000       |
| 6/22/2022 | 11.77      |                       | 10,844.60                | 7.20                  | 216,000                 | 37,699.60                | 0.00                  | 0                       | 216,000       |
| 6/23/2022 | 12.89      |                       | 10,857.70                | 13.10                 | 393,000                 | 37,699.60                | 0.00                  | 0                       | 393,000       |
| 6/24/2022 | 13.63      |                       | 10,867.90                | 10.20                 | 306,000                 | 37,699.60                | 0.00                  | 0                       | 306,000       |
| 6/25/2022 | 13.31      |                       | 10,878.30                | 10.40                 | 312,000                 | 37,699.60                | 0.00                  | 0                       | 312,000       |
| 6/26/2022 | 13.80      |                       | 10,887.90                | 9.60                  | 288,000                 | 37,699.60                | 0.00                  | 0                       | 288,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 6/27/2022 | 13.58      |                       | 10,898.40                | 10.50                 | 315,000                 | 37,699.60                | 0.00                  | 0                       | 315,000       |
| 6/28/2022 | 12.73      |                       | 10,909.00                | 10.60                 | 318,000                 | 37,699.60                | 0.00                  | 0                       | 318,000       |
| 6/29/2022 | 13.35      |                       | 10,920.30                | 11.30                 | 339,000                 | 37,699.60                | 0.00                  | 0                       | 339,000       |
| 6/30/2022 | 13.61      |                       | 10,932.00                | 11.70                 | 351,000                 | 37,699.60                | 0.00                  | 0                       | 351,000       |
| 7/1/2022  | 14.35      |                       | 10,945.50                | 13.50                 | 405,000                 | 37,699.60                | 0.00                  | 0                       | 405,000       |
| 7/2/2022  | 13.24      |                       | 10,957.30                | 11.80                 | 354,000                 | 37,699.60                | 0.00                  | 0                       | 354,000       |
| 7/3/2022  | 12.57      |                       | 10,969.60                | 12.30                 | 369,000                 | 37,699.60                | 0.00                  | 0                       | 369,000       |
| 7/4/2022  | 14.02      |                       | 10,980.30                | 10.70                 | 321,000                 | 37,699.60                | 0.00                  | 0                       | 321,000       |
| 7/5/2022  | 13.32      |                       | 10,988.10                | 7.80                  | 234,000                 | 37,707.00                | 7.40                  | 155,400                 | 389,400       |
| 7/5/2022  |            |                       | 10,988.10                | 0.00                  | 0                       | 37,726.00                | 19.00                 | 399,000                 | 399,000       |
| 7/6/2022  | 11.92      |                       | 10,988.10                | 0.00                  | 0                       | 37,726.00                | 0.00                  | 0                       | 0             |
| 7/7/2022  |            |                       | 10,988.10                | 0.00                  | 0                       | 37,726.00                | 0.00                  | 0                       | 0             |
| 7/8/2022  | 8.87       |                       | 10,988.10                | 0.00                  | 0                       | 37,726.00                | 0.00                  | 0                       | 0             |
| 7/9/2022  | 8.38       |                       | 10,988.10                | 0.00                  | 0                       | 37,726.00                | 0.00                  | 0                       | 0             |
| 7/10/2022 | 8.40       |                       | 10,988.10                | 0.00                  | 0                       | 37,726.00                | 0.00                  | 0                       | 0             |
| 7/11/2022 | 8.54       |                       | 10,988.10                | 0.00                  | 0                       | 37,849.00                | 123.00                | 2,583,000               | 2,583,000     |
| 7/12/2022 | 8.56       |                       | 10,988.10                | 0.00                  | 0                       | 37,873.60                | 24.60                 | 516,600                 | 516,600       |
| 7/13/2022 | 12.78      |                       | 10,988.10                | 0.00                  | 0                       | 37,897.70                | 24.10                 | 506,100                 | 506,100       |
| 7/14/2022 | 13.24      |                       | 10,992.00                | 3.90                  | 117,000                 | 37,897.70                | 0.00                  | 0                       | 117,000       |
| 7/15/2022 | 14.25      |                       | 11,005.20                | 13.20                 | 396,000                 | 37,897.70                | 0.00                  | 0                       | 396,000       |
| 7/16/2022 | 13.22      |                       | 11,015.60                | 10.40                 | 312,000                 | 37,897.70                | 0.00                  | 0                       | 312,000       |
| 7/17/2022 |            |                       | 11,015.60                | 0.00                  | 0                       | 37,897.70                | 0.00                  | 0                       | 0             |
| 7/18/2022 |            |                       | 11,027.90                | 12.30                 | 369,000                 | 37,897.70                | 0.00                  | 0                       | 369,000       |
| 7/19/2022 | 12.79      |                       | 11,051.70                | 23.80                 | 714,000                 | 37,897.70                | 0.00                  | 0                       | 714,000       |
| 7/20/2022 | 13.48      |                       | 11,062.85                | 11.15                 | 334,500                 | 37,897.70                | 0.00                  | 0                       | 334,500       |
| 7/21/2022 | 13.88      |                       | 11,075.70                | 12.85                 | 385,500                 | 37,897.70                | 0.00                  | 0                       | 385,500       |
| 7/22/2022 | 13.11      |                       | 11,088.70                | 13.00                 | 390,000                 | 37,897.70                | 0.00                  | 0                       | 390,000       |
| 7/23/2022 | 12.95      |                       | 11,102.60                | 13.90                 | 417,000                 | 37,897.70                | 0.00                  | 0                       | 417,000       |
| 7/24/2022 | 13.77      |                       | 11,117.20                | 14.60                 | 438,000                 | 37,897.70                | 0.00                  | 0                       | 438,000       |
| 7/25/2022 | 14.25      |                       | 11,128.50                | 11.30                 | 339,000                 | 37,897.70                | 0.00                  | 0                       | 339,000       |
| 7/26/2022 | 12.57      |                       | 11,138.30                | 9.80                  | 294,000                 | 37,897.70                | 0.00                  | 0                       | 294,000       |
| 7/27/2022 | 14.28      |                       | 11,154.20                | 15.90                 | 477,000                 | 37,897.70                | 0.00                  | 0                       | 477,000       |
| 7/28/2022 | 12.57      |                       | 11,166.30                | 12.10                 | 363,000                 | 37,897.70                | 0.00                  | 0                       | 363,000       |
| 7/29/2022 | 12.90      |                       | 11,182.60                | 16.30                 | 489,000                 | 37,897.70                | 0.00                  | 0                       | 489,000       |
| 7/30/2022 | 14.10      |                       | 11,196.90                | 14.30                 | 429,000                 | 37,897.70                | 0.00                  | 0                       | 429,000       |
| 7/31/2022 | 12.51      |                       | 11,209.70                | 12.80                 | 384,000                 | 37,897.70                | 0.00                  | 0                       | 384,000       |
| 8/1/2022  | 14.40      |                       | 11,227.30                | 17.60                 | 528,000                 | 37,897.70                | 0.00                  | 0                       | 528,000       |
| 8/2/2022  | 12.72      |                       | 11,238.60                | 11.30                 | 339,000                 | 37,897.70                | 0.00                  | 0                       | 339,000       |
| 8/3/2022  |            |                       | 11,238.60                | 0.00                  | 0                       | 37,897.70                | 0.00                  | 0                       | 0             |
| 8/4/2022  | 12.56      |                       | 11,265.40                | 26.80                 | 804,000                 | 37,897.70                | 0.00                  | 0                       | 804,000       |
| 8/5/2022  | 13.20      |                       | 11,280.10                | 14.70                 | 441,000                 | 37,897.70                | 0.00                  | 0                       | 441,000       |
| 8/6/2022  | 13.76      |                       | 11,293.50                | 13.40                 | 402,000                 | 37,897.70                | 0.00                  | 0                       | 402,000       |
| 8/7/2022  | 12.57      |                       | 11,302.90                | 9.40                  | 282,000                 | 37,897.70                | 0.00                  | 0                       | 282,000       |
| 8/8/2022  | 13.85      |                       | 11,317.30                | 14.40                 | 432,000                 | 37,897.70                | 0.00                  | 0                       | 432,000       |
| 8/9/2022  | 12.92      |                       | 11,328.00                | 10.70                 | 321,000                 | 37,897.70                | 0.00                  | 0                       | 321,000       |
| 8/10/2022 | 13.93      |                       | 11,342.30                | 14.30                 | 429,000                 | 37,897.70                | 0.00                  | 0                       | 429,000       |
| 8/11/2022 | 13.77      |                       | 11,356.70                | 14.40                 | 432,000                 | 37,897.70                | 0.00                  | 0                       | 432,000       |
| 8/12/2022 | 14.36      |                       | 11,368.10                | 11.40                 | 342,000                 | 37,897.70                | 0.00                  | 0                       | 342,000       |
| 8/13/2022 | 14.23      |                       | 11,382.30                | 14.20                 | 426,000                 | 37,897.70                | 0.00                  | 0                       | 426,000       |
| 8/14/2022 | 13.19      |                       | 11,391.90                | 9.60                  | 288,000                 | 37,897.70                | 0.00                  | 0                       | 288,000       |
| 8/15/2022 | 13.27      |                       | 11,393.20                | 1.30                  | 39,000                  | 37,897.70                | 0.00                  | 0                       | 39,000        |
| 8/16/2022 | 13.26      |                       | 11,416.10                | 22.90                 | 687,000                 | 37,897.70                | 0.00                  | 0                       | 687,000       |

|           |            | Gal/Day               |                          | Well #2               |                         |                          | Well #1               |                         |               |
|-----------|------------|-----------------------|--------------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------|
| Date      | Tank Level | (Operator's<br>Notes) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Pump Run<br>Time (Hours) | Difference<br>(Hours) | Gal/Day<br>(Calculated) | Total Gal/Day |
| 8/17/2022 | 13.99      |                       | 11,430.20                | 14.10                 | 423,000                 | 37,897.70                | 0.00                  | 0                       | 423,000       |
| 8/18/2022 | 13.26      |                       | 11,443.50                | 13.30                 | 399,000                 | 37,897.70                | 0.00                  | 0                       | 399,000       |
| 8/19/2022 | 14.31      |                       | 11,456.80                | 13.30                 | 399,000                 | 37,897.70                | 0.00                  | 0                       | 399,000       |
| 8/20/2022 | 12.98      |                       | 11,467.90                | 11.10                 | 333,000                 | 37,897.70                | 0.00                  | 0                       | 333,000       |
| 8/21/2022 | 13.83      |                       | 11,482.40                | 14.50                 | 435,000                 | 37,897.70                | 0.00                  | 0                       | 435,000       |
| 8/22/2022 | 12.92      |                       | 11,494.00                | 11.60                 | 348,000                 | 37,897.70                | 0.00                  | 0                       | 348,000       |
| 8/23/2022 | 12.90      |                       | 11,505.50                | 11.50                 | 345,000                 | 37,897.70                | 0.00                  | 0                       | 345,000       |
| 8/24/2022 | 14.34      |                       | 11,517.30                | 11.80                 | 354,000                 | 37,897.70                | 0.00                  | 0                       | 354,000       |
| 8/25/2022 | 8.58       |                       | 11,529.60                | 12.30                 | 369,000                 | 37,897.70                | 0.00                  | 0                       | 369,000       |
| 8/26/2022 | 14.96      |                       | 11,531.70                | 2.10                  | 63,000                  | 37,897.70                | 0.00                  | 0                       | 63,000        |
| 8/27/2022 | 9.25       |                       | 11,531.70                | 0.00                  | 0                       | 37,897.70                | 0.00                  | 0                       | 0             |
| 8/28/2022 | 11.68      |                       | 11,531.70                | 0.00                  | 0                       | 37,897.70                | 0.00                  | 0                       | 0             |
| 8/29/2022 | 9.31       |                       | 11,531.70                | 0.00                  | 0                       | 37,897.70                | 0.00                  | 0                       | 0             |
| 8/30/2022 | 14.96      |                       | 11,531.70                | 0.00                  | 0                       | 37,970.00                | 72.30                 | 1,518,300               | 1,518,300     |
| 8/31/2022 | 14.97      |                       | 11,531.70                | 0.00                  | 0                       | 37,985.00                | 15.00                 | 315,000                 | 315,000       |
| 9/1/2022  | 14.97      |                       | 11,531.70                | 0.00                  | 0                       | 38,001.00                | 16.00                 | 336,000                 | 336,000       |
| 9/2/2022  | 14.59      |                       | 11,531.70                | 0.00                  | 0                       | 38,001.00                | 0.00                  | 0                       | 0             |
| 9/3/2022  | 14.97      |                       | 11,531.70                | 0.00                  | 0                       | 38,001.00                | 0.00                  | 0                       | 0             |
| 9/4/2022  | 14.97      |                       | 11,531.70                | 0.00                  | 0                       | 38,001.00                | 0.00                  | 0                       | 0             |
| 9/5/2022  | 14.96      |                       | 11,531.70                | 0.00                  | 0                       | 38,001.00                | 0.00                  | 0                       | 0             |
| 9/6/2022  | 14.96      |                       | 11,531.70                | 0.00                  | 0                       | 38,001.00                | 0.00                  | 0                       | 0             |
| 9/7/2022  | 14.27      |                       | 11,531.70                | 0.00                  | 0                       | 38,001.00                | 0.00                  | 0                       | 0             |
| 9/8/2022  | 14.97      |                       | 11,531.70                | 0.00                  | 0                       | 38,106.90                | 105.90                | 2,223,900               | 2,223,900     |
| 9/9/2022  | 13.30      |                       | 11,541.30                | 9.60                  | 288,000                 | 38,106.90                | 0.00                  | 0                       | 288,000       |
| 9/10/2022 | 13.00      |                       | 11,550.40                | 9.10                  | 273,000                 | 38,106.90                | 0.00                  | 0                       | 273,000       |
| 9/11/2022 | 12.57      |                       | 11,562.90                | 12.50                 | 375,000                 | 38,106.90                | 0.00                  | 0                       | 375,000       |
| 9/12/2022 | 11.16      |                       | 11,575.50                | 12.60                 | 378,000                 | 38,106.90                | 0.00                  | 0                       | 378,000       |
| 9/13/2022 | 12.62      |                       | 11,583.40                | 7.90                  | 237,000                 | 38,106.90                | 0.00                  | 0                       | 237,000       |
| 9/14/2022 | 13.97      |                       | 11,595.20                | 11.80                 | 354,000                 | 38,106.90                | 0.00                  | 0                       | 354,000       |
| 9/15/2022 | 12.69      |                       | 11,602.60                | 7.40                  | 222,000                 | 38,106.90                | 0.00                  | 0                       | 222,000       |
| 9/16/2022 | 13.91      |                       | 11,612.60                | 10.00                 | 300,000                 | 38,106.90                | 0.00                  | 0                       | 300,000       |
| 9/17/2022 | 13.60      |                       | 11,620.20                | 7.60                  | 228,000                 | 38,106.90                | 0.00                  | 0                       | 228,000       |
| 9/18/2022 | 12.93      |                       | 11,627.50                | 7.30                  | 219,000                 | 38,106.90                | 0.00                  | 0                       | 219,000       |
| 9/19/2022 | 13.97      |                       | 11,638.60                | 11.10                 | 333,000                 | 38,106.90                | 0.00                  | 0                       | 333,000       |
| 9/20/2022 | 13.32      |                       | 11,645.10                | 6.50                  | 195,000                 | 38,106.90                | 0.00                  | 0                       | 195,000       |
| 9/21/2022 | 12.53      |                       | 11,651.80                | 6.70                  | 201,000                 | 38,106.90                | 0.00                  | 0                       | 201,000       |
| 9/22/2022 | 12.67      |                       | 11,657.10                | 5.30                  | 159,000                 | 38,106.90                | 0.00                  | 0                       | 159,000       |
| 9/23/2022 | 13.68      |                       | 11,667.00                | 9.90                  | 297,000                 | 38,106.90                | 0.00                  | 0                       | 297,000       |
| 9/24/2022 | 12.54      |                       | 11,671.30                | 4.30                  | 129,000                 | 38,106.90                | 0.00                  | 0                       | 129,000       |
| 9/25/2022 | 13.86      |                       | 11,680.40                | 9.10                  | 273,000                 | 38,106.90                | 0.00                  | 0                       | 273,000       |
| 9/26/2022 | 13.56      |                       | 11,687.70                | 7.30                  | 219,000                 | 38,106.90                | 0.00                  | 0                       | 219,000       |
| 9/27/2022 | 12.80      |                       | 11,693.80                | 6.10                  | 183,000                 | 38,106.90                | 0.00                  | 0                       | 183,000       |
| 9/28/2022 | 12.95      |                       | 11,699.80                | 6.00                  | 180,000                 | 38,106.90                | 0.00                  | 0                       | 180,000       |
| 9/29/2022 | 12.73      |                       | 11,706.50                | 6.70                  | 201,000                 | 38,106.90                | 0.00                  | 0                       | 201,000       |
| 9/30/2022 | 12.80      |                       | 11,712.20                | 5.70                  | 171,000                 | 38,106.90                | 0.00                  | 0                       | 171,000       |
| 10/1/2022 | 12.88      |                       | 11,718.10                | 5.90                  | 177,000                 | 38,106.90                | 0.00                  | 0                       | 177,000       |
| 10/2/2022 | 12.73      |                       | 11,724.00                | 5.90                  | 177,000                 | 38,106.90                | 0.00                  | 0                       | 177,000       |
| 10/3/2022 | 12.63      |                       | 11,730.00                | 6.00                  | 180,000                 | 38,106.90                | 0.00                  | 0                       | 180,000       |
| 10/4/2022 | 13.05      |                       | 11,735.80                | 5.80                  | 174,000                 | 38,106.90                | 0.00                  | 0                       | 174,000       |
| 10/5/2022 | 13.03      |                       | 11,741.50                | 5.70                  | 171,000                 | 38,106.90                | 0.00                  | 0                       | 171,000       |

| usertype                                        | avg_accts_per_month | jan_2019 | feb_2019 i | mar_2019 | apr_2019 | may_2019 | jun_2019 | jul_2019 | aug_2019 | sep_2019 | oct_2019 | nov_2019 ( | dec_2019 | total    |
|-------------------------------------------------|---------------------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|
|                                                 | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| Water Usage Summary From Billing                | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| Routes: All                                     | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| Billing Usage Period: From JAN-2019 to DEC-2019 | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
|                                                 | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
|                                                 | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
|                                                 | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| WATER USAGE                                     | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| C-CHURCH                                        | 1                   | 181      | 560        | 451      | 396      | 367      | 366      | 280      | 304      | 341      | 376      | 481        | 340      | 4443     |
| C-FINANCE-BANKING                               | 1                   | 3100     | 3100       | 3400     | 3300     | 4300     | 82800    | 105900   | 93000    | 93200    | 3100     | 2900       | 2600     | 400700   |
| C-GOVERNMENT-COUNTY                             | 2                   | 1250     | 1790       | 1870     | 1460     | 1270     | 7740     | 11510    | 13640    | 14600    | 1680     | 1050       | 1660     | 59520    |
| C-RETAIL-GENERAL MERCHANDISE                    | 1                   | 640      | 850        | 690      | 630      | 7630     | 23350    | 27720    | 37220    | 27240    | 830      | 540        | 510      | 127850   |
| COMMERCIAL                                      | 13                  | 152404   | 190045     | 128665   | 132578   | 127818   | 196848   | 216129   | 233018   | 202386   | 184982   | 223375     | 164435   | 2152683  |
| R-MOBIL HOME                                    | 1                   | 5610     | 4660       | 4740     | 4940     | 4990     | 5510     | 5150     | 6350     | 3680     | 3850     | 3830       | 4040     | 57350    |
| RESIDENTIAL                                     | 474                 | 1463364  | 1430283    | 1297916  | 1357301  | 1531193  | 3266591  | 3493295  | 5145460  | 3324033  | 1909116  | 1411446    | 1757525  | 27387523 |
| RESIDENTIAL RENTALS                             | 10                  | 29653    | 25639      | 23513    | 20412    | 18224    | 28592    | 18642    | 37493    | 38311    | 19469    | 84382      | 17918    | 362248   |
| Subtotal for WATER USAGE                        | 503                 | 1656202  | 1656927    | 1461245  | 1521017  | 1695792  | 3611797  | 3878626  | 5566485  | 3703791  | 2123403  | 1728004    | 1949028  | 30552317 |
|                                                 | 0                   | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| Total                                           | 503                 | 1656202  | 1656927    | 1461245  | 1521017  | 1695792  | 3611797  | 3878626  | 5566485  | 3703791  | 2123403  | 1728004    | 1949028  | 30552317 |

| usertype                                        | avg_accts_ | jan 2020 1 | feb 2020 | mar 2020 : | apr 2020 | may 2020 | jun 2020 | jul 2020 | aug 2020 | sep 2020 | oct_2020 | nov 2020 ( | dec 2020 | total    |
|-------------------------------------------------|------------|------------|----------|------------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|
| •                                               | 0          | 0          | _ 0      | _ 0        | 0        | 0        | 0        | 0        | 0        | 0        | _ 0      | _ 0        | _ 0      | 0        |
| Water Usage Summary From Billing                | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| Routes: All                                     | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| Billing Usage Period: From JAN-2020 to DEC-2020 | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
|                                                 | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
|                                                 | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
|                                                 | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| WATER BASE                                      | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| Subtotal for WATER BASE                         | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
|                                                 | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| WATER USAGE                                     | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| C-CHURCH                                        | 1          | 495        | 451      | 269        | 35       | 100      | 252      | 406      | 377      | 208      | 388      | 434        | 344      | 3759     |
| C-FINANCE-BANKING                               | 1          | 3300       | 2400     | 2300       | 2000     | 2700     | 108700   | 158500   | 159200   | 134600   | 2300     | 2400       | 2900     | 581300   |
| C-GOVERNMENT-COUNTY                             | 2          | 1180       | 1430     | 1340       | 890      | 1020     | 9290     | 22620    | 25180    | 21430    | 9570     | 1450       | 1080     | 96480    |
| C-RETAIL-GENERAL MERCHANDISE                    | 1          | 520        | 650      | 400        | 100      | 4980     | 41820    | 62630    | 84880    | 62650    | 11960    | 480        | 570      | 271640   |
| COMMERCIAL                                      | 12         | 165862     | 97019    | 76842      | 49618    | 67005    | 119848   | 229316   | 259301   | 200442   | 180525   | 188875     | 135443   | 1770096  |
| R-MOBIL HOME                                    | 1          | 5710       | 3690     | 3530       | 2340     | 1640     | 2540     | 2860     | 6180     | 2910     | 2360     | 2620       | 2890     | 39270    |
| RESIDENTIAL                                     | 483        | 1506898    | 11483842 | 1270730    | 1000562  | 1364514  | 3078073  | 3623736  | 7335601  | 4737748  | 2285218  | 1625805    | 1454723  | 40767450 |
| RESIDENTIAL RENTALS                             | 8          | 23280      | 19217    | 20262      | 18816    | 27701    | 45812    | 46190    | 63965    | 31123    | 29454    | 25375      | 18214    | 369409   |
| Subtotal for WATER USAGE                        | 509        | 1707245    | 11608699 | 1375673    | 1074361  | 1469660  | 3406335  | 4146258  | 7934684  | 5191111  | 2521775  | 1847439    | 1616164  | 43899404 |
|                                                 | 0          | 0          | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        | 0        |
| Total                                           | 509        | 1707245    | 11608699 | 1375673    | 1074361  | 1469660  | 3406335  | 4146258  | 7934684  | 5191111  | 2521775  | 1847439    | 1616164  | 43899404 |

| usertype                                        | avg_accts_ | jan 2021 i | feb 2021 | mar 2021 | apr 2021 | may 2021 | jun 2021 | jul 2021 | aug 2021 | sep 2021 | oct 2021 | nov 2021 | dec 2021 1 | total    |
|-------------------------------------------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|
| •                                               | 0          | 0          | _ 0      | _ 0      | 0        | 0        | 0        | 0        | 0        | 0        | _ 0      | _ 0      | _ 0        | 0        |
| Water Usage Summary From Billing                | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
| Routes: All                                     | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
| Billing Usage Period: From JAN-2021 to DEC-2021 | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
|                                                 | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
|                                                 | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
|                                                 | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
| WATER BASE                                      | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
| Subtotal for WATER BASE                         | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
|                                                 | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
| WATER USAGE                                     | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
| C-CHURCH                                        | 1          | 474        | 728      | 440      | 520      | 1040     | 897      | 5123     | 734      | 449      | 690      | 1415     | 1128       | 13638    |
| C-FINANCE-BANKING                               | 1          | 2500       | 5900     | 1600     | 2600     | 2100     | 91200    | 144600   | 107900   | 44436    | 1613     | 1720     | 1318       | 407487   |
| C-GOVERNMENT-COUNTY                             | 2          | 2410       | 2150     | 1140     | 1760     | 3300     | 4160     | 4400     | 37500    | 18198    | 8732     | 2211     | 1913       | 87874    |
| C-RETAIL-EAT & DRINK                            | 1          | 0          | 0        | 0        | 0        | 0        | 0        | 916      | 989      | 968      | 1031     | 401      | 322        | 4627     |
| C-RETAIL-GENERAL MERCHANDISE                    | 1          | 530        | 660      | 500      | 810      | 14150    | 59970    | 88640    | 86040    | 46360    | 16130    | 7800     | 650        | 322240   |
| COMMERCIAL                                      | 11         | 88909      | 116699   | 92621    | 134150   | 115680   | 190425   | 243691   | 482082   | 241230   | 185665   | 1171257  | 163983     | 3226392  |
| R-MOBIL HOME                                    | 1          | 3300       | 4650     | 2960     | 8680     | 7660     | 7690     | 11650    | 5260     | 6460     | 6090     | 4530     | 800        | 69730    |
| RESIDENTIAL                                     | 504        | 1486340    | 1612864  | 1126243  | 1587804  | 1723898  | 3654821  | 7778491  | 6772408  | 4005355  | 2743256  | 8380313  | 11592698   | 52464491 |
| RESIDENTIAL RENTALS                             | 8          | 18892      | 19282    | 15663    | 18748    | 17208    | 74625    | 82364    | 47636    | 34880    | 35182    | 20036    | 23032      | 407548   |
| Subtotal for WATER USAGE                        | 530        | 1603355    | 1762933  | 1241167  | 1755072  | 1885036  | 4083788  | 8359875  | 7540549  | 4398336  | 2998389  | 9589683  | 11785844   | 57004027 |
|                                                 | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0          | 0        |
| Total                                           | 530        | 1603355    | 1762933  | 1241167  | 1755072  | 1885036  | 4083788  | 8359875  | 7540549  | 4398336  | 2998389  | 9589683  | 11785844   | 57004027 |

| usertype                                        | avg accts | an 2022 | feb 2022 i | mar 2022 | apr 2022 i | may 2022 j | un 2022 | jul 2022 | aug 2022 : | sep 2022 | oct 2022 i | nov 2022 | dec 2022 | total    |
|-------------------------------------------------|-----------|---------|------------|----------|------------|------------|---------|----------|------------|----------|------------|----------|----------|----------|
| •                                               | 0         | _ 0     | _ 0        | _ 0      | 0          | 0          | _ 0     | 0        | 0          | 0        | _ 0        | _ 0      | _ 0      | 0        |
| Water Usage Summary From Billing                | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
| Routes: All                                     | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
| Billing Usage Period: From JAN-2022 to DEC-2022 | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
|                                                 | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
|                                                 | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
|                                                 | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
| WATER BASE                                      | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
| Subtotal for WATER BASE                         | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
|                                                 | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
| WATER USAGE                                     | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
| C-CHURCH                                        | 1         | 1107    | 599        | 688      | 211        | 321        | 469     | 411      | 454        | 257      | 257        | 705      | 538      | 6017     |
| C-FINANCE-BANKING                               | 1         | 1476    | 1875       | 1761     | 1566       | 1545       | 112236  | 140394   | 153870     | 137172   | 137172     | 0        | 0        | 689067   |
| C-GOVERNMENT-COUNTY                             | 2         | 1869    | 1796       | 3226     | 1761       | 2367       | 11418   | 20082    | 24951      | 23040    | 23040      | 0        | 53       | 113603   |
| C-RETAIL-EAT & DRINK                            | 1         | 63      | 24         | 8        | 286        | 670        | 621     | 831      | 960        | 2        | 2          | 2503     | 0        | 5970     |
| C-RETAIL-GENERAL MERCHANDISE                    | 1         | 500     | 660        | 688      | 567        | 9861       | 25056   | 75642    | 147335     | 82698    | 82698      | 0        | 0        | 425705   |
| COMMERCIAL                                      | 12        | 98494   | 246820     | 202449   | 177426     | 174723     | 299458  | 278728   | 304029     | 398064   | 398064     | 124160   | 135253   | 2837668  |
| RESIDENTIAL                                     | 472       | 1609429 | 1578758    | 1625657  | 1544418    | 1614697    | 2272575 | 4056074  | 6866566    | 5483034  | 5041916    | 1263121  | 1244154  | 34200399 |
| RESIDENTIAL RENTALS                             | 9         | 32359   | 23705      | 21517    | 23268      | 24821      | 27742   | 42550    | 73813      | 40401    | 40547      | 7571     | 12382    | 370676   |
| Subtotal for WATER USAGE                        | 499       | 1745297 | 1854237    | 1855994  | 1749503    | 1829005    | 2749575 | 4614712  | 7571978    | 6164668  | 5723696    | 1398060  | 1392380  | 38649105 |
|                                                 | 0         | 0       | 0          | 0        | 0          | 0          | 0       | 0        | 0          | 0        | 0          | 0        | 0        | 0        |
| Total                                           | 1585      | 5116897 | 5429883    | 5402170  | 5103345    | 5311129    | 6204977 | 7926552  | 10852608   | 9430648  | 8954546    | 4130240  | 4135744  | 77998739 |

# **Appendix O**

**Water Rights** 

#### DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION

1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

# **GENERAL ABSTRACT**

Water Right Number: 41J 61342-00 PROVISIONAL PERMIT

Version: 2 -- CHANGE AUTHORIZATION

**Version Status: ACTIVE** 

Owners: WHITE SULPHUR SPRINGS, CITY OF

PO BOX 442

WHITE SULPHUR SPRINGS, MT 59645

**Priority Date:** DECEMBER 20, 1985 at 11:49 A.M.

Enforceable Priority Date: DECEMBER 20, 1985 at 11:49 A.M.

Purpose (use): MUNICIPAL
Maximum Flow Rate: 500.00 GPM
Maximum Volume: 806.50 AC-FT

Source Name: GROUNDWATER

Source Type: GROUNDWATER

Point of Diversion and Means of Diversion:

<u>ID</u> <u>Govt Lot</u> <u>Qtr Sec</u> <u>Sec</u> <u>Twp</u> <u>Rge</u> <u>County</u> 1 SWSESE 7 9N 7E MEAGHER

Period of Diversion: JANUARY 1 TO DECEMBER 31

**Diversion Means: WELL** 

Well Depth: 200.00 FEET Static Water Level: 19.00 FEET Casing Diameter: 10.00 INCHES

2 SWSESE 7 9N 7E MEAGHER

Period of Diversion: JANUARY 1 TO DECEMBER 31

**Diversion Means:** WELL

Well Depth: 201.00 FEET Static Water Level: 22.00 FEET Casing Diameter: 14.75 INCHES

Purpose (Use): MUNICIPAL

Volume: 806.50 AC-FT

Period of Use: JANUARY 1 to DECEMBER 31

Place of Use:

| <u>ID</u> | <u>Acres</u> | Govt Lot | <u>Qtr Sec</u> | <u>Sec</u> | <u>Twp</u> | <u>Rge</u> | <b>County</b> |
|-----------|--------------|----------|----------------|------------|------------|------------|---------------|
| 1         |              |          | S2             | 7          | 9N         | 7E         | MEAGHER       |
| 2         |              |          | NW             | 18         | 9N         | 7E         | MEAGHER       |
| 3         |              |          | SE             | 12         | 9N         | 6E         | MEAGHER       |
| 4         |              |          | NE             | 13         | 9N         | 6E         | MEAGHER       |

Remarks:

#### Remarks:

#### **GROUNDWATER WASTE & CONTAMINATION**

THIS RIGHT IS SUBJECT TO SECTION 85-2-505, MCA, REQUIRING ALL WELLS BE CONSTRUCTED SO THEY WILL NOT ALLOW WATER TO BE WASTED OR CONTAMINATE OTHER WATER SUPPLIES OR SOURCES, AND ALL FLOWING WELLS SHALL BE CAPPED OR EQUIPPED SO THE FLOW OF THE WATER MAY BE STOPPED WHEN NOT BEING PUT TO BENEFICIAL USE.

#### **GROUNDWATER WELL - ACCESS PORT**

THE FINAL COMPLETION OF THE WELL(S) MUST INCLUDE AN ACCESS PORT OF AT LEAST .50 INCH SO THE STATIC LEVEL OF THE WELL MAY BE ACCURATELY MEASURED.

#### WATER MEASUREMENT-INLINE FLOW METER REQUIRED

THE APPROPRIATOR SHALL INSTALL A DEPARTMENT APPROVED IN-LINE FLOW METER AT A POINT IN THE DELIVERY LINE APPROVED BY THE DEPARTMENT. WATER MUST NOT BE DIVERTED UNTIL THE REQUIRED MEASURING DEVICE IS IN PLACE AND OPERATING. ON A FORM PROVIDED BY THE DEPARTMENT, THE APPROPRIATOR SHALL KEEP A WRITTEN YEARLY RECORD OF THE FLOW RATE AND VOLUME OF ALL WATER DIVERTED, INCLUDING THE PERIOD OF TIME. RECORDS SHALL BE SUBMITTED BY NOVEMBER 30 OF EACH YEAR AND UPON REQUEST AT OTHER TIMES DURING THE YEAR. FAILURE TO SUBMIT REPORTS MAY BE CAUSE FOR REVOCATION OF A PERMIT OR CHANGE. THE RECORDS MUST BE SENT TO THE WATER RESOURCES REGIONAL OFFICE. THE APPROPRIATOR SHALL MAINTAIN THE MEASURING DEVICE SO IT ALWAYS OPERATES PROPERLY AND MEASURES FLOW RATE AND VOLUME ACCURATELY.

#### DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION

1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

# GENERAL ABSTRACT

Water Right Number: 41J 193193-00 STATEMENT OF CLAIM

Version: 2 -- POST DECREE

**Version Status: ACTIVE** 

Owners: WHITE SULPHUR SPRINGS, CITY OF

PO BOX 442

WHITE SULPHUR SPRINGS, MT 59645

**Priority Date:** DECEMBER 31, 1872

Enforceable Priority Date: DECEMBER 31, 1872

Type of Historical Right: DECREED

Purpose (use): MUNICIPAL

Maximum Flow Rate: 112.20 GPM

Maximum Volume: 181.00 AC-FT

Source Name: WILLOW CREEK, SOUTH FORK

**Source Type:** SURFACE WATER

Point of Diversion and Means of Diversion:

<u>ID</u> <u>Govt Lot</u> <u>Qtr Sec</u> <u>Sec</u> <u>Twp</u> <u>Rge</u> <u>County</u> 1 NENENW 26 9N 7E MEAGHER

Period of Diversion: JANUARY 1 TO DECEMBER 31

**Diversion Means:** HEADGATE

Period of Use: JANUARY 1 to DECEMBER 31

#### Place of Use:

| <u>ID</u> | <u>Acres</u> | Govt Lot | <b>Qtr Sec</b> | <u>Sec</u> | <b>Twp</b> | Rge | <b>County</b> |
|-----------|--------------|----------|----------------|------------|------------|-----|---------------|
| 1         |              |          | S2S2           | 7          | 9N         | 7E  | MEAGHER       |
| 2         |              |          | S2SE           | 12         | 9N         | 7E  | MEAGHER       |
| 3         |              |          | NE             | 13         | 9N         | 7E  | MEAGHER       |
| 4         |              |          | N2NESE         | 13         | 9N         | 7E  | MEAGHER       |
| 5         |              |          | SWNWNE         | 18         | 9N         | 7E  | MEAGHER       |
| 6         |              |          | NW             | 18         | 9N         | 7E  | MEAGHER       |
| 7         |              |          | N2NWSW         | 18         | 9N         | 7E  | MEAGHER       |
|           |              |          |                |            |            |     |               |

#### Remarks:

THE FOLLOWING ELEMENTS WERE AMENDED BY THE CLAIMANT ON 03/23/1989: PRIORITY DATE AND PLACE OF USE.

WHENEVER THE WATER RIGHTS FOLLOWING THIS STATEMENT ARE COMBINED TO SUPPLY WATER FOR THE CLAIMED PURPOSE, EACH IS LIMITED TO THE HISTORICAL FLOW RATE AND PLACE OF USE OF THAT INDIVIDUAL RIGHT. THE SUM TOTAL VOLUME OF THESE WATER RIGHTS SHALL NOT EXCEED THE AMOUNT PUT TO HISTORICAL AND BENEFICIAL USE. 193193-00, 193194-00, 193195-00.

#### DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION

1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

# **GENERAL ABSTRACT**

Water Right Number: 41J 193194-00 STATEMENT OF CLAIM

Version: 2 -- POST DECREE

**Version Status: ACTIVE** 

Owners: WHITE SULPHUR SPRINGS, CITY OF

PO BOX 442

WHITE SULPHUR SPRINGS, MT 59645

Priority Date: JUNE 30, 1878

Enforceable Priority Date: JUNE 30, 1878

Type of Historical Right: USE

Purpose (use): MUNICIPAL Maximum Flow Rate: 1.42 CFS

Maximum Volume: 476.00 AC-FT

Source Name: WILLOW CREEK, SOUTH FORK

**Source Type:** SURFACE WATER

Point of Diversion and Means of Diversion:

<u>ID</u> <u>Govt Lot</u> <u>Qtr Sec</u> <u>Sec</u> <u>Twp</u> <u>Rge</u> <u>County</u> 1 NENENW 26 9N 7E MEAGHER

Period of Diversion: JANUARY 1 TO DECEMBER 31

**Diversion Means:** HEADGATE

Period of Use: JANUARY 1 to DECEMBER 31

#### Place of Use:

| <u>ID</u> | <u>Acres</u> | Govt Lot | <b>Qtr Sec</b> | <u>Sec</u> | <b>Twp</b> | Rge | <b>County</b> |
|-----------|--------------|----------|----------------|------------|------------|-----|---------------|
| 1         |              |          | S2S2           | 7          | 9N         | 7E  | MEAGHER       |
| 2         |              |          | S2SE           | 12         | 9N         | 7E  | MEAGHER       |
| 3         |              |          | NE             | 13         | 9N         | 7E  | MEAGHER       |
| 4         |              |          | N2NESE         | 13         | 9N         | 7E  | MEAGHER       |
| 5         |              |          | SWNWNE         | 18         | 9N         | 7E  | MEAGHER       |
| 6         |              |          | NW             | 18         | 9N         | 7E  | MEAGHER       |
| 7         |              |          | N2NWSW         | 18         | 9N         | 7E  | MEAGHER       |
|           |              |          |                |            |            |     |               |

#### Remarks:

THE FOLLOWING ELEMENTS WERE AMENDED BY THE CLAIMANT ON 3/23/1989: PLACE OF USE, PRIORITY DATE AND FLOW RATE.

WHENEVER THE WATER RIGHTS FOLLOWING THIS STATEMENT ARE COMBINED TO SUPPLY WATER FOR THE CLAIMED PURPOSE, EACH IS LIMITED TO THE HISTORICAL FLOW RATE AND PLACE OF USE OF THAT INDIVIDUAL RIGHT. THE SUM TOTAL VOLUME OF THESE WATER RIGHTS SHALL NOT EXCEED THE AMOUNT PUT TO HISTORICAL AND BENEFICIAL USE. 193193-00, 193194-00, 193195-00.

#### DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION

1424 9TH AVENUE P.O.BOX 201601 HELENA, MONTANA 59620-1601

# **GENERAL ABSTRACT**

Water Right Number: 41J 193195-00 STATEMENT OF CLAIM

Version: 2 -- POST DECREE

**Version Status: ACTIVE** 

Owners: WHITE SULPHUR SPRINGS, CITY OF

**PO BOX 442** 

WHITE SULPHUR SPRINGS, MT 59645

Priority Date: SEPTEMBER 22, 1898

Enforceable Priority Date: SEPTEMBER 22, 1898

194.00 AC-FT

Type of Historical Right: FILED

**Maximum Volume:** 

Purpose (use): MUNICIPAL Maximum Flow Rate: 0.33 CFS

Source Name: WILLOW CREEK, SOUTH FORK

Source Type: SURFACE WATER

Point of Diversion and Means of Diversion:

<u>ID</u> <u>Govt Lot</u> <u>Qtr Sec</u> <u>Sec</u> <u>Twp</u> <u>Rge</u> <u>County</u> 1 NENENW 26 9N 7E MEAGHER

Period of Diversion: JANUARY 1 TO DECEMBER 31

**Diversion Means:** HEADGATE

Period of Use: JANUARY 1 to DECEMBER 31

#### Place of Use:

| <u>ID</u> | <u>Acres</u> | Govt Lot | <b>Qtr Sec</b> | <u>Sec</u> | <b>Twp</b> | Rge | <b>County</b> |
|-----------|--------------|----------|----------------|------------|------------|-----|---------------|
| 1         |              |          | S2S2           | 7          | 9N         | 7E  | MEAGHER       |
| 2         |              |          | S2SE           | 12         | 9N         | 7E  | MEAGHER       |
| 3         |              |          | NE             | 13         | 9N         | 7E  | MEAGHER       |
| 4         |              |          | N2NESE         | 13         | 9N         | 7E  | MEAGHER       |
| 5         |              |          | SWNWNE         | 18         | 9N         | 7E  | MEAGHER       |
| 6         |              |          | NW             | 18         | 9N         | 7E  | MEAGHER       |
| 7         |              |          | N2NWSW         | 18         | 9N         | 7E  | MEAGHER       |
|           |              |          |                |            |            |     |               |

#### Remarks:

THE PLACE OF USE WAS AMENDED BY THE CLAIMANT ON 03/23/1989.

WHENEVER THE WATER RIGHTS FOLLOWING THIS STATEMENT ARE COMBINED TO SUPPLY WATER FOR THE CLAIMED PURPOSE, EACH IS LIMITED TO THE HISTORICAL FLOW RATE AND PLACE OF USE OF THAT INDIVIDUAL RIGHT. THE SUM TOTAL VOLUME OF THESE WATER RIGHTS SHALL NOT EXCEED THE AMOUNT PUT TO HISTORICAL AND BENEFICIAL USE. 193193-00, 193194-00, 193195-00.

# **Appendix P**

**Water Quality** 



# Montana Department of Environmental Quality

# Drinking Water: Public Water Supply Bureau

# **Public Water Supply Monitoring Schedule**

Guidance Document PDF
CLICK HERE

Video Tutorial on Printing CLICK HERE PWS Bureau Contacts
CLICK HERE

Search by Water System Name or PWS ID# MT0000360 WHITE SULPHUR SPRINGS CITY OF

Last Data Refresh: 7/8/2023 11:38:08 AM

Public Water Supply ID#: MT0000360 Water System Name: WHITE SULPHUR SPRINGS CITY OF

Principle County Served: MEAGHER Primary Water Source: SW

Number of Connections: 600 Classification Type: COMMUNITY Population Served: 1,000 Operating Period: 01/01-12/31

# **COMPLIANCE SCHEDULES**

| Schedule Type               | Schedule Activity               | Due Date   | Schedule Status          |
|-----------------------------|---------------------------------|------------|--------------------------|
| CONCLIMED CONFIDENCE DEPORT | SUBMIT ACCEPTABLE CERTIFICATION | 09/30/2023 | Paperwork due in 84 days |
| CONSUMER CONFIDENCE REPORT  | SUBMIT ACCEPTABLE CCR           | 06/30/2023 | Paperwork Overdue        |

# SYSTEM SUMMARY REPORTING REQUIREMENTS: FANLs

| PWS Facility Name   | Sample Point<br>Labels | Analyte Name | Control<br>Level | Sample<br>Frequency | Reporting<br>Frequency | DEQ FANL CODE |
|---------------------|------------------------|--------------|------------------|---------------------|------------------------|---------------|
|                     |                        | CHIODINE     | 4 MG/L<br>MAX    | Monthly             | Quarterly              | MRDL          |
| DICTRIBUTION CVCTEM | DC001 CD001            | CHLORINE     | .001 MG/L<br>MIN | 1 Daily             | Monthly                | DSRD          |
| DISTRIBUTION SYSTEM | DS001 SP001            |              | 060 MG/I         | Soo Cham            | Son Cham               |               |

|                          |             | HAA5      | MAX              | Schedule             | Schedule             | DBP2 |
|--------------------------|-------------|-----------|------------------|----------------------|----------------------|------|
|                          |             | TTHM      | .080 MG/L<br>MAX | See Chem<br>Schedule | See Chem<br>Schedule | DBP2 |
|                          |             | CHLORINE  | .2 MG/L<br>MIN   | 1 Daily              | Monthly              | EPRD |
| TP FOR WILLOW CREEK SWTP | TP002 EP502 | TUDDIDITY | 1 NTU 95P        | Contact Rule<br>MGR  | Contact Rule<br>MGR  | 95PT |
|                          |             | TURBIDITY | 5 NTU<br>MAX     | Contact Rule<br>MGR  | Contact Rule<br>MGR  | MAXT |

<sup>\*</sup>Monthly MRDL chlorine residual must be taken and reported at the same time and place as each coliform sample collected.

| Analyte Group Name Sample Point Label Sample Point Label Sample Sample Frequency Seasonal Collection Period Name Satisfied?  COLIFORM (TCR)  Analyte Group Name Sample Point Label Sample Sample Count Required Sample Frequency Seasonal Collection Period Name Satisfied?  Seasonal Collection Period Name Satisfied?  Monitoring Period Name Schedule Status Schedule: Aug23 No Future Schedule: 24 days to CP Open Schedule: 24 days to CP Open Schedule: 23 days left in CP Open Schedule: Sam taken on 06-26-2023 |       |       | T     | OTAL C | OLIFORM | BACTERI     | OLOGICAL | .SCHEDUI | _ES    |                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|--------|---------|-------------|----------|----------|--------|----------------------------------------------|
| COLIFORM (TCR)  DS001 SP FOR SP001 DS  2 MONTHLY  01/01-12/31 08-31-2023                                                                                                                                                                                                                                                                                                                                                                                                                                                | Group | Point | Point | Count  | •       |             | _        | Period   | Period | Schedule Status                              |
| (TCR) SP001 DS 2 MONTHLY 01/01-12/31 07-31-2023 JUL23 No 23 days left in CP 06-01-2023 to UIN23 Yes Closed Schedule: Sam                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |        |         |             |          | AUG23    | No     |                                              |
| I IIIN23 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |       | 2      | MONTHLY | 01/01-12/31 |          | JUL23    | No     | ·                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |       |        |         |             |          | JUN23    | Yes    | Closed Schedule: Samp<br>taken on 06-26-2023 |

#### **Chemical Schedules Status Filter**

Chemical Schedules can be filtered by schedule status. Click the drop-down arrow and select which schedules you want to display.

ΑII

| CHEMICAL SCHEDULES                                                                                                                                                         |  |  |  |  |               |               |    |                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|---------------|---------------|----|------------------|--|--|
| Facility/Sample Point Name Sample Group Count Label Name Required Sample Point Name Required Required Sample Frequency Period Period Satisfied Monitoring Period Satisfied |  |  |  |  |               |               |    |                  |  |  |
|                                                                                                                                                                            |  |  |  |  | 01-01-2024 to | 08-01-2024 to | NO | Future Schedule: |  |  |

|                                              |                  |                              |    |         |                             |                             |     | 000 00,000 0.                               |
|----------------------------------------------|------------------|------------------------------|----|---------|-----------------------------|-----------------------------|-----|---------------------------------------------|
| DISTRIBUTION SYSTEM: 2ND WK AUG- 205 10TH ST | DS001<br>DBPHA5  | HAA5<br>(HAA5)               | 1  | 1 YEAR  | 01-01-2023 to<br>12-31-2023 | 08-01-2023 to<br>08-31-2023 | NO  | Open Schedule:<br>24 days to CP             |
| A00 2001011131                               |                  |                              |    |         | 01-01-2022 to<br>12-31-2022 | 08-01-2022 to<br>08-31-2022 | YES | Closed Schedule: Sample taken on 09-06-2022 |
| DISTRIBUTION                                 |                  |                              |    |         | 01-01-2024 to<br>12-31-2024 | 08-01-2024 to<br>08-31-2024 | NO  | Future Schedule:<br>390 days to CP          |
| SYSTEM: 2ND WK<br>AUG- GARDEN                | DS001 D<br>BPTHM | TTHM<br>(TTHM)               | 1  | 1 YEAR  | 01-01-2023 to<br>12-31-2023 | 08-01-2023 to<br>08-31-2023 | NO  | Open Schedule:<br>24 days to CP             |
| SHOP                                         |                  |                              |    |         | 01-01-2022 to<br>12-31-2022 | 08-01-2022 to<br>08-31-2022 | YES | Closed Schedule: Sample taken on 09-06-2022 |
|                                              |                  | ASBESTOS                     | 1  | 9 YEARS | 01-01-2029 to<br>12-31-2037 | 01-01-2029 to<br>12-31-2037 | NO  | Future Schedule: 2004 days to CP            |
|                                              |                  | (ASBE)                       | 1  | 9 YEARS | 01-01-2020 to<br>12-31-2028 | 01-01-2020 to<br>12-31-2028 | NO  | Open Schedule:<br>2003 days left in CP      |
| DISTRIBUTION SYSTEM: SP FOR DS               | DS001<br>SP001   | LEAD                         | 10 | 3 YEARS | 01-01-2024 to<br>12-31-2026 | 06-01-2026 to<br>09-30-2026 | NO  | Future Schedule:<br>1059 days to CP         |
| D3                                           |                  | COPPER<br>ONLY               |    |         | 01-01-2021 to<br>12-31-2023 | 06-01-2023 to<br>09-30-2023 | NO  | Open Schedule:<br>84 days left in CP        |
|                                              |                  | (PBCU)                       |    |         | 01-01-2018 to<br>12-31-2020 | 06-01-2020 to<br>09-30-2020 | YES | Closed Schedule: Sample taken on 09-30-2020 |
|                                              |                  |                              |    |         | 01-01-2026 to<br>12-31-2028 | 01-01-2026 to<br>12-31-2028 | NO  | Future Schedule:<br>908 days to CP          |
|                                              |                  | ARSENIC<br>(ARSE)            | 1  | 3 YEARS | 01-01-2023 to<br>12-31-2025 | 01-01-2023 to<br>12-31-2025 | NO  | Open Schedule:<br>907 days left in CP       |
|                                              |                  |                              |    |         | 01-01-2020 to<br>12-31-2022 | 01-01-2020 to<br>12-31-2022 | YES | Closed Schedule: Sample taken on 12-12-2022 |
|                                              |                  |                              |    |         | 01-01-2024 to<br>12-31-2024 | 01-01-2024 to<br>12-31-2024 | NO  | Future Schedule:<br>177 days to CP          |
|                                              |                  | NITRATE<br>NITRITE<br>(NITR) | 1  | 1 YEAR  | 01-01-2023 to<br>12-31-2023 | 01-01-2023 to<br>12-31-2023 | NO  | Open Schedule:<br>176 days left in CP       |
|                                              |                  | (1111)                       |    |         | 01-01-2022 to<br>12-31-2022 | 01-01-2022 to<br>12-31-2022 | YES | Closed Schedule: Sample taken on 12-12-2022 |
|                                              |                  |                              |    |         | 01-01-2026 to<br>12-31-2028 | 01-01-2026 to<br>12-31-2028 | NO  | Future Schedule:<br>908 days to CP          |
|                                              |                  | P2-5 INOR                    |    |         | 01-01-2023+0                | N1_N1_2N22+A                |     | Open Schedule:                              |

|                                        |                | GANICS (IN 01)                | 1 | 3 YEARS | 12-31-2025                  | 12-31-2025                  | NO      | 907 days left in CP                         |                             |    |                                     |  |  |                             |                             |    |                                    |
|----------------------------------------|----------------|-------------------------------|---|---------|-----------------------------|-----------------------------|---------|---------------------------------------------|-----------------------------|----|-------------------------------------|--|--|-----------------------------|-----------------------------|----|------------------------------------|
|                                        |                | 02)                           |   |         | 01-01-2020 to<br>12-31-2022 | 01-01-2020 to<br>12-31-2022 | YES     | Closed Schedule: Sample taken on 12-12-2022 |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                | RAD                           |   |         | 01-01-2026 to<br>12-31-2034 | 01-01-2026 to<br>12-31-2034 | NO      | Future Schedule:<br>908 days to CP          |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                | GROSS<br>ALPHA                | 1 | 9 YEARS | 01-01-2017 to<br>12-31-2025 | 01-01-2017 to<br>12-31-2025 | NO      | Open Schedule:<br>907 days left in CP       |                             |    |                                     |  |  |                             |                             |    |                                    |
| TP FOR WELLS 1 & 2: EP FOR WELLS 1 & 2 | TP003<br>EP503 | (GRAL)                        |   |         | 01-01-2008 to<br>12-31-2016 | 01-01-2008 to<br>12-31-2016 | YES     | Closed Schedule: Sample taken on 12-20-2010 |                             |    |                                     |  |  |                             |                             |    |                                    |
| W.Z.                                   |                | DARWINAG                      |   |         | 01-01-2026 to<br>12-31-2034 | 01-01-2026 to<br>12-31-2034 | NO      | Future Schedule:<br>908 days to CP          |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                | RADIUMS<br>COMBINED<br>(COMB) | 1 | 9 YEARS | 01-01-2017 to<br>12-31-2025 | 01-01-2017 to<br>12-31-2025 | NO      | Open Schedule:<br>907 days left in CP       |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                | ,                             |   |         | 01-01-2008 to<br>12-31-2016 | 01-01-2008 to<br>12-31-2016 | YES     | Closed Schedule: Sample taken on 12-05-2016 |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                | COC DECIM                     |   |         | 01-01-2026 to<br>12-31-2028 | 01-01-2026 to<br>12-31-2028 | NO      | Future Schedule:<br>908 days to CP          |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                | SOC REGUL<br>ATED (SOC        | 1 | 3 YEARS | 01-01-2023 to<br>12-31-2025 | 01-01-2023 to<br>12-31-2025 | NO      | Open Schedule:<br>907 days left in CP       |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                | ,                             |   |         | 01-01-2020 to<br>12-31-2022 | 01-01-2020 to<br>12-31-2022 | YES     | Closed Schedule: Sample taken on 12-12-2022 |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                |                               |   |         | STATE<br>WIDE               | 1                           | 9 YEARS | 01-01-2029 to<br>12-31-2037                 | 01-01-2029 to<br>12-31-2037 | NO | Future Schedule:<br>2004 days to CP |  |  |                             |                             |    |                                    |
|                                        |                | WAIVERS<br>(SWW)              | 1 | 3 TLARS | 01-01-2020 to<br>12-31-2028 | 01-01-2020 to<br>12-31-2028 | NO      | Partial Sample<br>taken on 12-12-2022       |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                |                               |   |         |                             |                             |         |                                             |                             |    |                                     |  |  | 01-01-2026 to<br>12-31-2028 | 01-01-2026 to<br>12-31-2028 | NO | Future Schedule:<br>908 days to CP |
|                                        |                | VOC<br>(VOC1)                 | 1 | 3 YEARS | 01-01-2023 to<br>12-31-2025 | 01-01-2023 to<br>12-31-2025 | NO      | Open Schedule:<br>907 days left in CP       |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                |                               |   |         | 01-01-2020 to<br>12-31-2022 | 01-01-2020 to<br>12-31-2022 | YES     | Closed Schedule: Sample taken on 12-12-2022 |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                |                               |   |         | 01-01-2024 to<br>12-31-2024 | 01-01-2024 to<br>12-31-2024 | NO      | Future Schedule:<br>177 days to CP          |                             |    |                                     |  |  |                             |                             |    |                                    |
|                                        |                | ARSENIC<br>(ARSE)             | 1 | 1 YEAR  | 01-01-2023 to<br>12-31-2023 | 01-01-2023 to<br>12-31-2023 | NO      | Open Schedule:<br>176 days left in CP       |                             |    |                                     |  |  |                             |                             |    |                                    |

|                                        |                |                                 |   |           | 01-01-2019 to<br>12-31-2019 | 01-01-2019 to<br>12-31-2019 | YES | Closed Schedule: Sample taken on 12-03-2019 |
|----------------------------------------|----------------|---------------------------------|---|-----------|-----------------------------|-----------------------------|-----|---------------------------------------------|
|                                        |                |                                 |   |           | 10-01-2023 to<br>12-31-2023 | 10-01-2023 to<br>12-31-2023 | NO  | Future Schedule:<br>85 days to CP           |
|                                        |                | NITRATE<br>NITRITE              | 1 |           | 07-01-2023 to<br>09-30-2023 | 07-01-2023 to<br>09-30-2023 | NO  | Open Schedule:<br>84 days left in CP        |
|                                        |                | (NITR)                          |   | QUARTERLY | 04-01-2023 to<br>06-30-2023 | 04-01-2023 to<br>06-30-2023 | NO  | Missed Sample                               |
|                                        |                |                                 |   |           | 01-01-2022 to<br>03-31-2022 | 01-01-2022 to<br>03-31-2022 | YES | Closed Schedule: Sample taken on 02-14-2022 |
|                                        |                | RAD<br>GROSS<br>ALPHA<br>(GRAL) | 1 | 9 YEARS   | 01-01-2026 to<br>12-31-2034 | 01-01-2026 to<br>12-31-2034 | NO  | Future Schedule:<br>908 days to CP          |
| TP FOR WILLOW CREEK SWTP: EP FOR IN TP | TP002<br>EP502 |                                 |   | 9 YEARS   | 01-01-2017 to<br>12-31-2025 | 01-01-2017 to<br>12-31-2025 | NO  | Open Schedule:<br>907 days left in CP       |
| TOKINTI                                |                | RADIUMS<br>COMBINED             | 1 | 9 YEARS   | 01-01-2026 to<br>12-31-2034 | 01-01-2026 to<br>12-31-2034 | NO  | Future Schedule:<br>908 days to CP          |
|                                        |                | (COMB)                          | 1 | 9 YEARS   | 01-01-2017 to<br>12-31-2025 | 01-01-2017 to<br>12-31-2025 | NO  | Open Schedule:<br>907 days left in CP       |
|                                        |                |                                 |   | 3 YEARS   | 01-01-2026 to<br>12-31-2028 | 01-01-2026 to<br>12-31-2028 | NO  | Future Schedule:<br>908 days to CP          |
|                                        |                | SOC REGUL<br>ATED (SOC          | 1 |           | 01-01-2023 to<br>12-31-2025 | 01-01-2023 to<br>12-31-2025 | NO  | Open Schedule:<br>907 days left in CP       |
|                                        |                | ,                               |   |           | 01-01-2017 to<br>12-31-2019 | 01-01-2017 to<br>12-31-2019 | YES | Closed Schedule: Sample taken on 12-03-2019 |
|                                        |                |                                 |   |           | 01-01-2024 to<br>12-31-2024 | 01-01-2024 to<br>12-31-2024 | NO  | Future Schedule:<br>177 days to CP          |
|                                        |                | VOC<br>(VOC1)                   | 1 | 1 YEAR    | 01-01-2023 to<br>12-31-2023 | 01-01-2023 to<br>12-31-2023 | NO  | Open Schedule:<br>176 days left in CP       |
|                                        |                |                                 |   |           | 01-01-2019 to<br>12-31-2019 | 01-01-2019 to<br>12-31-2019 | YES | Closed Schedule: Sample taken on 12-03-2019 |
|                                        |                | _                               |   | _         | _                           | _                           | _   | If needed, scroll down                      |

\*Asbestos - required to monitor during the first three-year compliance period of each nine-year compliance cycle.

<sup>\*</sup>All waivers (including Dioxin) must monitor in the first 3-year period of the new monitoring cycle. The State-wide Waiver includes the following analytes endothall, diquat, glyphosate, ethylene dibromide (EDB), dibromochloropropane (DBCP), cyanide and PCBs.

# **Drinking Water Branch**

# **Coliform/Microbial Sample Results**

# **Return Links**

Water System Search

County Map

Glossary

| Principal<br>County<br>Served | Water<br>System No.    | Water System<br>Name             | Туре | Lab<br>Sample<br>No. | Collection Date & Time |   | <b>Analyte Code</b> | Analyte Name   | Monitoring<br>Period<br>Begin Date | Monitoring<br>Period End<br>Date | Print |
|-------------------------------|------------------------|----------------------------------|------|----------------------|------------------------|---|---------------------|----------------|------------------------------------|----------------------------------|-------|
| MEAGHER                       | 1871 1 111111111134511 | WHITE SULPHUR<br>SPRINGS CITY OF | RT   | 64766                | 03-20-2023             | P | 3100                | COLIFORM (TCR) | 03-01-2023                         | 03-31-2023                       |       |
| MEAGHER                       | IMTTOOOO360            | WHITE SULPHUR<br>SPRINGS CITY OF | RT   | 53689                | 04-10-2018<br>14:15:00 | Р | 3100                | COLIFORM (TCR) | 04-01-2018                         | 04-30-2018                       |       |
| MEAGHER                       | IMTT0000360            | WHITE SULPHUR<br>SPRINGS CITY OF | RT   | 53690                | 04-10-2018<br>14:30:00 | Р | 3100                | COLIFORM (TCR) | 04-01-2018                         | 04-30-2018                       |       |

**Total Number of Records Displayed = 3** 

# **Drinking Water Branch**

# **Lead and Copper Sample Summary Results**

# **Return Links**

Water System Search

County Map

Glossary

| Principal<br>County Served | Water System No. | Water System Name             | Monitoring<br>Period Begin<br>Date | Monitoring<br>Period End<br>Date | Number of<br>Samples | Measure (mg/l) | Analyte |
|----------------------------|------------------|-------------------------------|------------------------------------|----------------------------------|----------------------|----------------|---------|
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2018                         | 12-31-2020                       | 10                   | .168           | Copper  |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2018                         | 12-31-2020                       | 10                   | .209           | Copper  |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2018                         | 12-31-2020                       | 0                    | null           | Copper  |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2018                         | 12-31-2020                       | 10                   | 0              | Lead    |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2018                         | 12-31-2020                       | 10                   | .001           | Lead    |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2018                         | 12-31-2020                       | 0                    | null           | Lead    |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2015                         | 12-31-2017                       | 10                   | .082           | Copper  |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2015                         | 12-31-2017                       | 10                   | .102           | Copper  |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2015                         | 12-31-2017                       | 0                    | null           | Copper  |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2015                         | 12-31-2017                       | 10                   | .002           | Lead    |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2015                         | 12-31-2017                       | 10                   | .004           | Lead    |
| MEAGHER                    | MT0000360        | WHITE SULPHUR SPRINGS CITY OF | 01-01-2015                         | 12-31-2017                       | 0                    | null           | Lead    |

**Total Number of Records Displayed = 12** 

# **Drinking Water Branch**

# **Violations**

**Return Links** 

Water System Detail

Water Systems

Water System Search

County Map

Glossary

MT0000360 С Water System No. : Federal Type: C Water System Name: WHITE SULPHUR SPRINGS CITY OF State Type: SW**Principal County Served: MEAGHER Primary Source:** Status: Α **Activity Date:** 02-14-2000

\*\*Please note: some of these violations may have been resolved and/or returned to compliance. Please click on the violation to view more information on its compliance status.

# **Group Violations**

| Violation No. | Status | Violation<br>Type | Violation Name                      | Analyte<br>Group<br>Code | Analyte Group Name   | Water<br>System<br>Facility State<br>Asgn ID | Water System Facility<br>Name    |
|---------------|--------|-------------------|-------------------------------------|--------------------------|----------------------|----------------------------------------------|----------------------------------|
| 2023-16341    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | SOC                      | CDS SOC REGULATED    | ТР002                                        | TP FOR WILLOW CREEK<br>SWTP      |
| 2022-15909    | V      | 27                | MONITORING, ROUTINE (DBP),<br>MAJOR | HAA5                     | CDS HAA5             | DS001                                        | DISTRIBUTION SYSTEM              |
| 2021-15762    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | <u>NITR</u>              | CDS NITRATE NITRITE  | TP002                                        | TP FOR WILLOW CREEK<br>SWTP      |
| 2021-15746    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | VOC1                     | CDS VOC              | TP002                                        | TP FOR WILLOW CREEK<br>SWTP      |
| 2021-15745    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | ARSE                     | CDS ARSENIC          | TP002                                        | TP FOR WILLOW CREEK SWTP         |
| 2020-15678    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | <u>NITR</u>              | CDS NITRATE NITRITE  | TP002                                        | TP FOR WILLOW CREEK SWTP         |
| 2020-15519    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | NITR                     | CDS NITRATE NITRITE  | TP002                                        | TP FOR WILLOW CREEK<br>SWTP      |
| 2019-15451    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | ARSE                     | CDS ARSENIC          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP      |
| 2019-15449    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | VOC1                     | CDS VOC              | TP002                                        | TP FOR WILLOW CREEK<br>SWTP      |
| 2016-14408    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | NITR                     | CDS NITRATE NITRITE  | TP002                                        | TP FOR WILLOW CREEK<br>SWTP      |
| 2014-13417    | V      | 27                | MONITORING, ROUTINE (DBP),<br>MAJOR | <u>CDBP</u>              | CDS DISINFECTANT BPS | DS001                                        | DISTRIBUTION SYSTEM              |
| 2011-11403    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | SOC1                     | CDS SOC              | СН001                                        | COMMON HEADER FOR<br>WELLS 1 & 2 |
| 2011-11404    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | SOC1                     | CDS SOC              | TP002                                        | TP FOR WILLOW CREEK<br>SWTP      |
| 2011-11244    | V      | 03                | MONITORING, ROUTINE<br>MAJOR        | VOC1                     | CDS VOC              | СН001                                        | COMMON HEADER FOR<br>WELLS 1 & 2 |

| 2011-11312        | V     | 03  | MONITORING, ROUTINE<br>MAJOR        | INO1        | CDS P2-5 INORGANICS      | TP002  | TP FOR WILLOW CREEK SWTP      |
|-------------------|-------|-----|-------------------------------------|-------------|--------------------------|--------|-------------------------------|
|                   |       |     | MONITORING, ROUTINE                 |             |                          |        | TP FOR WILLOW CREEK           |
| 2011-11183        | V     | 03  | MAJOR                               | <u>ARSE</u> | CDS ARSENIC              | TP002  | SWTP                          |
| 2000 10200        | * * * | 0.2 | MONITORING, ROUTINE                 | T I O C I   | CDGALOG                  | ED002  | TP FOR WILLOW CREEK           |
| <u>2009-10388</u> | V     | 03  | MAJOR                               | VOC1        | CDS VOC                  | TP002  | SWTP                          |
| 2009-10310        | V     | 03  | MONITORING, ROUTINE                 | ADCE        | CDS ARSENIC              | TP002  | TP FOR WILLOW CREEK           |
| 2009-10310        | · ·   | 03  | MAJOR                               | ARSE        | CD3 ARSENIC              | 11 002 | SWTP                          |
| 2009-10320        | V     | 03  | MONITORING, ROUTINE                 | INO1        | CDS P2-5 INORGANICS      | TP002  | TP FOR WILLOW CREEK           |
|                   |       |     | MAJOR                               |             |                          |        | SWTP                          |
| <u>2009-10319</u> | V     | 03  | MONITORING, ROUTINE<br>MAJOR        | INO1        | CDS P2-5 INORGANICS      | CH001  | COMMON HEADER FOR WELLS 1 & 2 |
|                   |       |     | MONITORING, ROUTINE (DBP),          |             |                          |        | WELLS I & 2                   |
| <u>2009-10056</u> | V     | 27  | MAJOR                               | <u>CDBP</u> | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
| 2000 1007         |       |     | MONITORING, ROUTINE (DBP),          | ann.        |                          | 5004   | DIGER INVESTOR OF STREET      |
| <u>2009-10057</u> | V     | 27  | MINOR                               | CDBP        | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
| 2007-9298         | V     | 27  | MONITORING, ROUTINE (DBP),          | CDRP        | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
| 2007-9296         | · •   | 21  | MINOR                               | CDDI        | CDS DISINI ECTANI DI S   | D5001  | DISTRIBUTION STSTEM           |
| 2007-9295         | V     | 27  | MONITORING, ROUTINE (DBP),          | CDBP        | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
|                   |       |     | MAJOR                               |             |                          |        |                               |
| <u>2007-9296</u>  | V     | 27  | MONITORING, ROUTINE (DBP),<br>MAJOR | <b>CDBP</b> | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
|                   |       |     | MONITORING, ROUTINE (DBP),          |             |                          |        |                               |
| <u>2007-9297</u>  | V     | 27  | MAJOR                               | <u>CDBP</u> | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
| 2006 0700         | * 7   | 27  | MONITORING, ROUTINE (DBP),          | CDDD        | CDC DICINIFFCEANT DDC    | DC001  | DICTRIBUTION OVCTEM           |
| <u>2006-8788</u>  | V     | 21  | MAJOR                               | CDBP        | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
| 2006-8798         | V     | 27  | MONITORING, ROUTINE (DBP),          | CDBP        | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
| 2000 0750         | •     |     | MAJOR                               | CDDI        | CBS BISH (I ECTITIVI BIS | 25001  |                               |
| 2006-8697         | V     | 03  | MONITORING, ROUTINE                 | VOC1        | CDS VOC                  | TP002  | TP FOR WILLOW CREEK           |
|                   |       |     | MAJOR<br>MONITORING, ROUTINE        |             |                          |        | SWTP TP FOR WILLOW CREEK      |
| <u>2006-8330</u>  | V     | 03  | MAJOR                               | <u>ARSE</u> | CDS ARSENIC              | TP002  | SWTP                          |
|                   |       |     | MONITORING, ROUTINE                 |             |                          |        | COMMON HEADER FOR             |
| <u>2006-8326</u>  | V     | 03  | MAJOR                               | <u>INO1</u> | CDS P2-5 INORGANICS      | CH001  | WELLS 1 & 2                   |
| 2006-8325         | V     | 03  | MONITORING, ROUTINE                 | INO1        | CDS P2-5 INORGANICS      | TP002  | TP FOR WILLOW CREEK           |
| <u> 2000-6323</u> | v     | 03  | MAJOR                               | 11101       | CDS F2-3 INORUAINICS     | 11002  | SWTP                          |
| 2005-7030         | V     | 03  | MONITORING, ROUTINE                 | INO1        | CDS P2-5 INORGANICS      | CH001  | COMMON HEADER FOR             |
|                   | •     |     | MAJOR<br>MONITORING POLITING        |             |                          |        | WELLS 1 & 2                   |
| <u>2005-6919</u>  | V     | 03  | MONITORING, ROUTINE<br>MAJOR        | <u>ARSE</u> | CDS ARSENIC              | TP002  | TP FOR WILLOW CREEK SWTP      |
|                   |       |     | MONITORING, ROUTINE (DBP),          |             |                          |        |                               |
| <u>2005-6421</u>  | V     | 27  | MAJOR                               | <u>CDBP</u> | CDS DISINFECTANT BPS     | DS001  | DISTRIBUTION SYSTEM           |
| 2002 2071         | 17    | 02  | MONITORING, ROUTINE                 | VOC1        | CDC VOC                  | TD002  | TP FOR WILLOW CREEK           |
| <u>2003-3061</u>  | V     | 03  | MAJOR                               | VOC1        | CDS VOC                  | TP002  | SWTP                          |
| 2002-2262         | V     | 03  | MONITORING, ROUTINE                 | ARSE        | CDS ARSENIC              | TP002  | TP FOR WILLOW CREEK           |
| 2002-2202         | •     | 0.5 | MAJOR                               | 7 11(OL)    | CD57IIIOD11IC            | 11002  | SWTP                          |
| <u>2002-1602</u>  | V     | 03  | MONITORING, ROUTINE                 | VOC1        | CDS VOC                  | TP002  | TP FOR WILLOW CREEK           |
|                   |       |     | MAJOR                               |             |                          |        | SWTP                          |
|                   |       |     |                                     |             |                          |        |                               |

# **Individual Violations**

| Violation No.                  | Status | Violation<br>Type | Violation Name                             | Analyte<br>Code | Analyte Name       | Water<br>System<br>Facility State<br>Asgn ID | Water System Facility<br>Name |
|--------------------------------|--------|-------------------|--------------------------------------------|-----------------|--------------------|----------------------------------------------|-------------------------------|
| <u>2021-</u><br><u>4123362</u> | V      | 3A                | MONITORING, ROUTINE,<br>MAJOR (RTCR)       | 3014            | E. COLI            | null                                         | null                          |
| <u>2021-</u><br><u>4123337</u> | V      | 66                | LEAD CONSUMER NOTICE (LCR)                 | 5000            | LEAD & COPPER RULE | null                                         | null                          |
| <u>2014-</u><br><u>4123309</u> | V      | 41                | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0999            | CHLORINE           | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| 2011-4123221                   | V      | 23                | MONITORING (TCR), ROUTINE MAJOR            | 3100            | COLIFORM (TCR)     | null                                         | null                          |
| 2010-4123114                   | V      | 36                | MONITORING, RTN/RPT MAJOR<br>(SWTR-FILTER) | 0999            | CHLORINE           | DS001                                        | DISTRIBUTION SYSTEM           |
| 2009-4123112                   | V      | 36                | MONITORING, RTN/RPT MAJOR<br>(SWTR-FILTER) | 0999            | CHLORINE           | DS001                                        | DISTRIBUTION SYSTEM           |
| <u>2009-</u><br><u>4121909</u> | V      | 36                | MONITORING, RTN/RPT MAJOR<br>(SWTR-FILTER) | 0999            | CHLORINE           | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| 2009-4117609                   | V      | 44                | MONTHLY COMB FLTR<br>EFFLUENT (IESWTR/LT1) | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK SWTP      |
| 2007-4116107                   | V      | 23                | MONITORING (TCR), ROUTINE MAJOR            | 3100            | COLIFORM (TCR)     | null                                         | null                          |
| <u>2006-</u><br><u>4122006</u> | V      | 41                | SINGLE COMB. FILTER<br>EFFLUENT (SWTR)     | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK SWTP      |
| <u>2006-</u><br><u>4122206</u> | V      | 41                | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0999            | CHLORINE           | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| 2006-4114506                   | V      | 41                | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK SWTP      |
| 2006-4114406                   | V      | 41                | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| 2006-4114306                   | V      | 43                | SINGLE COMB FLTR EFFLUENT<br>(IESWTR/LT1)  | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| 2006-4114106                   | V      | 43                | SINGLE COMB FLTR EFFLUENT<br>(IESWTR/LT1)  | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| 2006-4114206                   | V      | 41                | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| 2006-4113906                   | V      | 41                | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| 2006-4113806                   | V      | 43                | SINGLE COMB FLTR EFFLUENT<br>(IESWTR/LT1)  | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| <u>2006-</u><br><u>4122106</u> | V      | 41                | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |
| <u>2006-4113506</u>            | V      | 36                | MONITORING, RTN/RPT MAJOR<br>(SWTR-FILTER) | 0100            | TURBIDITY          | TP002                                        | TP FOR WILLOW CREEK<br>SWTP   |

| 2006-4113406                   | V | 36 | MONITORING, RTN/RPT MAJOR<br>(SWTR-FILTER) | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
|--------------------------------|---|----|--------------------------------------------|------|-----------------------------|-------|--------------------------|
| <u>2006-</u><br><u>4108406</u> | V | 43 | SINGLE COMB FLTR EFFLUENT<br>(IESWTR/LT1)  | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2006-</u><br><u>4108306</u> | V | 36 | MONITORING, RTN/RPT MAJOR<br>(SWTR-FILTER) | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2005-</u><br><u>4108105</u> | V | 71 | CCR REPORT                                 | 7000 | CONSUMER<br>CONFIDENCE RULE | null  | null                     |
| <u>2005-</u><br><u>4107905</u> | V | 43 | SINGLE COMB FLTR EFFLUENT<br>(IESWTR/LT1)  | 0300 | IESWTR                      | TP002 | TP FOR WILLOW CREEK SWTP |
| 2005-<br>4105505               | V | 36 | MONITORING, RTN/RPT MAJOR<br>(SWTR-FILTER) | 0999 | CHLORINE                    | ТР003 | TP FOR WELLS 1 & 2       |
| <u>2005-</u><br><u>4104805</u> | V | 52 | FOLLOW-UP OR ROUTINE TAP<br>M/R (LCR)      | 5000 | LEAD & COPPER RULE          | null  | null                     |
| <u>2004-</u><br><u>4104704</u> | V | 36 | MONITORING, RTN/RPT MAJOR<br>(SWTR-FILTER) | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2004-</u><br><u>4103504</u> | V | 41 | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2004-</u><br><u>4103204</u> | V | 41 | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2004-</u><br><u>4103304</u> | V | 36 | MONITORING, RTN/RPT MINOR<br>(SWTR-FILTER) | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2004-</u><br><u>4103604</u> | V | 36 | MONITORING, RTN/RPT MINOR<br>(SWTR-FILTER) | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2004-</u><br><u>4101804</u> | V | 41 | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2004-</u><br><u>4101404</u> | V | 41 | MONTHLY COMB. FILTER<br>EFFLUENT (SWTR     | 0100 | TURBIDITY                   | TP002 | TP FOR WILLOW CREEK SWTP |
| <u>2004-</u><br><u>4099004</u> | V | 71 | CCR REPORT                                 | 7000 | CONSUMER<br>CONFIDENCE RULE | null  | null                     |
| <u>2000-</u><br><u>4092700</u> | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0200 | SWTR                        | null  | null                     |
| 2000-200                       | V | 21 | MCL (TCR), ACUTE                           | 3100 | COLIFORM (TCR)              | null  | null                     |
| 2000-<br>4068300               | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0200 | SWTR                        | null  | null                     |
| <u>2000-</u><br><u>4060300</u> | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0200 | SWTR                        | null  | null                     |
| 2000-204000                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0200 | SWTR                        | null  | null                     |
| 2000-137000                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0200 | SWTR                        | null  | null                     |
| 2000-121900                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0200 | SWTR                        | null  | null                     |
| 2000-104300                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0200 | SWTR                        | null  | null                     |
| <u>1999-</u><br><u>1626399</u> | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR)      | 0200 | SWTR                        | null  | null                     |
| 2000-18600                     | V | 41 | RES DISINFECT CONCENTRATION (SWTR)         | 0200 | SWTR                        | null  | null                     |

| _ |
|---|
|   |
|   |
|   |

| <u>1996-</u><br><u>1452996</u> | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 1075 | BERYLLIUM, TOTAL   | null | null |
|--------------------------------|---|----|---------------------------------------|------|--------------------|------|------|
| <u>1996-</u><br><u>1453296</u> | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 1045 | SELENIUM           | null | null |
| 1995-977395                    | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 1040 | NITRATE            | null | null |
| 1995-396395                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR) | 0200 | SWTR               | null | null |
| 1995-387395                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR) | 0200 | SWTR               | null | null |
| 1995-226495                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR) | 0200 | SWTR               | null | null |
| 1995-224995                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR) | 0200 | SWTR               | null | null |
| 1995-228495                    | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR) | 0200 | SWTR               | null | null |
| <u>1995-56995</u>              | V | 41 | RES DISINFECT<br>CONCENTRATION (SWTR) | 0200 | SWTR               | null | null |
| <u>1988-388</u>                | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1988-288</u>                | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1988-188</u>                | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1987-387</u>                | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1987-287</u>                | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1987-187</u>                | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1986-186</u>                | V | 02 | MCL, AVERAGE                          | 0100 | TURBIDITY          | null | null |
| <u>1984-184</u>                | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1981-50081</u>              | V | 02 | MCL, AVERAGE                          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1981-1381</u>               | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 0100 | TURBIDITY          | null | null |
| <u>1981-1281</u>               | V | 03 | MONITORING, ROUTINE<br>MAJOR          | 0100 | TURBIDITY          | null | null |
| <u>1980-33980</u>              | V | 02 | MCL, AVERAGE                          | 3000 | COLIFORM (PRE-TCR) | null | null |
| <u>1980-11880</u>              | V | 02 | MCL, AVERAGE                          | 0100 | TURBIDITY          | null | null |
| <u>1980-11780</u>              | V | 02 | MCL, AVERAGE                          | 0100 | TURBIDITY          | null | null |

# IMPORTANT INFORMATION

- MT0000360\_2020\_2023-07-08\_21-23-51.PDF 07/08/2023

# Annual Drinking Water Quality Report

#### MT0000360

#### WHITE SULPHUR SPRINGS CITY OF

| Annual Water Quality Report for the period of January 1 to December 31, 2020                                                                                         | For more information regarding this report contact:                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. | Name                                                                                                                                |
|                                                                                                                                                                      | Phone                                                                                                                               |
| WHITE SULPHUR SPRINGS CITY OF is Surface Water                                                                                                                       | Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. |

# Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. The source water assessment report for your water system provides additional information on your source water's susceptibility to contamination. To access this report please go to: https://deq.mt.gov/water/Programs/dw-sourcewater

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

# Information about Source Water Assessments

SWA = Source Water Assessment

| Source Water Name               | Type of Water | Report Status | Location                             |
|---------------------------------|---------------|---------------|--------------------------------------|
| INTAKE WILLOW CREEK             | SW            |               |                                      |
| WELL 1 1986 8TH AVE GWIC 260672 | GW            |               | 102 8TH AVE NE JUST INSIDE CITY YARD |
| WELL 2 1998 8TH AVE GWIC 172711 | GW            |               | 102 8TH AVE NE JUST INSIDE CITY YARD |

### Lead and Copper

#### Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

| Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination                                                                          |
|-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|---------------------------------------------------------------------------------------------------------|
| Copper          | 2020         | 1.3  | 1.3               | 0.168           | 0               | ppm   |           | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. |

## Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been

found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation

has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment

technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of

microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of

disinfectants to control microbial contaminants.

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

# Water Quality Test Results

Treatment Technique or TT:

A required process intended to reduce the level of a contaminant in drinking water.

7 of

# Regulated Contaminants

| Disinfectants and Disinfection<br>By-Products | Collection Date | Highest Level<br>Detected | Range of Levels<br>Detected | MCLG                  | MCL      | Units | Violation | Likely Source of Contamination                                                                                             |
|-----------------------------------------------|-----------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|----------------------------------------------------------------------------------------------------------------------------|
| Chlorine                                      | 2020            | 0.2                       | 0.2 - 0.2                   | MRDLG = 4             | MRDL = 4 | ppm   | N         | Water additive used to control microbes.                                                                                   |
| Haloacetic Acids (HAA5)                       | 2020            | 1                         | 1 - 1                       | No goal for the total | 60       | ppb   | N         | By-product of drinking water disinfection.                                                                                 |
| Total Trihalomethanes (TTHM)                  | 2020            | 10                        | 5.6 - 5.6                   | No goal for the total | 80       | ppb   | N         | By-product of drinking water disinfection.                                                                                 |
| Inorganic Contaminants                        | Collection Date | Highest Level<br>Detected | Range of Levels<br>Detected | MCLG                  | MCL      | Units | Violation | Likely Source of Contamination                                                                                             |
| Arsenic                                       | 12/03/2019      | 4                         | 0 - 4                       | 0                     | 10       | ppb   | N         | Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.                    |
| Barium                                        | 12/03/2019      | 0.08                      | 0.08 - 0.08                 | 2                     | 2        | ppm   | N         | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.                                |
| Fluoride                                      | 12/03/2019      | 0.2                       | 0.2 - 0.2                   | 4                     | 4.0      | ppm   | N         | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. |

## 1,1,1-Trichloroethane

Some people who drink water containing 1,1,1-trichloroethane in excess of the MCL over many years could experience problems with their liver, nervous system, or circulatory system.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# 1,1,2-Trichloroethane

Some people who drink water containing 1,1,2-trichloroethane well in excess of the MCL over many years could have problems with their liver, kidneys, or immune systems.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

## 1,1-Dichloroethylene

Some people who drink water containing 1,1-dichloroethylene in excess of the MCL over many years could experience problems with their liver.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# 1,2,4-Trichlorobenzene

Some people who drink water containing 1,2,4-trichlorobenzene well in excess of the MCL over many years could experience changes in their adrenal glands.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# 1,2-Dichloroethane

Some people who drink water containing 1,2-dichloroethane in excess of the MCL over many years may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# 1,2-Dichloropropane

Some people who drink water containing 1,2-dichloropropane in excess of the MCL over many years may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

#### Arsenic

Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.

| ouriour.                  |                 |               |                                                                                                                                                                                             |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

#### Benzene

Some people who drink water containing benzene in excess of the MCL over many years could experience anemia or a decrease in blood platelets, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Carbon Tetrachloride

Some people who drink water containing carbon tetrachloride in excess of the MCL over many years could experience problems with their liver and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

## Chlorobenzene

Some people who drink water containing chlorobenzene in excess of the MCL over many years could experience problems with their liver or kidneys.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Dichloromethane

Some people who drink water containing dichloromethane in excess of the MCL over many years could have liver problems and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Ethylbenzene

Some people who drink water containing ethylbenzene well in excess of the MCL over many years could experience problems with their liver or kidneys.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

## Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.

| Violation Type             | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                                 |
|----------------------------|-----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LEAD CONSUMER NOTICE (LCR) | 12/30/2020      | 01/19/2021    | We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results. |

# Nitrate and nitrite [measured as Nitrogen]

Infants below the age of six months who drink water containing nitrate and nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |
| MONITORING, ROUTINE MAJOR | 04/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

## Styrene

Some people who drink water containing styrene well in excess of the MCL over many years could have problems with their liver, kidneys, or circulatory system.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Tetrachloroethylene

Some people who drink water containing tetrachloroethylene in excess of the MCL over many years could have problems with their liver, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

| Toluene                                                                                                                                                    |                 |               |                                                                                                                                                                                             |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Some people who drink water containing toluene well in excess of the MCL over many years could have problems with their nervous system, kidneys, or liver. |                 |               |                                                                                                                                                                                             |  |  |
| Violation Type                                                                                                                                             | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |  |  |
| MONITORING, ROUTINE MAJOR                                                                                                                                  | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |  |  |

# Trichloroethylene

Some people who drink water containing trichloroethylene in excess of the MCL over many years could experience problems with their liver and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Vinyl Chloride

Some people who drink water containing vinyl chloride in excess of the MCL over many years may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Xylenes

Some people who drink water containing xylenes in excess of the MCL over many years could experience damage to their nervous system.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# cis-1,2-Dichloroethylene

Some people who drink water containing cis-1,2-dichloroethylene in excess of the MCL over many years could experience problems with their liver.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

## o-Dichlorobenzene

Some people who drink water containing o-dichlorobenzene well in excess of the MCL over many years could experience problems with their liver, kidneys, or circulatory systems.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

## p-Dichlorobenzene

Some people who drink water containing p-dichlorobenzene in excess of the MCL over many years could experience anemia, damage to their liver, kidneys, or spleen, or changes in their blood.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# trans-1,2-Dicholoroethylene

Some people who drink water containing trans-1,2-dichloroethylene well in excess of the MCL over many years could experience problems with their liver.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2020    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# IMPORTANT INFORMATION

The following pages comprise the Annual Consumer Confidence Report (CCR) for your water system.

To download the CCR into your word processing program, follow these steps. Remember you must have the document set up in Landscape Orientation.

- \* Choose Select All from the edit drop down MENU. (It will highlight all the information)
- \* Choose Edit from the Menu, select Copy from the edit dropdown Menu.
- \* Open your word processing program.
- \* Choose Edit from the MENU, select Paste from the edit dropdown MENU and the information will transfer.
- \* Choose Edit from the Menu.

In order to meet all the requirements of the CCR, you must include the following additional information if it pertains to your water system.

- \* The report must include the telephone number of the owner, operator, or designee of the community water system as a source of additional information concerning the report.
- \* If your water system had any violations during the current CCR Calendar year, you are required to include an explanation of the corrective action taken by the water system.
- \* The report must include information about opportunities for public participation in decisions that may affect the quality of the water (e.g., time and place of regularly scheduled board meetings).
- \* If your water system purchases water from another source, you are required to include the current CCR year's Regulated Contaminants Detected table from your source water supply.
- \* If your water system had any violations during the current CCR Calendar year, you are required to include an explanation of the corrective action taken by the water system.
- \* If your water system is going to use the CCR to deliver a Public Notification, you must include the full notice and return a copy of the CCR and Public Notice with the public Notice. This is in addition to the copy and certification form required by the CCR Rule.
- \* The information about likely sources of contamination provided in the CCR is generic. Specific information regarding contaminants may be available in sanitary surveys and source water assessments and should be used when available to the operator.
- \* If a community water system distributes water to its customers from multiple hydraulically independent distribution systems fed by different raw water sources, the table should contain a separate column for each service area, and the report should identify each separate distribution system. Alternatively, systems may produce separate reports tailored to include data for each service area.
- \* Detections of unregulated contaminants for which monitoring is required are not included in the CCR and must be added. When added, the information must

include the average and range at which the contaminant was detected.

- \* If a water system has performed any monitoring for Cryptosporidium, including monitoring performed to satisfy the requirements of the Information Collection Rule [ICR] (141.143), which indicates that Cryptosporidium may be present in the source water or the finished water, the report must include: (a) a summary of the results of the monitoring; and (b) an explanation of the significance of the results.
- \* If a water system has performed any monitoring for radon which indicate that radon may be present in the finished water, the report must include: (a) The results of the monitoring; and (b) An explanation of the significance of the results.
- \* If a water system has performed additional monitoring which indicates the presence of other contaminants in the finished water, EPA strongly encourages systems to report any results which may indicate a health concern. To determine if results may indicate a health concern, EPA recommends that systems find out if EPA has proposed an NPDWR or issued a health advisory for that contaminant by calling the Safe Drinking Water Hotline (800-426-4791). EPA considers detects above a proposed MCL or health advisory level to indicate possible health concerns. For such contaminants, EPA recommends that the report include: (a) the results of the monitoring; and (b) an explanation of the significance of the results noting the existence of a health advisory or a proposed regulation.
- \* If you are a groundwater system that receives notice from a state of a significant deficiency, you must inform your customers in your CCR report of any significant deficiencies that are not corrected by December 31 of the year covered by it. The CC must include the following information:
  - The nature of the significant deficiency and the date it was identified by the state.
- If the significant deficiency was not corrected by the end of the calendar year, include information regarding the State-approved plan and schedule for correction, including interim measures, progress to date, and any interim measures completed.
- If the significant deficiency was corrected by the end of the calendar year, include information regarding how the deficiency was corrected and the date it was corrected.

# Annual Drinking Water Quality Report

#### MT0000360

#### WHITE SULPHUR SPRINGS CITY OF

| Annual Water Quality Report for the period of January 1 to December 31, 2021                                                                                         | For more information regarding this report contact:                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. | Name                                                                                                                                |
|                                                                                                                                                                      | Phone                                                                                                                               |
| WHITE SULPHUR SPRINGS CITY OF is Surface Water                                                                                                                       | Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. |

# Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. The source water assessment report for your water system provides additional information on your source water's susceptibility to contamination. To access this report please go to: https://deq.mt.gov/water/Programs/dw-sourcewater

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

# Source Water Information

SWA = Source Water Assessment

| Source Water Name               | Type of Water | Report Status | Location                             |
|---------------------------------|---------------|---------------|--------------------------------------|
| INTAKE WILLOW CREEK             | SW            |               |                                      |
| WELL 1 1986 8TH AVE GWIC 260672 | GW            |               | 102 8TH AVE NE JUST INSIDE CITY YARD |
| WELL 2 1998 8TH AVE GWIC 172711 | GW            |               | 102 8TH AVE NE JUST INSIDE CITY YARD |

### Lead and Copper

#### Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

| Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination                                                                          |
|-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|---------------------------------------------------------------------------------------------------------|
| Copper          | 09/30/2020   | 1.3  | 1.3               | 0.168           | 0               | ppm   |           | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. |

## Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been

found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation

has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment

technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of

microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of

disinfectants to control microbial contaminants.

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

# Water Quality Test Results

Treatment Technique or TT:

A required process intended to reduce the level of a contaminant in drinking water.

10

# Regulated Contaminants

| Disinfectants and Disinfection By-Products | Collection Date | Highest Level<br>Detected | Range of Levels<br>Detected | MCLG                  | MCL      | Units | Violation | Likely Source of Contamination                                                                                             |
|--------------------------------------------|-----------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|----------------------------------------------------------------------------------------------------------------------------|
| Chlorine                                   | 2021            | 0.2                       | 0.2 - 0.2                   | MRDLG = 4             | MRDL = 4 | ppm   | N         | Water additive used to control microbes.                                                                                   |
| Haloacetic Acids (HAA5)                    | 08/25/2020      | 1                         | 1 - 1                       | No goal for the total | 60       | ppb   | N         | By-product of drinking water disinfection.                                                                                 |
| Total Trihalomethanes (TTHM)               | 08/25/2020      | 5.6                       | 5.6 - 5.6                   | No goal for the total | 80       | ppb   | N         | By-product of drinking water disinfection.                                                                                 |
| Inorganic Contaminants                     | Collection Date | Highest Level<br>Detected | Range of Levels<br>Detected | MCLG                  | MCL      | Units | Violation | Likely Source of Contamination                                                                                             |
| Arsenic                                    | 12/03/2019      | 4                         | 0 - 4                       | 0                     | 10       | ppb   | N         | Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.                    |
| Barium                                     | 12/03/2019      | 0.08                      | 0.08 - 0.08                 | 2                     | 2        | ppm   | N         | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.                                |
| Fluoride                                   | 12/03/2019      | 0.2                       | 0.2 - 0.2                   | 4                     | 4.0      | ppm   | N         | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. |
| Nitrate [measured as Nitrogen]             | 2021            | 1                         | 1 - 1.02                    | 10                    | 10       | ppm   | N         | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.                               |

# Turbidity

|                                | Limit (Treatment<br>Technique) | Level Detected | Violation | Likely Source of Contamination |
|--------------------------------|--------------------------------|----------------|-----------|--------------------------------|
| Highest single measurement     | 5.0 NTU                        | 0 NTU          | N         | Soil runoff.                   |
| Lowest monthly % meeting limit | 1.0 NTU                        | 100%           | N         | Soil runoff.                   |

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration

07/08/2023 - MT0000360\_2021\_2023-07-08\_21-22-51.PDF

## Haloacetic Acids (HAA5)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

| Violation Type                   | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|----------------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE (DBP), MAJOR | 09/01/2020      | 08/31/2021    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.

| Violation Type             | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                                 |
|----------------------------|-----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LEAD CONSUMER NOTICE (LCR) | 12/30/2020      |               | We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results. |

# Revised Total Coliform Rule (RTCR)

The Revised Total Coliform Rule (RTCR) seeks to prevent waterborne diseases caused by E. coli. E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the

| wastes. Human pathogens in these wastes can cause short-term effects, such as diarmea, cramps, hausea, headaches, or other symptoms. They may pose a greater health list for inhants, young children, the |                 |               |                                                                                                                                                                                             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Violation Type                                                                                                                                                                                            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |  |  |
| MONITORING, ROUTINE, MAJOR (RTCR)                                                                                                                                                                         | 10/01/2021      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |  |  |

# IMPORTANT INFORMATION

The following pages comprise the Annual Consumer Confidence Report (CCR) for your water system.

To download the CCR into your word processing program, follow these steps. Remember you must have the document set up in Landscape Orientation.

- \* Choose Select All from the edit drop down MENU. (It will highlight all the information)
- \* Choose Edit from the Menu, select Copy from the edit dropdown Menu.
- \* Open your word processing program.
- \* Choose Edit from the MENU, select Paste from the edit dropdown MENU and the information will transfer.
- \* Choose Edit from the Menu.

In order to meet all the requirements of the CCR, you must include the following additional information if it pertains to your water system.

- \* The report must include the telephone number of the owner, operator, or designee of the community water system as a source of additional information concerning the report.
- \* If your water system had any violations during the current CCR Calendar year, you are required to include an explanation of the corrective action taken by the water system.
- \* The report must include information about opportunities for public participation in decisions that may affect the quality of the water (e.g., time and place of regularly scheduled board meetings).
- \* If your water system purchases water from another source, you are required to include the current CCR year's Regulated Contaminants Detected table from your source water supply.
- \* If your water system had any violations during the current CCR Calendar year, you are required to include an explanation of the corrective action taken by the water system.
- \* If your water system is going to use the CCR to deliver a Public Notification, you must include the full notice and return a copy of the CCR and Public Notice with the public Notice. This is in addition to the copy and certification form required by the CCR Rule.
- \* The information about likely sources of contamination provided in the CCR is generic. Specific information regarding contaminants may be available in sanitary surveys and source water assessments and should be used when available to the operator.
- \* If a community water system distributes water to its customers from multiple hydraulically independent distribution systems fed by different raw water sources, the table should contain a separate column for each service area, and the report should identify each separate distribution system. Alternatively, systems may produce separate reports tailored to include data for each service area.
- \* Detections of unregulated contaminants for which monitoring is required are not included in the CCR and must be added. When added, the information must

include the average and range at which the contaminant was detected.

- \* If a water system has performed any monitoring for Cryptosporidium, including monitoring performed to satisfy the requirements of the Information Collection Rule [ICR] (141.143), which indicates that Cryptosporidium may be present in the source water or the finished water, the report must include: (a) a summary of the results of the monitoring; and (b) an explanation of the significance of the results.
- \* If a water system has performed any monitoring for radon which indicate that radon may be present in the finished water, the report must include: (a) The results of the monitoring; and (b) An explanation of the significance of the results.
- \* If a water system has performed additional monitoring which indicates the presence of other contaminants in the finished water, EPA strongly encourages systems to report any results which may indicate a health concern. To determine if results may indicate a health concern, EPA recommends that systems find out if EPA has proposed an NPDWR or issued a health advisory for that contaminant by calling the Safe Drinking Water Hotline (800-426-4791). EPA considers detects above a proposed MCL or health advisory level to indicate possible health concerns. For such contaminants, EPA recommends that the report include: (a) the results of the monitoring; and (b) an explanation of the significance of the results noting the existence of a health advisory or a proposed regulation.
- \* If you are a groundwater system that receives notice from a state of a significant deficiency, you must inform your customers in your CCR report of any significant deficiencies that are not corrected by December 31 of the year covered by it. The CC must include the following information:
  - The nature of the significant deficiency and the date it was identified by the state.
- If the significant deficiency was not corrected by the end of the calendar year, include information regarding the State-approved plan and schedule for correction, including interim measures, progress to date, and any interim measures completed.
- If the significant deficiency was corrected by the end of the calendar year, include information regarding how the deficiency was corrected and the date it was corrected.

# Annual Drinking Water Quality Report

#### MT0000360

#### WHITE SULPHUR SPRINGS CITY OF

| Annual Water Quality Report for the period of January 1 to December 31, 2022                                                                                         | For more information regarding this report contact:                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. | Name                                                                                                                                |
|                                                                                                                                                                      | Phone                                                                                                                               |
| WHITE SULPHUR SPRINGS CITY OF is Surface Water                                                                                                                       | Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. |

# Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. The source water assessment report for your water system provides additional information on your source water's susceptibility to contamination. To access this report please go to: https://deq.mt.gov/water/Programs/dw-sourcewater

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

# Source Water Information

SWA = Source Water Assessment

| Source Water Name               | Type of Water | Report Status | Location                             |
|---------------------------------|---------------|---------------|--------------------------------------|
| INTAKE WILLOW CREEK             | SW            |               |                                      |
| WELL 1 1986 8TH AVE GWIC 260672 | GW            |               | 102 8TH AVE NE JUST INSIDE CITY YARD |
| WELL 2 1998 8TH AVE GWIC 172711 | GW            |               | 102 8TH AVE NE JUST INSIDE CITY YARD |

# Lead and Copper

#### Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

| Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination                                                                          |
|-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|---------------------------------------------------------------------------------------------------------|
| Copper          | 09/30/2020   | 1.3  | 1.3               | 0.168           | 0               | ppm   |           | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. |

#### Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been

found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation

has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment

technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of

microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of

disinfectants to control microbial contaminants.

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

# Water Quality Test Results

Treatment Technique or TT:

A required process intended to reduce the level of a contaminant in drinking water.

# Regulated Contaminants

| Disinfectants and Disinfection By-Products | Collection Date | Highest Level<br>Detected | Range of Levels<br>Detected | MCLG                  | MCL      | Units | Violation | Likely Source of Contamination                                                                                             |
|--------------------------------------------|-----------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|----------------------------------------------------------------------------------------------------------------------------|
| Chlorine                                   | 2022            | 0.2                       | 0.2 - 0.2                   | MRDLG = 4             | MRDL = 4 | ppm   | N         | Water additive used to control microbes.                                                                                   |
| Haloacetic Acids (HAA5)                    | 2022            | 1                         | 1.1 - 1.1                   | No goal for the total | 60       | ppb   | N         | By-product of drinking water disinfection.                                                                                 |
| Total Trihalomethanes<br>(TTHM)            | 2022            | 11                        | 0 - 11                      | No goal for the total | 80       | ppb   | N         | By-product of drinking water disinfection.                                                                                 |
| Inorganic Contaminants                     | Collection Date | Highest Level<br>Detected | Range of Levels<br>Detected | MCLG                  | MCL      | Units | Violation | Likely Source of Contamination                                                                                             |
| Arsenic                                    | 2022            | 4                         | 4 - 4                       | 0                     | 10       | ppb   | N         | Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.                    |
| Barium                                     | 2022            | 0.08                      | 0.08 - 0.08                 | 2                     | 2        | ppm   | N         | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.                                |
| Fluoride                                   | 2022            | 0.3                       | 0.3 - 0.3                   | 4                     | 4.0      | ppm   | N         | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. |
| Nitrate [measured as Nitrogen]             | 2022            | 1                         | 0 - 0.99                    | 10                    | 10       | ppm   | N         | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.                               |

# Turbidity

|                                | Limit (Treatment<br>Technique) | Level Detected | Violation | Likely Source of Contamination |
|--------------------------------|--------------------------------|----------------|-----------|--------------------------------|
| Highest single measurement     | 5.0 NTU                        | 0.98 NTU       | N         | Soil runoff.                   |
| Lowest monthly % meeting limit | 1.0 NTU                        | 100%           | N         | Soil runoff.                   |

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration

- MT0000360\_2022\_2023-07-08\_21-19-24.PDF 9 of

07/08/2023

15

# 2,4,5-TP (Silvex)

Some people who drink water containing silvex in excess of the MCL over many years could experience liver problems.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

## 2,4-D

Some people who drink water containing the weed killer 2,4-D well in excess of the MCL over many years could experience problems with their kidneys, liver, or adrenal glands.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

#### Alachlor

Some people who drink water containing alachlor in excess of the MCL over many years could have problems with their eyes, liver, kidneys, or spleen, or experience anemia, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

#### Atrazine

Some people who drink water containing atrazine well in excess of the MCL over many years could experience problems with their cardiovascular system or reproductive difficulties.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Benzo(a)pyrene

Some people who drink water containing benzo(a)pyrene in excess of the MCL over many years may experience reproductive difficulties and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

## Carbofuran

Some people who drink water containing carbofuran in excess of the MCL over many years could experience problems with their blood, or nervous or reproductive systems.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Chlordane

Some people who drink water containing chlordane in excess of the MCL over many years could experience problems with their liver or nervous system, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Dalapon

Some people who drink water containing dalapon well in excess of the MCL over many years could experience minor kidney changes.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Di (2-ethylhexyl) adipate

Some people who drink water containing di (2-ethylhexyl) adipate well in excess of the MCL over many years could experience general toxic effects or reproductive difficulties.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Di (2-ethylhexyl) phthalate

Some people who drink water containing di (2-ethylhexyl) phthalate in excess of the MCL over many years may have problems with their liver, or experience reproductive difficulties, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

#### Dinoseb

Some people who drink water containing dinoseb well in excess of the MCL over many years could experience reproductive difficulties.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# Endrin

Some people who drink water containing endrin in excess of the MCL over many years could experience liver problems.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Violations Table

### Heptachlor

Some people who drink water containing heptachlor in excess of the MCL over many years could experience liver damage and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Heptachlor epoxide

Some people who drink water containing heptachlor epoxide in excess of the MCL over many years could experience liver damage, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

#### Hexachlorobenzene

Some people who drink water containing hexachlorobenzene in excess of the MCL over many years could experience problems with their liver or kidneys, or adverse reproductive effects, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Hexachlorocyclopentadiene

Some people who drink water containing hexachlorocyclopentadiene well in excess of the MCL over many years could experience problems with their kidneys or stomach.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Violations Table

| Lindane                                                                                                                                    |                 |               |                                                                                                                                                                                             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Some people who drink water containing lindane in excess of the MCL over many years could experience problems with their kidneys or liver. |                 |               |                                                                                                                                                                                             |  |  |  |
| Violation Type                                                                                                                             | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |  |  |  |
| MONITORING, ROUTINE MAJOR                                                                                                                  | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |  |  |  |

### Methoxychlor

Some people who drink water containing methoxychlor in excess of the MCL over many years could experience reproductive difficulties.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Oxamyl [Vydate]

Some people who drink water containing oxamyl in excess of the MCL over many years could experience slight nervous system effects.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Pentachlorophenol

Some people who drink water containing pentachlorophenol in excess of the MCL over many years could experience problems with their liver or kidneys, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Violations Table

| Picloram                                                                                                                         |                 |               |                                                                                                                                                                                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Some people who drink water containing picloram in excess of the MCL over many years could experience problems with their liver. |                 |               |                                                                                                                                                                                             |  |  |  |  |
| Violation Type                                                                                                                   | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |  |  |  |  |
| MONITORING, ROUTINE MAJOR                                                                                                        | 01/01/2020      | 12/31/2022    | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |  |  |  |  |

### Simazine

Some people who drink water containing simazine in excess of the MCL over many years could experience problems with their blood.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

### Toxaphene

Some people who drink water containing toxaphene in excess of the MCL over many years could have problems with their kidneys, liver, or thyroid, and may have an increased risk of getting cancer.

| Violation Type            | Violation Begin | Violation End | Violation Explanation                                                                                                                                                                       |
|---------------------------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONITORING, ROUTINE MAJOR | 01/01/2020      |               | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |

# **Appendix Q**

Source Water Delineation and Assessment Report, Source Water Protection Plan

# White Sulphur Springs Public Water System

**PWSID** # MT0000360

# SOURCE WATER DELINEATION AND ASSESSMENT REPORT

**Date of Report:** 12/09/02

### **Contact Person:**

Ed Rasmussen

PO Box 442 White Sulphur Springs, MT 59645

Phone: (406) 547-3788

| Final Document |  |  |  |
|----------------|--|--|--|
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |

# **Table of Contents**

| <u>Introduction</u>                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter 1, Background                                                                                                                              |
| Chapter 2, Delineation                                                                                                                             |
| Chapter 3, Inventory                                                                                                                               |
| Chapter 4, Susceptibility Assessment                                                                                                               |
| Chapter 5, Monitoring Waivers                                                                                                                      |
| References                                                                                                                                         |
| Glossary                                                                                                                                           |
| Appendices                                                                                                                                         |
| Appendix A. Well Logs Appendix B. White Sulphur Springs Potential Contaminant Sources Appendix C. Concurrence Letter                               |
| Figures                                                                                                                                            |
| Figure 1. Vicinity Map Figure 2. White Sulphur Springs Public Water Supply Well Locations Figure 3. White Sulphur Springs Area Geology             |
| Figure 4. White Sulphur Springs Public Water Supply Willow Creek Intake Figure 5. White Sulphur Springs Public Water Supply Wells Inventory Region |
| Figure 6. White Sulphur Springs PWS Willow Creek Spill Response Region                                                                             |
| Figure 7. White Sulphur Springs Watershed Region Figure 8. Land Cover Within the White Sulphur Springs PWS Inventory Region                        |
| Figure 9. White Sulphur Springs Municipal Sewer System and Septic Density                                                                          |
| Figure 10. Significant Potential Contaminant Sources in the White Sulphur Springs Inventory Region                                                 |
| Figure 11. Land Cover Within the White Sulphur Springs Recharge Region                                                                             |
| Figure 12. Land Cover Within the White Sulphur Springs Watershed Region                                                                            |
| Figure 13. Significant Potential Contaminant Sources in the White Sulphur Springs Watershed Region                                                 |

### INTRODUCTION

Carolyn DeMartino, a Water Quality Specialist with the Montana Department of Environmental Quality, completed the White Sulphur Springs (PWSID# 00360) Source Water Delineation and Assessment Report (SWDAR).

### **Purpose**

This Source Water Delineation and Assessment Report is intended to meet the technical requirements for the completion of the delineation and assessment for the White Sulphur Springs Public Water Supply System (PWSS) as required by the Montana Source Water Protection Program (DEQ, 1999) and the federal Safe Drinking Water Act (SDWA) Amendments of 1996 (P.L. 104-182).

The Montana Source Water Protection Program is intended to be a practical and cost-effective approach to protect public drinking water supplies from contamination. A major component of the Montana Source Water Protection Program is "delineation and assessment". Delineation is a process of mapping source water protection areas, which contribute water used for drinking. Assessment involves identifying locations or regions in source water protection areas where contaminants may be generated, stored, or transported, and then determining the relative potential for contamination of drinking water by these sources. The primary purpose of this source water delineation and assessment report is to provide information that helps White Sulphur Springs complete a source water protection plan to protect its drinking water source.

#### Limitations

This report was prepared to assess threats to the White Sulphur Springs public water supply, and is based on published information and information obtained from local residents familiar with the community. The terms "drinking water supply" or "drinking water source" refer specifically to the source of the White Sulphur public water supply and not any other public or private water supply. Also, not every potential or existing source of groundwater or surface water contamination in the White Sulphur Springs area has been identified. Only potential sources of contamination in areas that contribute water to its drinking water source are considered.

The term "contaminant" is used in this report to refer to constituents for which maximum concentration levels (MCLs) have been specified under the national primary drinking water standards, and to certain constituents that do not have MCLs but are considered to be significant health threats.

### CHAPTER 1 BACKGROUND

### The Community

White Sulphur Springs is located in Meagher County in southwestern Montana (Figure 1). The town, located near the Smith River Canyon, was named after the white deposits that were formed by the hot springs that are located in the city park. According to the Census Bureau the population of Meagher County in 2000 was 1,932 of which 984 people live in White Sulphur Springs. White Sulphur Springs' economy is based primarily upon agriculture. Other area businesses include gas stations, a post and pole company, trucking company, hospital, and other service related businesses.

The major transportation routes in the White Sulphur Springs area include US Route 89 and U.S. Route 12.

White Sulphur Springs is served by a municipal sanitary sewer system. The facultative sewage treatment lagoons are located on the southwest side of town (<u>Figure 2</u>). The receiving water for the treated wastewater discharge is Lone Willow Creek.

### **Geographic Setting**

White Sulphur Springs is located in the Smith River Valley of southwestern Montana in Section 7 and 17, Township 9 Nouth, Range 7 East (Figure 1). Climate in the White Sulphur Springs area is considered semi-arid. Average daily high and low temperatures in White Sulphur Springs are 80.5° F and 47.5° F in August and July, respectively, and 32.2° F and 11.4° F in January. Annual precipitation averages 13.41 inches. Rainfall occurs year round with May and June being the wettest months. The annual average snowfall of 36.2 inches is received in the White Sulphur Springs area mainly September to April (Western Regional Climate Center, Monthly Climate Summary 12/1/1978 to 12/31/2001).

Major streams in the White Sulphur Springs vicinity include the Smith River, Lone Willow Creek, and Willow Creek. Irrigation canals are also in the White Sulphur Springs vicinity. South Side Canal is located approximately one mile east of White Sulphur Springs.

In addition to the springs located within the City of White Sulphur Springs park, Hanson Spring is located to the northwest, Trinity Springs to the northeast, Carlin Springs and Rankin Springs to the south of White Sulphur Springs.

The three mountain ranges that surround White Sulphur Springs include the Little Belt Mountains to the northeast, the Castle Mountains to the southeast, and the Big Belt Mountains to the southwest. The headwaters for Willow Creek, the White Sulphur Springs PWS surface water source, are located in the Castle Mountains.

### General description of the Source Water

The City of White Sulphur Springs obtains its water from both groundwater and surface water sources. Groundwater is obtained from two 200-foot wells (<u>Figure 2</u>) completed in fractured siltstone (<u>Figure 3</u>). Well logs are located in Appendix A. Surface water is obtained from a slow sand filter/infiltration gallery system located in Willow Creek. The slow sand filter and infiltration gallery are located approximately five miles southeast of town (<u>Figure 4</u>).

### The Public Water Supply

The White Sulphur Springs PWS provides water to approximately 1,000 residents through 520 active service connections. Each service connection is metered. The water supply system consists of a 200-foot well (Well #1-WL003) that was drilled in 1986 and a slow sand filter/ infiltration gallery system (IN002) located in Willow Creek. A newer well (Well #2-WL004), drilled in 1998, functions only as a back-up well if the need arises (DEQ, 1999 Sanitary Survey). Three buildings at the PWS system include the chlorination room and well house, located at the well head; a chlorinate analyzer building, located on the transmission main from the storage tank; and a chlorination and valve building at the storage tank.

A 60 horse power submersible pump with a peak flow of 800 gallons per minute (gpm) is located in well 1 at about 180 feet below ground surface. Groundwater is pumped directly into the distribution system, and during periods of low use excess pressure in the distribution system lifts water to a 450,000 –gallon concrete storage tank located approximately two miles east of White Sulphur Springs. The water from the tank is then gravity fed back to the distribution system as demand increases. The storage tank is connected to the distribution system with approximately two miles of 12-inch steel transmission main. The steel transmission line is scheduled to be replaced with 12-inch PVC pipe.

The slow sand filter system, located approximately five miles from town consists of a concrete dam with earthen sides and approximately 4.5 feet of masonry sand as the filter media with collectors below. An infiltration gallery is used in conjunction with the slow sand filter to help collect water. Water from Willow Creek and trenches is collected through perforated pipe wrapped in filter paper. The dam creates a pond, holding approximately 314,160 gallons of water, above the slow sand filter when Willow Creek is diverted into the slow sand filter (DEQ, 1999 Sanitary Survey). Water from the slow sand filter is gravity fed into the storage tank through approximately three miles of 6-inch PVC pipe. Because the slow sand filter requires the use of supplemental pumping to drain and it is difficult to clean, filtered water frequently has a higher turbidity than water in the creek before filtration. Future improvements are planned for the White Sulphur Springs slow sand filter system located in Willow Creek.

Groundwater from the wells and surface water from Willow Creek are treated with gas chlorine that is injected at the well house and at the storage tank.

The daily average demand for groundwater well #1 is approximately 300,000 gallons per day (gpd), and about 150,000 gpd for the slow sand filter. The production from the Willow Creek system limited by water rights during irrigation season as the irrigation water rights have priority. During irrigation season withdrawal from Willow Creek is limited to approximately 112 gpm.

### Water Quality

White Sulphur Springs water quality is routinely monitored for compliance with drinking water standards. Bacteriological monitoring is conducted monthly. Compliance with other drinking water standards is based on additional sampling on a variety of schedules. Nitrate plus nitrite as nitrogen in Willow Creek over the past five years has ranged from 0 to 0.11 milligrams per liter (mg/L). Monitoring results for nitrate plus nitrite as nitrogen in groundwater within the past five years indicate the range of detections is from 0.11 mg/L to 0.81 mg/L. These detections remain well below the maximum contaminant level of 10 mg/L (DEQ SDWIS database). Within the past five years there have been coliform bacteria detections in water utilized by the White Sulphur Springs PWS. Within the past five years turbidity exceedances have also been detected and have prompted the initiation of future improvements to be considered on the slow sand filter.

Willow Creek is located in the Smith River sub-basin of the Upper Missouri River Watershed. The U.S. Geological Survey hydrologic unit code for Willow Creek is 10030103. The Willow Creek drainage to the White Sulphur Springs intake is classified as A-1 water meaning, waters are to be maintained suitable for

drinking, culinary and food processing purposes after conventional treatment for removal of naturally present impurities. This stream segment is not listed on the 303D List of Impaired Streams.

A nearby stream gage is not available in the vicinity of the White Sulphur Springs PWS. No further ambient water quality data is available for this segment of Willow Creek.

# CHAPTER 2 DELINEATION

The source water protection area, the land area that contributes water to the White Sulphur Springs PWS wells, is identified in this chapter. Management areas identified within the source water protection area for wells 1 and 2 include the control zone, inventory region, and recharge region. For the purposes of this report, the recharge region is included within the watershed region for the Willow Creek surface water intake. The control zone is an area at least 100-foot radius around the well. The management goal of the control zone, also known as the exclusion zone, is to protect against the direct introduction of contaminants into the wells or in the immediate area surrounding each well. The inventory region (Figure 5) represents the zone of contribution to the wells. The management goal of the inventory region is to focus on pollution prevention activities at potential contaminant sources where it is likely that contaminated water would flow into the wells within a relatively short time. The recharge region represents the entire portion of the aquifer that contributes water to the White Sulphur Springs wells. Management within the recharge region should focus on maintaining and improving the quality of groundwater that could reach the wells over longer timeframes or with increase usage.

Management areas identified within the source water protection area for the White Sulphur Springs surface water intake include the spill response region (Figure 6) and the watershed region (Figure 7). The spill response region represents the area of surface water upstream of the White Sulphur Springs PWS in which contaminants could be drawn into the intake in a relatively short period of time. The watershed region represents the entire region that is upstream of, and contributes water to the White Sulphur Springs PWS.

### **Hydrogeologic Conditions**

Tertiary basin fill sediments underlie the City of White Sulphur Springs. White Sulphur Springs PWS wells 1 and 2 are completed in deep fractured siltstone and appear to be confined (<u>Appendix A</u>). Regional groundwater flow in the White Sulphur Springs vicinity is to the west with a relatively flat gradient (Maxim, July 1997).

Several thrust faults are located nearby and north and east of White Sulphur Springs. Water flowing from the hot springs for which the City of White Sulphur Springs is named, is the result of deep water circulation along the Willow Creek Thrust Fault, in high permeability zones of the Mississipian Mission Canyon Limestone or the Pre-Cambrian Newland Limestone beneath the thrust fault zone, or both (D. Smith 1983). The water temperature is approximately 115 ° F. The sulfur odor given off by the springs is caused by hydrogen sulfide gas escaping to the atmosphere (Groff, 1965). The springs are used for the pools and baths in a local spa hotel and for the heating system at a local bank (Grove and Dunn, 1980).

The surface water intake for the White Sulphur Springs PWS is located in Willow Creek. The headwaters for Willow Creek are located in the Castle Mountains, which are located southeast of White Sulphur Springs. The Castle Mountains were formed approximately 50 million years ago when movement of area faults occurred and the magma that formed these granite mountains moved upward along the faults (Alt and Hyndman, 1986). As the granite mountains weather, castle-like turrets are formed thus giving rise to their name.

Sedimentary rocks ranging in age from Precambrian to Cretaceous that cover a large part of the White Sulphur Springs vicinity were uplifted during the formation of the Castle Mountains and another igneous extrusion composed of diorite. The Castle Mountains and diorite extrusions produced numerous fractures in the overlying layers.

Recharge to the White Sulphur Springs wells mostly likely results from water percolating into more permeable zones of area limestones or fractured bedrock along area faults. Recharge to Willow Creek appears to be from precipitation entering directly into the creek or from runoff that eventually flows into the creek.

Table 1 below is used to determine source water/ aquifer sensitivity.

**Table 1.** Source Water Sensitivity Criteria (DEQ, 1999)

| Source Water Sensitivity                           |
|----------------------------------------------------|
| High Source Water Sensitivity                      |
| Surface water and GWUDISW                          |
| Unconsolidated Alluvium (unconfined)               |
| Fluvial-Glacial Gravel                             |
| Terrace and Pediment Gravel                        |
| Shallow Fractured or Carbonate Bedrock             |
| Moderate Source Water Sensitivity                  |
| Semi-consolidated Valley Fill sediments            |
| Unconsolidated Alluvium (semi-confined)            |
| Low Source Water Sensitivity                       |
| Consolidated Sandstone Bedrock                     |
| Deep Fractured or Carbonate Bedrock                |
| Semi-consolidated Valley Fill Sediments (confined) |

The White Sulphur Springs wells are completed in deep fractured siltstone. Based on this information the siltstone aquifer that supplies water to the White Sulphur Springs PWS wells has a low sensitivity to potential contaminant sources (Table 1).

Water obtained via the slow sand filter/ infiltration galley intake system in Willow Creek is classified as having a high sensitivity to potential contaminant sources. Because the groundwater and surface water are blended in the storage tank, the overall sensitivity of the White Sulphur Springs PWS to potential contaminant sources is moderate.

### Conceptual Model and Assumptions

Tertiary basin fill sediments underlie the City of White Sulphur Springs. Areas nearby and to the north and east of White Sulphur Springs were highly faulted. Hot springs located in the city park are the result of deep water circulation along the Willow Creek Thrust Fault, in high permeability zones of the Mississipian Mission Canyon Limestone or the Pre-Cambrian Newland Limestone beneath the thrust fault zone, or both (Smith 1983). White Sulphur Springs PWS wells 1 and 2 are completed in deep fractured siltstone and appear to be confined. Regional groundwater flow in the White Sulphur Springs vicinity is to the west with a relatively flat gradient (Maxim, July 1997). Recharge to the wells is potentially from water percolating into more permeable limestones or fractured bedrock along area faults.

Surface water is also utilized by the White Sulphur Springs PWS. The water is obtained via a slow sand filter/infiltration gallery system in Willow Creek. Contaminants, if spilled directly into Willow Creek upstream or in the immediate vicinity of the White Sulphur Springs intake, could potentially reach the intake before the water operator could close it. Over a longer time-frame, contaminants that accumulate throughout the watershed could be flushed into Willow Creek during periods of spring high flow runoff.

### Well Information

Data for the White Sulphur Springs wells is summarized in Table 2.

Table 2 Well information for the White Sulphur Springs PWS.

| Information                  | Well #1                                                                                                                         | Well #2                                                                                                                         |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| PWS Source Code              | WL003                                                                                                                           | WL004                                                                                                                           |
| Well Location<br>(T, R, Sec) | T. 9 N., R. 7 E., Sec. 07<br>SW <sup>1</sup> / <sub>4</sub> SE <sup>1</sup> / <sub>4</sub> SE <sup>1</sup> / <sub>4</sub> (DDC) | T. 9 N., R. 7 E., Sec. 07<br>SW <sup>1</sup> / <sub>4</sub> SE <sup>1</sup> / <sub>4</sub> SE <sup>1</sup> / <sub>4</sub> (DDC) |
| Latitude/ Longitude          | 46.5498/110.8899                                                                                                                | 46.5482/ 110.8883                                                                                                               |
| MBMG #                       | NA                                                                                                                              | 172711                                                                                                                          |
| Water Right #                | NA                                                                                                                              | C061342-00                                                                                                                      |
| Date Well was<br>Completed   | 06/23/86                                                                                                                        | 04/21/1999                                                                                                                      |
| Total Depth                  | 200                                                                                                                             | 201                                                                                                                             |
| Perforated Interval          | 90' - 200'                                                                                                                      | 145' – 195'                                                                                                                     |
| Static Water Level           | 19                                                                                                                              | 22                                                                                                                              |
| <b>Pumping Water Level</b>   | 42                                                                                                                              | 58                                                                                                                              |
| Drawdown                     | 23                                                                                                                              | 36                                                                                                                              |
| <b>Test Pumping Rate</b>     | NA                                                                                                                              | NA                                                                                                                              |
| Specific Capacity            | 35                                                                                                                              | 28                                                                                                                              |

Well 1 is used mainly along with water obtained via the Willow Creek surface water intake to supply White Sulphur Springs with drinking water. Well 2 is used as a backup well as needed depending on water demand.

### Surface Water Intake Information

The slow sand filter system, located approximately five miles southeast of town in Willow Creek, consists of a concrete dam with earthen sides and approximately 4.5 feet of masony sand as the filter media with collectors below. An infiltration gallery is used in conjunction with the slow sand filter to help collect water. Water from Willow Creek and trenches is collected through perforated pipe wrapped in filter paper. The dam creates a pond, holding approximately 314,160 gallons of water, above the slow sand filter when Willow Creek is diverted into the slow sand filter (DEQ, 1999 Sanitary Survey). Because the slow sand filter requires the use of supplemental pumping to drain and it is difficult to clean, filtered water has a higher turbidity than water in the creek before filtration. Future improvements are planned for the White Sulphur Springs slow sand filter system located in Willow Creek.

### Methods and Criteria

DEQ's Source Water Protection Program specifies methods and criteria used to delineate subregions of the source water protection area for the White Sulphur Springs PWS. Because the White Sulphur Springs PWS obtains water from both groundwater wells and a surface water intake, a control zone, and inventory region have been delineated for the wells. A spill response region has been identified for the Willow Creek surface water intake. A combined recharge/ watershed region has been delineated for both the wells and surface water intake

### **Delineation Results**

Because wells 1 and 2 are only about 20-feet apart, a one hundred-foot radius control zone was delineated around both of the wells. A 1000-foot fixed radius inventory region was also delineated around both of the wells.

The spill response region for the Willow Creek intake extends ½-mile downstream and ten miles upstream (or at the watershed boundary) from the intake and, includes ½-mile wide buffers adjacent to all shorelines.

The delineation of the recharge/watershed region for the White Sulphur Springs PWS wells and surface water intake is based on hydrogeological mapping.

### **Limiting Factors**

Delineation for the wells is based on a 1000-foot fixed radius inventory region. Uncertainty exists concerning the vertical and lateral extent of potential confining layers. Also, the total amount of recharge to the system from area streams and nearby irrigation canals is unknown and can vary seasonally.

# CHAPTER 3 INVENTORY

Inventory of potential contaminant sources was conducted within the White Sulphur Springs PWS well control zones, inventory region, and recharge region. Inventory of potential contaminant sources was also conducted within the spill response region and watershed region of the PWS intake on Willow Creek. Potential sources of all primary drinking water contaminants and Cryptosporidium were identified, however, only significant potential contaminant sources were selected for the detailed inventory. Significant potential contaminants in the White Sulphur Springs inventory region and spill response region include nitrate, pathogens, fuels, solvents, agricultural chemicals, and metals.

The potential contaminant source inventory for White Sulphur Springs focuses on all activities in the control zone, certain sites or land use activities in the inventory region, and general land uses and large facilities in the recharge region. In the spill response region potential contaminant sources that have the potential to impact the intake are identified. General land uses and large facilities within the watershed region are identified.

### Inventory Method

Available databases were initially searched to identify businesses and land uses that are potential sources of regulated contaminants in the inventory region. The following steps were followed:

- Step 1: Urban and agricultural land uses were identified using the United States Geological Survey National Landcover Dataset 2000.
- Step 2: EPA's Envirofacts System was queried to identify EPA regulated facilities. This system accesses the following databases: Resource Conservation and Recovery Information System (RCRIS), Biennial Reporting System (BRS), Toxic Release Inventory (TRI), Permit Compliance System (PCS), and Comprehensive Environmental Response Compensation and Liability Information System (CERCLIS). The available reports were browsed for facility information including the Handler/Facility Classification to be used in assessing whether a facility is a significant potential contaminant source.
- Step 3: DEQ databases were queried to identify Underground Storage Tanks (UST), hazardous waste contaminated sites, landfills, and abandoned mines.
- Step 4: A business phone directory was consulted to identify businesses that generate, use, or store chemicals in the inventory region. Equipment manufacturing and/or repair facilities, printing or photographic shops, dry cleaners, farm chemical suppliers, and wholesale fuel suppliers were targeted by SIC code.
- Step 5: Major road and rail transportation routes were identified.
- Step 6. All significant potential contaminant sources were identified in the inventory region and land uses and facilities that generate, store, or use large quantities of hazardous materials were identified within the recharge region.

Potential contaminant sources are designated as significant if they fall into one of the following categories:

- 1) Large quantity hazardous waste generators
- 2) Landfills
- 3) Hazardous waste contaminated sites
- 4) Underground storage tanks
- 5) Major roads or rail transportation routes
- 6) Cultivated cropland
- 7) Animal feeding operations
- 8) Wastewater lagoons or spray irrigation
- 9) Septic systems
- 10) Sewered residential areas
- 11) Storm sewer outflows
- 12) Floor drains, sumps, or dry wells
- 13) Abandoned or active mines

### <u>Inventory Results/Control Zone</u>

White Sulphur Springs Wells 1 and 2 are located on the northeast side of town. The City controls the land within the 100-foot control zone (Personal Communication, December 2002, Rick Cottingham, DEQ Drinking Water Section).

### Inventory Results/Inventory Region

Land cover within the inventory region for the White Sulphur Springs PWS is predominantly grassland at 44% and residential land at 40% (<u>Figure 8</u>). Additional land use types and their percentages are also identified on Figure 8. Septic system density in the inventory region is low. The municipal sewer system covers approximately 40% of the inventory region (<u>Figure 9</u>).

Significant potential contaminant sources in the inventory region are listed in Table 3 and indicated on Figure 10. A list of the additional potential contaminant sources within White Sulphur Springs is contained in Appendix B.

**Table 3.** Significant Potential Contaminant Sources in the White Sulphur Springs PWS Inventory Region

| Significant Potential<br>Contaminant Sources | Figure/<br>Map ID | Contaminants                    | Hazard                                                          |
|----------------------------------------------|-------------------|---------------------------------|-----------------------------------------------------------------|
| Municipal Sewer System                       | Figure 10<br>#1   | Nitrates and pathogens          | Main line breaks and contents leaching into groundwater         |
| US Highway 12 & 89                           | Figure 10<br>#2   | VOCs, SOCs, nitrates, pathogens | Accidental spills with migration of contaminants to groundwater |
| Septic Systems                               | Figure 9          | Nitrates and pathogens          | Effluent leaching into area groundwater                         |
| Pasture Hay Land                             | Figure 8          | Nitrates and pathogens          | Agricultural chemicals leaching into groundwater                |
| Class V Injection Wells                      | Uknown            | VOCs, SOCs, metals              | Infiltration of contaminated water into groundwater             |

**Municipal sewer system** - Municipal sewer lines underlay approximately 40% of the inventory region. A sewer main break could allow nitrates and pathogens to enter area groundwater.

**Transportation routes -** Spills of fertilizers, pesticides, volatile organic compounds (VOCs), and synthetic organic compounds (SOCs) could occur along US Highways 12 and 89.

**Septic systems** – Septic system malfunctions could cause nitrates and pathogens to leach into area groundwater.

**Agricultural land -** Nitrates and pathogens found in fertilizers and manure applied to pasture/hay land could potentially leach into area groundwater.

**Class V Injection wells** – Locations have not been determined to date for this type of discharge. However, if any are located in the inventory region they could allow infiltration of contaminated water into area groundwater.

### Inventory Results/Surface Water Intake Spill Response Region

Land cover within the Willow Creek Spill Response Region includes 92% forests, 7% grassland, and 1% bare rock and decidous trees (Figure 11). Septic density within the spill response region is low.

A past producing mine, the Ringling Mine, appears to be located upgradient of the Willow Creek intake. While no confined animal feeding operations have been identified, cattle from area ranches graze in the vicinity of Willow Creek.

### Inventory Results/ Watershed-Recharge Region

Land cover in the White Sulphur Springs watershed/recharge consists predominantly of 48% grasslands and 40% forests (<u>Figure 12</u>). Additional land use types and percentages are also identified on Figure 12. Residential land covered less than one percent of land area and was not broken out in the pie chart.

Septic density in the watershed region is low. The only significant potential contaminant sources identified in the watershed region in addition to those mentioned in the inventory region and spill response region are scattered mines (Figure 13).

### **Inventory Limitations**

The potential contaminant inventory was conducted using various databases to acquire readily available information. Consequently, unregulated activities or unreported contaminant releases may have been overlooked. The use of multiple sources of information, however, should ensure that the major threats to the White Sulphur Springs PWS wells and surface water intake in Willow Creek have been identified.

### **Inventory Update**

To make this SWDAR a useful document in the years to come, the owners, managers, or the certified water system operator(s) for the White Sulphur Springs PWS should update the inventory for their records every year. Changes in land uses or potential contaminant sources should be noted and additions made as needed. The complete inventory should be submitted to DEQ at least every 5 years to ensure that this report stays current in the public record.

# CHAPTER 4 SUSCEPTIBILITY ASSESSMENT

Susceptibility is the potential for a public water supply to draw water contaminated by inventoried sources at concentrations that would pose concern. Susceptibility is assessed in order to prioritize potential pollutant sources for management actions by local entities, in this case White Sulphur Springs.

The goal of Source Water Management is to protect the sources of the White Sulphur Springs PWS water by 1) controlling activities in the control zone, 2) managing significant potential contaminant sources in the Inventory Region for the wells and in the spill response region for the intake, and 3) ensuring that land use activities in the Recharge/ Watershed Regions pose minimal threat to the source water. Management priorities in the Inventory Region for the wells and Spill Response Region for the intake are determined by ranking the significant potential contaminant sources identified in the previous chapter according to susceptibility. Alternative management approaches that could be pursued by the White Sulphur Springs PWS to reduce susceptibility are recommended.

Susceptibility is determined by considering the hazard ranking for each potential contaminant source and the existence of barriers that may decrease the likelihood that contaminated water will flow to the White Sulphur Springs wells and surface water intake (Table 4).

Table 4. Relative susceptibility to specific contaminant sources as determined by hazard and the presence of barriers.

|                   | High Hazard         | Moderate Hazard | Low Hazard     |
|-------------------|---------------------|-----------------|----------------|
| No Barriers       | Very                | High            | Moderate       |
| No Darriers       | High Susceptibility | Susceptibility  | Susceptibility |
| One Barrier       | High                | Moderate        | Low            |
| One barrier       | Susceptibility      | Susceptibility  | Susceptibility |
| Multiple Dennious | Moderate            | Low             | Very Low       |
| Multiple Barriers | Susceptibility      | Susceptibility  | Susceptibility |

Proximity or density of significant potential contaminant sources and nature of contaminants determines hazard (Table 5).

**Table 5.** Hazard of potential contaminant sources associated with proximity to a PWS well or intake or density within a PWS inventory or spill response region.

| Ty                              | pe of Contaminant Source                | High<br>Hazard                                                                    | Moderate<br>Hazard                                                                            | Low<br>Hazard                                                                     |
|---------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| S<br>U<br>R<br>F<br>A<br>C<br>E | Point Sources of Nitrate or<br>Microbes | Potential for direct<br>discharge to source<br>water                              | Potential for<br>discharge to<br>groundwater<br>hydraulically<br>connected to<br>source water | Potential contaminant sources in the watershed region                             |
| W<br>A<br>T<br>E                | Point Sources of VOCs, SOCs, or Metals  | Potential for direct<br>discharge of large<br>quantities from<br>roads, rails, or | Potential for direct<br>discharge of small<br>quantities to<br>source water                   | Potential for discharge<br>to groundwater<br>hydraulically<br>connected to source |

**Table 5.** Hazard of potential contaminant sources associated with proximity to a PWS well

or intake or density within a PWS inventory or spill response region.

| Ty               | pe of Contaminant Source                          | High<br>Hazard                                           | Moderate<br>Hazard                                                                                 | Low<br>Hazard                                                            |
|------------------|---------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| R                |                                                   | pipelines                                                |                                                                                                    | water                                                                    |
| W                | Point Sources of All<br>Contaminants (Unconfined) | Within 1-year<br>TOT                                     | 1 to 3 years TOT                                                                                   | Over 3 years TOT                                                         |
| E<br>L<br>L<br>S | Point Sources of All<br>Contaminants (Confined)   | PWS well is not<br>sealed through the<br>confining layer | Well(s) in the inventory region other than the PWS well are not sealed through the confining layer | All wells in the inventory region are sealed through the confining layer |
|                  | Septic Systems                                    | More than 300 per sq. mi.                                | 50 – 300<br>per sq. mi.                                                                            | Less than 50 per sq. mi.                                                 |
| A<br>L<br>L      | Municipal Sanitary Sewer (% land use)             | More than 50 percent of region                           | 20 to 50 percent of region                                                                         | Less than 20 percent of region                                           |
|                  | Cropped Agricultural Land (% land use)            | More than 50 percent of region                           | 20 to 50 percent of region                                                                         | Less than 20 percent of region                                           |

Susceptibility rankings are presented individually for each significant potential contaminant source and each associated contaminant in Table 5 and in text following the table. Management recommendations that indicate how significant potential contaminant sources could be better managed to prevent impacts to the White Sulphur Springs wells and surface water intake are also provided in Table 5.

Table 5. Susceptibility assessment for significant potential contaminant sources in the White Sulphur

**Springs Inventory and Spill Response Regions** 

| Potential                   | Potential               | Hazard                                                                            | Hazard               | Barriers                                                   | Susceptibility       | Management                                                  |
|-----------------------------|-------------------------|-----------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|----------------------|-------------------------------------------------------------|
| Contaminant                 | Contaminants            |                                                                                   | Ranking              |                                                            |                      | Recommendation                                              |
| Sources                     |                         |                                                                                   |                      |                                                            |                      |                                                             |
|                             |                         |                                                                                   | <b>Inventory Re</b>  | egion                                                      |                      |                                                             |
| Municipal<br>Sewer<br>(40%) | Nitrates and pathogens  | Main breaks<br>and<br>contaminated<br>water<br>mixing with<br>groundwater         | Moderate             | Well intake<br>depth,<br>upward<br>groundwater<br>gradient | Very Low             | Periodic inspection<br>and upgrades of older<br>sewer mains |
| US Highway 12<br>& 89       | VOCs, SOCs,<br>nitrates | Accidental spills                                                                 | Low                  | Well intake<br>depth,<br>upward<br>groundwater<br>gradient | Very Low             | Spill Response Plan                                         |
| Septic Systems              | Nitrates and pathogens  | Effluent<br>leaching into<br>groundwater                                          | Low                  | Well intake<br>depth,<br>upward<br>groundwater<br>gradient | Very Low             | Proper maintenance                                          |
| Pasture Hay<br>Land         | Nitrates and pathogens  | Spills, over<br>application,<br>surface<br>runoff<br>leaching into<br>groundwater | Low                  | Well intake<br>depth,<br>upward<br>groundwater<br>gradient | Very Low             | Use Best<br>Management<br>Practices                         |
| Stormwater<br>Discharges    | VOCs, SOCs, metals      | Infiltration into                                                                 | Unknown at this time | Not<br>available                                           | Unknown at this time | Work with EPA to identify locations and                     |

Table 5. Susceptibility assessment for significant potential contaminant sources in the White Sulphur

**Springs Inventory and Spill Response Regions** 

| Potential       | Potential        | Hazard        | Hazard        | Barriers | Susceptibility | Management             |
|-----------------|------------------|---------------|---------------|----------|----------------|------------------------|
| Contaminant     | Contaminants     |               | Ranking       |          |                | Recommendation         |
| Sources         |                  |               |               |          |                |                        |
|                 |                  |               | Inventory Re  | egion    |                |                        |
| Class V         |                  | groundwater   |               |          |                | appropriate response   |
| Injection Wells |                  |               |               |          |                |                        |
|                 |                  | Sp            | oill Response | Region   |                |                        |
| Mines           | VOCs, SOCs,      | Leaching      | High          | Dilution | High           | Revegetation, tailings |
| Ringling Mine   | nitrates, metals | into area     |               |          |                | management             |
|                 |                  | surface water |               |          |                |                        |

**Municipal Sewer** – Hazard is ranked moderate because the municipal sewer system underlies approximately 40% of the inventory region. The susceptibility of the wells is ranked low based on the depth of the well intakes and there appears to be an upward groundwater flow gradient.

**U.S. Highway 12 and 89** – Hazard is ranked low for these transportation routes. The overall susceptibility is very low based on the depth of the well intakes and there appears to be an upward groundwater flow gradient.

**Septic Systems** – Hazard is ranked low based on the low density of septic systems in the inventory region. The susceptibility of the wells is ranked low based on the depth of the well intakes and there appears to be an upward groundwater flow gradient.

**Pasture Hay Land** – Hazard is ranked low because this agricultural land occupies only 6 percent of the inventory region. The susceptibility of the wells is ranked low based on the depth of the well intakes and there appears to be an upward groundwater flow gradient.

**Storm Water Discharges (Class V Injection Wells)** – Hazard has not been ranked because the location and quantity of Class V Injection Wells in White Sulphur Springs is unknown. The have been identified in this report because if present, they have the potential to discharge into area groundwater. The susceptibility is also unknown at this time.

Mines (Ringling Mine) – Hazard is ranked high in the Willow Creek Spill Response region. The past producing Ringling Mine appears to be upgradient of the Willow Creek intake. The overall susceptibility is high based on dilution.

### **Management Recommendations**

The White Sulphur Springs PWS Source Water Delineation and Assessment Report was prepared to assist the City of White Sulphur Springs. The report provides information concerning the wells and Willow Creek intake that supply water to White Sulphur Springs, identifies the source water protection areas and within each of these protection areas identifies the significant potential contaminants that may impact the source of water to White Sulphur Springs. Also provided in the table are recommendations regarding how the potential contaminant could be better managed to prevent impacts in the vicinity of the White Sulphur Springs wells and surface water intake. If these management recommendations are implemented, they may be considered additional barriers that will reduce the susceptibility of White Sulphur Springs' wells and intake to specific sources and contaminants.

Management recommendations fall into the following categories:

**Sewer maintanence and leak detection.** Early leak detection and scheduled replacement of older sewer lines will reduce the susceptibility of Great Falls intake to contamination from sanitary wastes.

**Sewer extension.** Annexation and extension of sewers is the only way to reduce contamination from existing unsewered developments.

**Agricultural Best Management Practices.** BMPs that address application and mixing of fertilizers and pesticides are a viable alternative to prohibition of their use. BMPs are voluntary but their implementation can be encouraged through education and technical assistance. BMPs may also be utilized to minimize surface runoff and soil erosion on cultivated fields

**Stormwater Management.** Stormwater planning should address source and drainage control. Source control can be accomplished through educational programs focusing on residential and commercial chemical use, disposal, and recycling. Drainage control and pollutant removal can be accomplished through the use of vegetated retention basins at outfall locations.

**Education.** Educational workshops provided to the general public by the city, county, or state promote safe handling and proper storage, transport, use, and disposal of hazardous materials. Ongoing training provided to designated emergency personnel would promote the efficiency and effectiveness of emergency responses to hazardous material spills. Educational workshops provided to rural homeowners will promote the proper maintenance and replacement of residential septic systems. Educational materials covering these topics are available to the public and can be obtained from the US EPA and the State of Montana.

Emergency Response Plan. This is a management recommendation that White Sulphur Springs itself could develop and implement. Coordination with county and state emergency response personnel would greatly benefit the plan. The plan should identify the procedures the water operators and other emergency personnel should follow in the event that there is an imminent threat that contaminants would reach the PWS wells or intake. The emergency response plan should be updated annually to reflect changes in emergency contacts, phone numbers, and resources available within the city and county to respond to an emergency situation, such as a hazardous material spill.

# Chapter 5 MONITORING WAIVERS

### **Monitoring Waiver Requirements**

The 1986 Amendments to the Safe Drinking Water Act require that community and non-community PWSs sample drinking water sources for the presence of volatile organic chemicals (VOCs) and synthetic organic chemicals (SOCs). The US EPA has authorized states to issue monitoring waivers for the organic chemicals to systems that have completed an approved waiver application and review process. All PWSs in the State of Montana are eligible for consideration of monitoring waivers for several organic chemicals. The chemicals diquat, endothall, glyphosate, dioxins, ethylene dibromide (EDB), dibromochloropropane (DBCP), and polychlorinated biphenyls are excluded from monitoring requirements by statewide waivers. Following are descriptions of the different types of waivers. Monitoring waiver recommendations for White Sulphur Springs follows these descriptions.

### **Use Waivers**

A Use Waiver can be allowed if through a vulnerability assessment, it is determined that specific organic chemicals were not used, manufactured, or stored in the area of a water source (or source area). If certain organic chemicals have been used, or if the use is unknown, the system would be determined to be vulnerable to organic chemical contamination and ineligible for a Use Waiver for those particular contaminants.

### **Susceptibility Waivers**

If a Use Waiver is not granted, a system may still be eligible for a Susceptibility Waiver, if through a vulnerability assessment it is demonstrated that the water source would not be susceptible to contamination. Susceptibility is based on prior analytical or vulnerability assessment results, environmental persistence, and transport of the contaminants, natural protection of the source, wellhead protection program efforts, and the level of susceptibility indicators (such as nitrate and coliform bacteria). The vulnerability assessment of a surface water source must consider the watershed area above the source, or a minimum fixed radius of 1.5 miles upgradient of the surface water intake. PWSs developed in unconfined aquifers should use a minimum fixed radius of 1.0 miles as an area of investigation for the use of organic chemicals. Vulnerability assessment of spring water sources should use a minimum fixed radius of 1.0 miles as an area of investigation for the use of organic chemicals. Shallow groundwater sources under the direct influence of surface water (GWUDISW) should use the same area of investigation as surface water systems; that is, the watershed area above the source, or a minimum fixed radius of 1.5 miles upgradient of the point of diversion. The purpose of the vulnerability assessment procedures outlined in this section is to determine which of the organic chemical contaminants are in the area of investigation.

Given the wide range of landforms, land uses, and the diversity of groundwater and surface water sources across the state, additional information is often required during the review of a waiver application. Additional information may include will logs, pump test data, or water quality monitoring data from surrounding public water systems; delineation of zones of influence and contribution to a well; Time-of-Travel or attenuation studies; vulnerability mapping; and the use of computerized groundwater flow and transport models. Review of an organic chemical monitoring waiver application will be conducted by DEQ's PWS Section and DEQ's Source Water Protection Program. Other state agencies may be asked for assistance.

### **Susceptibility Waiver for Confined Aquifers**

Confined groundwater is isolated from overlying material by relatively impermeable geologic formations. A confined aquifer is subject to pressures higher than atmospheric pressure that would exist at the top of the aquifer if the aquifer were not geologically confined. A well that is drilled through the impervious layer into a confined aquifer will enable the water to rise in the borehole to a level that is proportional to the water pressure (hydrostatic head) that exists at the top of a confined aquifer.

The susceptibility of a confined aquifer relates to the probability of an introduced contaminant to travel from the source of contamination to the aquifer. Susceptibility of an aquifer to contamination will be influenced by the hydrogeologic characteristics of the soil, vadose zone (the unsaturated geologic materials between the ground surface and the aquifer), and confining layers. Important hydrogeologic controls include the thickness of the soil, the depth of the aquifer, the permeability of the soil and vadose zones, the thickness and uniformity of low permeability and confining layers between the surface and the aquifer, and hydrostatic head of the aquifer. These factors will control how readily a contaminant will infiltrate and percolate toward the groundwater.

The Susceptibility waiver has the objective of assessing the potential of contaminants reaching the groundwater used by the PWS. A groundwater source that appears to be confined from surface infiltration in the immediate area of the wellhead may eventually be affected by contaminated groundwater flow from elsewhere in the recharge area. Contaminants could also enter the confined aquifer through improper well construction or abandonment where the well provides a hydraulic connection from the surface to the confined aquifer. The extent of confinement of an aquifer is critical to limiting susceptibility to organic chemical contamination. Regional conditions that define the confinement of a groundwater source must be demonstrated by the PWS in order to be considered for a confined aquifer susceptibility waiver. Confinement of an aquifer can be demonstrated by pump test data (storage coefficient), geologic mapping, and well logs. Site specific information is required to sufficiently represent the recharge area of the aquifer and the zone of contribution to the PWS well. The following information should be provided:

- Abandoned wells in the region (zone of contribution to the well),
- Other wells in the region (zone of contribution to the well),
- Nitrate/Coliform bacteria analytical history of the PWS well,
- Organic chemical analytical history of the PWS well,

### Susceptibility Waiver for Unconfined Aquifers

Unconfined aquifers are the most common source of usable groundwater. Unconfined aquifers differ from confined aquifers in that the groundwater is not regionally contained within relatively impervious geologic strata. As a result, the upper groundwater surface or water table in an unconfined aquifer is not under pressure that produces hydrostatic head common to confined aquifers.

Unconfined aquifers are usually locally recharged from surface water or precipitation. In general, groundwater flow gradients in unconfined aquifers reflect surface topography, and the residence time of water in the aquifer is comparatively shorter than for water in confined aquifers. Similar water chemistry often exists between unconfined groundwater and area surface water, and physical parameters and dissolved constituents can be an indicator of the hydraulic connection between groundwater and surface water. Consequently, unconfined aquifers can be susceptible to contamination by organic chemicals migrating from the ground surface to groundwater.

The objective of the susceptibility waiver application is to assess the potential of organic chemical migration from the surface to the unconfined aquifer. The general procedures make use of a combination of site specific information pertaining to the location and construction of the source development, monitoring history of the source, geologic characteristics of the unsaturated soil and vadose zones, and chemical characteristics of the organic chemicals pertaining to their mobility and persistence in the environment. The zone of contribution of the unconfined groundwater source must be defined and plotted. This should describe the groundwater flow directions, gradients, and a 3-year time-of-travel. All surface bodies within a 1,000 feet of the PWS well(s) must be plotted. Analytical monitoring history of the PWS well and those nearby should be provided as well.

### **Waiver Recommendation**

Currently, White Sulphur Springs has a Phase II inorganic monitoring waiver for the common header for wells 1& 2. A Phase II and Phase V inorganic monitoring waiver is also in effect for the surface water intake. Based on past monitoring results and the susceptibility assessment for the wells and the surface water intake, White Sulphur Springs may be eligible for additional monitoring waivers. For further monitoring waiver consideration, the White Sulphur Springs PWS should submit a letter to DEQ requesting additional monitoring waivers. The PWS also needs to provide additional information to DEQ regarding chemical use within the inventory and spill response regions.

### **REFERENCES**

Cottingham, Rick, December 2002, Montana Department of Environmental Quality, Public Drinking Water Section.

Freeze, R. Allan and Cherry, John A., 1979, Groundwater.

Groff, S.L., 1965, <u>Reconnaissance Ground-Water and Geological Studies</u>, <u>Western Meagher County</u>, <u>Montana</u>, Montana Bureau of Mines and Geology, Special Publication 35, Ground-Water Report 3.

Grove, Michael and Dunn, Darrel E., 1980, <u>Geothermal Heating System For the First National Bank of</u> White Sulphur Springs, Montana.

Montana: A Visitors Guide at Montana.ms

Montana Bureau of Mines and Geology, Groundwater Information Center.

Montana Department of Environmental Quality Public Water Supply Program Safe Drinking Water Information System (SDWIS).

Montana Department of Environmental Quality Underground Storage Tank Program web-site.

Montana Department of Environmental Quality, 2000, "303(d) List, Montana List of Waterbodies In Need of Maximum Daily Load Development".

Montana Department of Natural Resources and Conservation Water Rights Bureau.

Ross, Clyde P., Andrews, David A., and Witkind, Irving J., 1955, <u>Geologic Map of Montana</u>, Montana Bureau of Mines and Geology.

United States Census Bureau, 2000.

United States Environmental Protection Agency "Envirofacts Data Warehouse and Applications".

United States Environmental Protection Agency "Know Your Watershed".

United States Geological Survey. 2000. National Landcover Dataset, Montana. 30 meter electronic digital landcover dataset interpreted from satellite imagery.

Western Regional Climate Center <u>wrcc@dri.edu</u>, Montana Climate Summaries. White Sulphur Springs 2, Montana (Station 248930).

### **GLOSSARY\***

**Acute Health Effect.** A negative health effect in which symptoms develop rapidly.

**Alkalinity.** The capacity of water to neutralize acids.

**Aquifer.** A water-bearing layer of rock or sediment that will yield water in usable quantity to a well or spring.

**Barrier.** A physical feature or management plan that reduces the likelihood of contamination of a water source from a potential contaminant source

**Best Management Practices (BMPs).** Methods for various activities that have been determined to be the most effective, practical means of preventing or reducing non-point source pollution.

**Biennial Reporting System (BRS).** An EPA database that contains information on hazardous waste sites. The data can be accessed through the EPA Envirofacts website.

**Chronic Health Effect.** A negative health effect in which symptoms develop over an extended period of time.

**Class V Injection Well.** Any pit or conduit into the subsurface for disposal of waste waters. The receiving unit for an injection well typically represents the aquifer, or water-bearing interval.

**Coliform Bacteria.** A general type of bacteria found in the intestinal tracts of animals and humans, and also in soils, vegetation and water. Their presence in water is used as an indicator of pollution and possible contamination by pathogens.

**Community.** A town, neighborhood or area where people live and prosper.

**Comprehensive Environmental Cleanup and Responsibility Act (CECRA).** Passed in 1989 by the Montana State Legislature, CECRA provides the mechanism and responsibility to clean up hazardous waste sites in Montana.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Enacted in 1980. CERCLA provides a Federal "Superfund" to clean up uncontrolled or abandoned hazardous-waste sites as well as accidents, spills, and other emergency releases of pollutants and contaminants into the environment. Through the Act, EPA was given power to seek out those parties responsible for any release and assure their cooperation in the cleanup.

Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS). A database that provides information about specific sites through the EPA Envirofacts website.

**Confined Animal Feeding Operation (CAFO).** Any agricultural operation that feeds animals within specific areas, not on rangeland. Certain CAFOs require permits for operation.

**Confined Aquifer.** A fully saturated aquifer overlain by a confining unit such as a clay layer. The static water level in a well in a confined aquifer is at an elevation that is equal to or higher than the base of the

overlying confining unit.

**Confining Unit.** A geologic formation present above a confined aquifer that inhibits the flow of water and maintains the pressure of the ground water in the aquifer. The physical properties of a confining unit may range from a five-foot thick clay layer to shale that is hundreds of feet thick.

**Delineation.** The process of determining and mapping source water protection areas.

**Glacial.** Of or relating to the presence and activities of ice or glaciers. Also, pertaining to distinctive features and materials produced by or derived from glaciers.

Geographic Information Systems (GIS). A computerized database management and mapping system that allows for analysis and presentation of geographic data.

**Hardness.** Characteristic of water caused by presence of various calcium and magnesium salts. Hard water may interfere with some industrial processes and prevent soap from lathering.

**Hazard.** A relative measure of the potential of a contaminant from a facility or associated with a land use to reach the water source for a public water supply. The location, quantity and toxicity of significant potential contaminant sources determine hazard.

**Hydraulic Conductivity.** A constant number or coefficient of proportionality that describes the rate water can move through an aquifer material.

**Hydrology.** The study of water and how it flows in the ground and on the surface.

**Hydrogeology.** The study of geologic formations and how they effect ground water flow systems.

**Inventory Region.** A source water management area for ground water systems that encompasses the area expected to contribute water to a public water supply within a fixed distance or a specified three year ground water travel time.

**Lacustrine.** Pertaining to, produced by, or formed in a lake or lakes.

**Large Capacity Septic System.** Defined by Underground Injection Control regulations as an on-site septic system serving 20 or more persons.

**Leaking Underground Storage Tank (LUST).** A release from an UST and/or associated piping into the subsurface.

Maximum Contaminant Level (MCL). Maximum concentration of a substance in water that is permitted to be delivered to the users of a public water supply. Set by EPA under authority of the Safe Drinking Water Act to establish concentrations of contaminants in drinking water that are protective of human health.

Montana Bureau of Mines and Geology – Ground Water Information Center (MBMG/GWIC). The database of information on all wells drilled in Montana, including stratigraphic data and well construction data, when available.

Montana Pollutant Discharge Elimination System (MPDES). A permitting system that utilizes a

database to track entities that discharge wastewater of any type into waters of the State of Montana.

**National Pollutant Discharge Elimination System (NPDES).** A national permitting system that utilizes a database to track entities that discharge wastewater into waters of the United States.

**Nitrate.** An important plant nutrient and type of inorganic fertilizer that can be a potential contaminant in water at high concentrations. In water the major sources of nitrates are wastewater treatment effluent, septic tanks, feed lots and fertilizers.

**Nonpoint-Source Pollution.** Pollution sources that are diffuse and do not have a single point of origin or are not introduced into a receiving stream from a specific outlet. Examples of nonpoint-source pollution include agriculture, forestry, and run-off from city streets. Nonpoint sources of pollution, such as the use of herbicides, can concentrate low levels of these chemicals into surface and/or ground waters at increased levels that may exceed MCLs.

**Pathogens.** A microorganism typically found in the intestinal tracts of mammals, capable of producing disease.

**Phase II (and IIb) Rules.** EPA updated or created legal limits on 38 contaminants. The rules became effective July 30, 1992 and January 1, 1993. Some of these contaminants are frequently-applied agricultural chemicals such as nitrate and others are industrial solvents.

**Phase V Rule.** EPA set standards for 23 contaminants in addition to those addressed by the Phase II Rules. The Phase V Rule became effective January 17, 1994. Some of these contaminants include inorganic chemicals such as cyanide and other Phase V contaminants are pesticides that enter water supplies through run-off from fields where farmers have applied them or by leaching through the soil into ground water. Six are probable cancer-causing agents. Others can cause liver and kidney damage, or problems of the nervous system and brain.

**Point Source.** A stationary location or a fixed facility from which pollutants are discharged. This includes any single identifiable source of pollution, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fracture, container, rolling stock (tanker truck), or vessel or other floating craft, from which pollutants are or may be discharged.

**Pollutant.** Generally, any substance introduced into the environment that adversely affects the usefulness of a resource (e.g. groundwater used for drinking water).

**Permit Compliance System (PCS).** An EPA database that provides information on the status of required permits for specific activities for specific facilities. The data can be accessed through the EPA Envirofacts website.

**Public Water System (PWS).** A system that provides water for human consumption through at least 15 service connections or regularly serves 25 individuals.

**Pumping Water Level.** Water level elevation in a well when the pump is operating.

**Recharge Region.** An area in which water is absorbed that eventually reaches the zone of saturation in one or more aquifers. As a source water management region, the term generally describes the entire area that could contribute water to an aquifer used by a public water supply. Includes areas that could contribute

water over long time periods or under different water usage patterns.

**Resource Conservation and Recovery Act (RCRA).** Enacted by Congress in 1976. RCRA's primary goals are to protect human health and the environment from the potential hazards of waste disposal, to conserve energy and natural resources, to reduce the amount of waste generated, and to ensure that wastes are managed in an environmentally sound manner.

**Resource Conservation and Recovery Information System (RCRIS).** Is a database that provides information about specific sites through the EPA Envirofacts website.

**Secondary Maximum Contaminant Levels (SMCL).** The maximum concentration of a substance in water that is recommended to be delivered to users of a public water supply based on aesthetic qualities. SMCLs are non-enforceable guidelines for public water supplies, set by EPA under authority of the Safe Drinking Water Act. Compounds with SMCLs may occur naturally in certain areas, limiting the ability of the public water supply to treat for them.

**Section Seven Tracking System (SSTS).** SSTS is an automated system EPA uses to track pesticide producing establishments and the amount of pesticides they produce.

**Source Water.** Any surface water, spring, or ground water source that provides water to a public water supply.

**Source Water Delineation and Assessment Report (SWDAR).** A report for a public water supply that delineates source water protection areas, provides an inventory of potential contaminant sources within the delineated areas, and evaluates the relative susceptibility of the source water to contamination from the potential contaminant sources under "worst-case" conditions.

**Source Water Protection Areas.** For surface water sources, the land and surface drainage network that contributes water to a stream or reservoir used by a public water supply. For ground water sources, the area within a fixed radius or three-year travel time from a well, and the land area where the aquifer is recharged.

**Spill Response Region.** A source water management area for surface water systems that encompasses the area expected to contribute water to a public water supply within a fixed distance or a specified four-hour water travel time in a stream or river.

**Standard Industrial Classification (SIC) Code.** A method of grouping industries with similar products or services and assigning codes to these groups.

Static Water Level (SWL). Water level elevation in a well when the pump is not operating.

**Susceptibility** (of a PWS). The relative potential for a PWS to draw water contaminated at concentrations that would pose concern. Susceptibility is evaluated at the point immediately preceding treatment or, if no treatment is provided, at the entry point to the distribution system.

**Synthetic Organic Compounds (SOC).** Man made organic chemical compounds (e.g. herbicides and pesticides).

**Total Dissolved Solids (TDS).** The dissolved solids collected after a sample of a known volume of water is passed through a very fine mesh filter.

**Total Maximum Daily Load (TMDL).** The total pollutant load to a surface water body from point, nonpoint, and natural sources. The TMDL program was established by section 303(d) of the Clean Water Act to help states implement water quality standards.

**Toxicity.** The quality or degree of being poisonous or harmful to plants, animals, or humans.

**Toxicity Characteristic Leachate Procedure.** A test designed to determine whether a waste is hazardous or requires treatment to become less hazardous.

**Toxic Release Inventory** (**TRI**). An EPA database that compiles information about permitted industrial releases of chemicals to air and water. Information about specific sites can be obtained through the EPA Envirofacts website.

**Transmissivity.** A number that describes the ability of an aquifer to transmit water. The transmissivity is determined by multiplying the hydraulic conductivity time the aquifer thickness.

**Turbidity.** The cloudy appearance of water caused by the presence of suspended matter.

**Unconfined Aquifer.** An aquifer containing water that is not under pressure. The water table is the top surface of an unconfined aquifer.

**Underground Storage Tanks (UST).** A tank located at least partially underground and designed to hold gasoline or other petroleum products or chemicals, and the associated plumbing system.

**Volatile Organic Compounds (VOC).** Chemicals such as petroleum hydrocarbons and solvents or other organic chemicals that evaporate readily to the atmosphere.

**Watershed.** The region drained by, or contributing water to, a stream, lake, or other water body of water.

\* With the exception of the definitions for Lacustrine, Phase II and Phase V Rules, and Standard Industrial Classification Code, definitions were adapted from EPA's Term References System (formerly known as Glossary of Selected Terms and Abbreviations) which can be found at: <a href="http://www.epa.gov/trs/index.htm">http://www.epa.gov/trs/index.htm</a>

The definitions of glacial and lacustrine were taken from the <u>Glossary of Geology</u> by Robert L. Bates and Julia A. Jackson.

The definitions for Phase II and Phase V Rules were adapted from: http://www.epa.gov/OGWDW/source/therule.html#PhaseII

http://www.epa.gov/OGWDW/source/therule.html#PhaseV

The definition for Standard Industrial Classification Code was adapted from:

EPA/Office of Enforcement and Compliance Assurance: Guide to Environmental Issues: Glossary of Terms & Acronyms *Term Detail* 

# **APPENDICES**

**APPENDIX A** 

**WELL LOGS** 

WELL LOG REPORT Well #1 WLOO3

State law requires that this form be filed by the water well driller within 40 days after completion of the well-

| 2.                                                                                            | Name City of WHITE SULPHUR SPRI            |                            |                  |                  |           |                                   | 713                    | If flawing:             | VEL  r level 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|------------------|------------------|-----------|-----------------------------------|------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. WELL LOCATION County Tawnship OG N/S Range O7 Z/W S W SE W Section 7 Lat Black Subdivision |                                            |                            |                  |                  |           | WELL LOCATION   S. WELL TEST DATA |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                               | PROPOSED<br>Other 🗆 69                     |                            |                  | Sloc             | k 🗆 in    | ngailon 🗆                         |                        | If yes, he              | W?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                               | IRILLING M                                 | ard rot                    | му               | cable<br>reverse | rotary, _ | bored,<br>jetted,                 | 12. )<br>Depth<br>From | WELL LOG<br>(ft.)<br>To | Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| _                                                                                             |                                            | ******                     |                  |                  |           |                                   | 0                      | 19                      | FIRE SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| _                                                                                             | -                                          |                            |                  | COMPLETE         |           |                                   | 19                     | 200                     | FRACTERED SILT STUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| ice of                                                                                        | Size snd<br>Mgiew                          | Frank<br>(Deat)            | (feat)           | Serves X         | 7005      | 104/07                            | -                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| G                                                                                             | of casting                                 | 0                          | 30               | Get              | Fram      | Ta .                              | -                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 811                                                                                           | 345                                        |                            | 130              | Site             | (fmet)    | (Seet)                            |                        | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| -                                                                                             | 16"                                        |                            | -                | 5540             | 90        | 200                               |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 411                                                                                           | 365                                        | 0                          | 90               | 1000             | 28        |                                   |                        | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                               | ١٥                                         |                            |                  |                  |           |                                   |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                               |                                            |                            |                  |                  |           |                                   |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Wa                                                                                            | s casing is                                | nage h                     | end7             | Y                |           | X_No                              |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                               | s a packer                                 |                            |                  |                  |           | No                                | -                      |                         | (see reporting threat if necessary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                               | s the well :                               |                            |                  | MTUH ITE         | _         | No                                | _                      | -                       | The second secon |  |  |
| Wa                                                                                            | s the well ;<br>e what dep<br>datartal use | prouted<br>th?<br>id in gr | 7<br>98/         | CENE             | 11 _      | Na                                | T                      | his well was            | ERTIFICATION s drilled and this report it set if my knowledge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                               | I head com                                 |                            |                  |                  | es _      | . No                              |                        |                         | Fiu -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| , 49                                                                                          |                                            |                            |                  | <u>X</u> Y       |           | Ma                                |                        | m Kene                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                               |                                            |                            |                  | OF THE W         | ATER?     |                                   | - 44                   | Areas                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| . WE                                                                                          | 1-                                         | egrees                     | Fahrenti<br>ered |                  | rimated   | 10.50                             | 317                    | ESCELA.                 | License 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

### Montana Bureau of Mines and Geology Ground-water Information Center Site Report CITY OF WHITE SULPHUR SPRINGS

#### **Location Information**

GWIC Id: 172711 Source of Data: LOG
Location (TRS): 09N 07E 07 DDC Latitude (dd): 46.5482
County (MT): MEAGHER Longitude (dd): -110.8883

DNRC Water Right: C061342-00 Geomethod: TRS-TWN

PWS Id: Datum: 1927

Block: Not Reported Addition: Not Reported

Lot: Not Reported Type of Site: WELL Certificate of Survey: Not Reported

### Well Construction and Performance Data (measurements are reported below land surface)

Total Depth (ft): 201.00 How Drilled: ROTARY
Static Water Level (ft): 22.00 Driller's Name: BUSH
Pumping Water Level (ft): 58.00 Driller License: WWC597
Yield (gpm): 1000.00 Completion Date: Apr 21, 1999

Test Type: PUMP Special Conditions: None Reported Test Duration: 10.00 Is Well Flowing?: No

Drill Stem Setting (ft): Shut-In Pressure:

Recovery Water Level (ft): 22.00 Geology/Aquifer: Not Reported Recovery Time (hrs): .03 Well/Water Use: Not Reported

### Hole Diameter Information Casing Information

No hole diameter records were found. From (ft) To (ft) Dia (in) Description

0.0 201.0 10.0 STEEL

Annular Seal Information Completion Information

| From (ft) | To (ft) | Description | From (ft) | To (ft) | Dia (in) | Description           |
|-----------|---------|-------------|-----------|---------|----------|-----------------------|
| 0.0       | 35.0    | NEAT CEMENT | 145.0     | 195.0   | 10.0     | 3/16X1 AIR MECHANICAL |

#### Lithology Information

| From (ft) | To (ft) | Description                                                                 |
|-----------|---------|-----------------------------------------------------------------------------|
| 0.0       | 3.07    | TOPSOIL                                                                     |
| 3.0       | 11.0 [  | DRY SANDY CLAY                                                              |
| 11.0      | 28.0 N  | MOIST SANDY CLAY                                                            |
| 28.0      | 31.0 N  | MUDSTONE BROWN 2 GPM                                                        |
| 31.0      | 55.0 H  | HARDER BROWN SILTSTONE 20 GPM                                               |
| 55.0      | 75.0 E  | BROWN SILTSTONE W/INTERMITTENT LAYER OF A HARD GREEN BROWN SILTSTONE 40 GPM |
| 75.0      | 201.0 F | RACTURED SILTSTONE                                                          |

These data represent the contents of the GWIC databases at the Montana Bureau of Mines and Geology at the time and date of the retrieval. The information is considered unpublished and is subject to correction and review on a daily basis. The Bureau warrants the accurate transmission of the data to the original end user. Retransmission of the data to other users is discouraged and the Bureau claims no responsibility if the material is retransmitted. Note: non-reported casing, completion, and lithologic records may exist in paper files at GWIC.

### **APPENDIX B**

Potential Contaminant Sources In The White Sulphur Springs Inventory Region

# **APPENDIX C**

# **Concurrence Letter**

# SOURCE WATER PROTECTION PLAN

# City White Sulphur Springs Public Water Supply

PWSID # MT0000360

**Certified Operator** 

**Rocky Vinton** 

P.O. Box 442

White Sulphur Springs, MT

(406) 547-3788

Kristi Kline, Montana Rural Water Systems
December 2015

#### **TABLE OF CONTENTS**

**Executive Summary** 

2002 Source Water Assessment and Delineation Report - Update December 2015

Source Water Delineation Results Inventory Results Susceptibility Results

Management Planning

Action Item Table

**Emergency Response Planning** 

References

Appendix A - Well Logs

December 2015

# **Executive Summary**

This Source Water Protection Plan (SWP) was completed by Kristi Kline, Source Water Protection Specialist, Montana Rural Water for the City of White Sulphur Springs, PWS ID # MT 0000360. The City of White Sulphur Springs Public Water System (PWS) is located in Meagher County. Contact for the City of White Sulphur Springs PWS is Rocky Vinton, Water Superintendent, P.O. Box 442, White Sulphur Springs, MT, 59645, (406) 547-3788. The SWP was built upon the Source Water Delineation and Assessment Report (SWDAR) for White Sulphur Springs which was authored by Carolyn DeMartino, Water Quality Specialist, MT DEQ SWP program and completed in 2002.

The Montana Source Water Protection Program is a practical and cost-effective approach to protecting public drinking water supplies from contamination. A major component of the Montana Source Water Protection Program is termed delineation and assessment. The emphasis of the delineation and assessment report is identifying significant potential contaminant threats to public drinking water sources, assessing susceptibility to those threats in order to provide the basis needed to develop a source water protection plan for the City of White Sulphur Springs.

Delineation is a process whereby areas that contribute water to aquifers or surface waters used for drinking water, called source water protection areas, are identified on a map. Geologic and hydrologic conditions are evaluated in order to delineate source water protection areas. Assessment involves identifying locations or regions in source water protection areas where contaminants may be generated, stored, or transported and then determining the potential for contamination of drinking water by these sources.

Planning meetings were held throughout 2015 to review the 2002 SWDAR and discuss updates, new management ideas and emergency response planning for the City of White Sulphur Springs PWS.

Planning members included:

# City of White Sulphur Springs

JulianTheriault, Mayor
George Kirkwood, Council member
Rocky Vinton, Water Superintendent
Daryl Mesecher, Wastewater Superintendent

#### Montana Rural Water Systems, Inc.

Kristi Kline, Source Water Protection Specialist

Source Water Protection planning focuses on the water supply sources for a public water system. The City of White Sulphur Springs obtains their supply from two sources, an infiltration gallery on Willow Creek and two groundwater wells. This report looks at the potential impacts that could occur to these two sources of water supply. It also identifies management activities that the city can implement to protect the source waters.

This project was completed as a group effort among a planning committee that included staff with the City of White Sulphur Springs, Lewis and Clark National Forest White Sulphur Springs Ranger District, Meagher County Sanitarian, and Montana Rural Water Systems, Inc. The 2002 SWDAR was used as a technical basis for this planning process. On-site tours and several planning meeting were held to update and refine information, inventories, potential susceptibilities and maps for the City of White Sulphur Springs public water supply system.

Potential future economic additions to Meagher County include the Tartania and Black Butte copper mining proposal that is to be located at the head of Sheep Creek north of White Sulphur Springs and the Gordon Butte Hydro Pumped Storage Facility project located near Martinsdale. Both of these projects could bring an increase of jobs to the area with the potential of an increase in population for the City of White Sulphur Springs. Both projects will continue to be reviewed by state agencies in 2016.

#### Source Water Assessment

A 2002 Source Water Delineation and Assessment Report (SWDAR) was completed for the City of White Sulphur Springs by Carolyn DeMartino, Montana (MT) Department of Environmental Quality Source Water Protection Program. City of White Sulphur Springs' Public Water System staff at that time provided comment and review. The 2002 SWDAR can be reviewed at the White Sulphur Springs City Hall or at <a href="http://deq.mt.gov/wqinfo/swp/">http://deq.mt.gov/wqinfo/swp/</a>

The SWDAR is predominantly a technical document that provides the technical basis for this Source Water Protection Plan. During the planning process to develop the 2015 SWP plan, the White Sulphur Spring's Mayor, Council members and PWS staff along with Kristi Kline, Montana Rural Water SWP Specialist, reviewed current information, inventories and improvements added to the PWS since the 2002 SWDAR was written. Those updates are highlighted in **bold** in the 2015 SWP plan. 2002 SWDAR information includes:

- General information on the community of White Sulphur Springs, economy, population served, public water and wastewater services;
- Delineation and mapping of the source water protection area including updated maps and evaluation of hydrology and hydrogeology;
- · Inventory of potential contaminant sources that could impact the water sources
- A susceptibility assessment to identify potential contaminant sources that are considered particularly significant with respect to the White Sulphur Springs' water supplies.

Updates for the City of White Sulphur Springs PWS are addressed as follows.

# SOURCE WATER ASSESSMENT (Updated December 2015)

# The Community

In 2015, the City of White Sulphur Springs serves 951 residents through 593 service connections. Each service connection is metered.

Agriculture remains the primary economic base for White Sulphur Springs' economy. Potential future economic additions to Meagher County include the Tartania and Black Butte copper mining proposal that is to be located at the head of Sheep Creek north of White Sulphur Springs and the Gordon Butte Hydro Pumped Storage Facility project located near Martinsdale. Both of these projects could bring an increase of jobs to the area with the potential of an increase in population for the City of White Sulphur Springs. Both projects will continue to be reviewed by state agencies in 2016.

#### Geographic Setting

White Sulphur Springs is located in the Smith River Valley of southwestern Montana in Section 7 and 17, Township 9 North, Range 7 East (Figure 1). Climate in the White Sulphur Springs area is considered semi-arid. Average daily high and low temperatures in White Sulphur Springs are 80.5° F and 47.5° F in August and July, respectively, and 32.2° F and 11.4° F in January. Annual precipitation averages 13.41 inches. Rainfall occurs year round with May and June being the wettest months. The annual average snowfall of 36.2 inches is received in the White Sulphur Springs area mainly September to April (Western Regional Climate Center, Monthly Climate Summary 12/1/1978 to 12/31/2001).

Major streams in the White Sulphur Springs vicinity include the Smith River, Lone Willow Creek, and Willow Creek. Irrigation canals are also in the White Sulphur Springs vicinity. South Side Canal is located approximately one mile east of White Sulphur Springs.

In addition to the springs located within the City of White Sulphur Springs Park, Hanson Springs is located to the northwest, Trinity Springs to the northeast, Carlin Springs and Rankin Springs to the south of White Sulphur Springs.

The three mountain ranges that surround White Sulphur Springs include the Little Belt Mountains to the northeast, the Castle Mountains to the southeast, and the Big Belt Mountains to the southwest. The headwaters for Willow Creek, the White Sulphur Springs PWS surface water source, are located in the Castle Mountains.

December 2015

#### Source Water

The City of White Sulphur Springs obtains its water from both groundwater and surface water sources. Groundwater is obtained from two 200-foot wells (Figure 2) completed in fractured siltstone (Figure 3). Well logs are located in Appendix A. Surface water is obtained from a slow sand filter/ infiltration gallery system located in Willow Creek. The slow sand filter and infiltration gallery are located approximately five miles southeast of town (Figure 4).

# The Public Water Supply Add new additions to Sand Filter system/Year completed

The water supply system consists of a 200-foot well (Well #1-WL003) that was drilled in 1986, a slow sand filter/ infiltration gallery system (IN002) located in Willow Creek, and a newer well (Well #2-WL004), drilled in 1998, **Well #1** functions only as a back-up well if the need arises (**Rocky Vinton communication, 2015**). Three buildings at the PWS system include the chlorination room and well house, located at the well head; and a chlorination and valve building at the storage tank.

A 60 horse power submersible pump with a peak flow of **500** gallons per minute (gpm) is located in **Well #1** and **Well #2** at about 180 feet below ground surface. Groundwater is pumped directly into the distribution system, and during periods of low use excess pressure in the distribution system lifts water to a **560,000**—gallon concrete storage tank located approximately two miles east of White Sulphur Springs. Larger tank was installed in 2011/12 for fire protection and future growth.

The water from the tank is then gravity fed back to the distribution system as demand increases. The storage tank is connected to the distribution system with approximately two miles of **10-inch** steel transmission main. The steel transmission line is scheduled to be replaced with 12-inch PVC pipe.

An infiltration gallery is used in conjunction with the slow sand filter to help collect water. The dam creates a pond, holding approximately 314,160 gallons of water, above the slow sand filter when Willow Creek is diverted into the slow sand filter (DEQ, 1999 Sanitary Survey).

A new sand filter building was completed in 2004 and is located 2 miles from town. New additions included a 4-cell sand filter system that allows for a future 2-cell expansion. A tornado event in 2012 destroyed much of the sand filter building roof and walls. Repairs were made and the system was back on line in 2013.

Replacement of 3,000 feet of 12" PVC transmission line in 2010 extended ½ mile from town through privately owned land.

Currently, water from Willow Creek is gravity fed into the updated sand filter system. Rain events that produce heavy run-off may contribute to higher turbidity levels on the Willow Creek source. Turbidity meters are installed that enable the PWS staff to monitor any changes in turbidity levels for this source. If levels reach above 1, the Willow Creek source is turned off and the PWS will use 100% of the groundwater

sources until the turbidity levels are reduced on Willow Creek. Maintenance on the sand filter system is completed during this time.

Groundwater from the wells and surface water from Willow Creek are treated with gas chlorine that is injected at the well house and at the storage tank.

The daily average demand for groundwater **Well #2** is approximately 300,000 gallons per day (gpd), and about 150,000 gpd for the slow sand filter. The production from the Willow Creek system is limited during the irrigation season (April - September). During the irrigation season withdrawal from Willow Creek is limited to approximately 112 gpm.

# Water Quality

White Sulphur Springs' water quality is routinely monitored for compliance with drinking water standards. Bacteriological monitoring is conducted monthly. Compliance with other drinking water standards is based on additional sampling on a variety of schedules. The PWS has maintained compliance with all SDWA regulations in the last five years.

Willow Creek is located in the Smith River sub-basin of the Upper Missouri River Watershed. The U.S. Geological Survey hydrologic unit code for Willow Creek is 10030103. The Willow Creek drainage to the White Sulphur Springs intake is classified as A-1 water meaning, waters are to be maintained suitable for drinking, culinary and food processing purposes after conventional treatment for removal of naturally present impurities.

# CHAPTER 2 DELINEATION

The source water protection area, the land area that contributes water to the White Sulphur Springs PWS wells, is identified in this chapter. Management areas identified within the source water protection area for wells 1 and 2 include the control zone, inventory region, and recharge region. For the purposes of this report, the recharge region is included within the watershed region for the Willow Creek surface water intake. The control zone is an area at least 100-foot radius around the well. The management goal of the control zone, also known as the exclusion zone, is to protect against the direct introduction of contaminants into the wells or in the immediate area surrounding each well. The inventory region (Figure 5) represents the zone of contribution to the wells. The management goal of the inventory region is to focus on pollution prevention activities at potential contaminant sources where it is likely that contaminated water would flow into the wells within a relatively short time. The recharge region represents the entire portion of the aquifer that contributes water to the White Sulphur Springs wells. Management within the recharge region should focus on maintaining and improving the quality of groundwater that could reach the wells over longer timeframes or with increase usage.

Management areas identified within the source water protection area for the White Sulphur Springs surface water intake include the spill response region (Figure 6) and the watershed region (Figure 7). The spill response region represents the area of surface water upstream of the White Sulphur Springs PWS in which contaminants could be drawn into the intake in a relatively short period of time. The watershed region represents the entire region that is upstream of, and contributes water to the White Sulphur Springs PWS.

#### Hydrogeologic Conditions

Tertiary basin fill sediments underlie the City of White Sulphur Springs. White Sulphur Springs PWS wells 1 and 2 are completed in deep fractured siltstone and appear to be confined (Appendix A). Regional groundwater flow in the White Sulphur Springs vicinity is to the west with a relatively flat gradient (Maxim, July 1997).

Several thrust faults are located nearby and north and east of White Sulphur Springs. Water flowing from the hot springs for which the City of White Sulphur Springs is named, is the result of deep water circulation along the Willow Creek Thrust Fault, in high permeability zones of the Mississippian Mission Canyon Limestone or the Pre-Cambrian Newland Limestone beneath the thrust fault zone, or both (D. Smith 1983). The water temperature is approximately 115 ° F. The sulfur odor given off by the springs is caused by hydrogen sulfide gas escaping to the atmosphere (Groff, 1965). The springs are used for the pools and baths in a local spa hotel and for the heating system at a local bank (Grove and Dunn, 1980).

The surface water intake for the White Sulphur Springs PWS is located in Willow Creek. The headwaters for Willow Creek are located in the Castle Mountains, which are located southeast of White Sulphur Springs. The Castle Mountains were formed approximately 50 million years ago when movement of area faults occurred and the

magma that formed these granite mountains moved upward along the faults (Alt and Hyndman, 1986). As the granite mountains weather, castle-like turrets are formed thus giving rise to their name.

Sedimentary rocks ranging in age from Precambrian to Cretaceous that cover a large part of the White Sulphur Springs vicinity were uplifted during the formation of the Castle Mountains and another igneous extrusion composed of diorite. The Castle Mountains and diorite extrusions produced numerous fractures in the overlying layers. Recharge to the White Sulphur Springs wells mostly likely results from water percolating into more permeable zones of area limestones or fractured bedrock along area faults. Recharge to Willow Creek appears to be from precipitation entering directly into the creek or from runoff that eventually flows into the creek.

Table 1 below is used to determine source water/ aquifer sensitivity.

Table 1. Source Water Sensitivity Criteria (DEQ, 1999)

|                               | Source Water Sensitivity                           |  |  |  |  |  |
|-------------------------------|----------------------------------------------------|--|--|--|--|--|
| High Source Water Sensitivity |                                                    |  |  |  |  |  |
| i                             | Surface water and GWUDISW                          |  |  |  |  |  |
|                               | Unconsolidated Alluvium (unconfined)               |  |  |  |  |  |
| Ì                             | Fluvial-Glacial Gravel                             |  |  |  |  |  |
|                               | Terrace and Pediment Gravel                        |  |  |  |  |  |
|                               | Shallow Fractured or Carbonate Bedrock             |  |  |  |  |  |
|                               | Moderate Source Water Sensitivity                  |  |  |  |  |  |
| 1                             | Semi-consolidated Valley Fill sediments            |  |  |  |  |  |
|                               | Unconsolidated Alluvium (semi-confined)            |  |  |  |  |  |
| ľ                             | Low Source Water Sensitivity                       |  |  |  |  |  |
|                               | Consolidated Sandstone Bedrock                     |  |  |  |  |  |
| ı                             | Deep Fractured or Carbonate Bedrock                |  |  |  |  |  |
| Į                             | Semi-consolidated Valley Fill Sediments (confined) |  |  |  |  |  |

The White Sulphur Springs wells are completed in deep fractured siltstone. Based on this information the siltstone aquifer that supplies water to the White Sulphur Springs PWS wells has a low sensitivity to potential contaminant sources (Table 1).

Water obtained via the slow sand filter/ infiltration galley intake system in Willow Creek is classified as having a high sensitivity to potential contaminant sources. Because the groundwater and surface water are blended in the storage tank, the overall sensitivity of the White Sulphur Springs PWS to potential contaminant sources is moderate.

# Conceptual Model and Assumptions

Tertiary basin fill sediments underlie the City of White Sulphur Springs. Areas nearby and to the north and east of White Sulphur Springs were highly faulted. Hot springs

located in the city park are the result of deep water circulation along the Willow Creek Thrust Fault, in high permeability zones of the Mississippian Mission Canyon Limestone or the Pre-Cambrian Newland Limestone beneath the thrust fault zone, or both (Smith 1983). White Sulphur Springs PWS wells 1 and 2 are completed in deep fractured siltstone and appear to be confined. Regional groundwater flow in the White Sulphur Springs vicinity is to the west with a relatively flat gradient (Maxim, July 1997). Recharge to the wells is potentially from water percolating into more permeable limestones or fractured bedrock along area faults.

Surface water is also utilized by the White Sulphur Springs PWS. The water is obtained via a slow sand filter/ infiltration gallery system in Willow Creek. Contaminants, if spilled directly into Willow Creek upstream or in the immediate vicinity of the White Sulphur Springs intake, could potentially reach the intake before the water operator could close it. Over a longer time-frame, contaminants that accumulate throughout the watershed could be flushed into Willow Creek during periods of spring high flow runoff.

#### Well Information

Data for the White Sulphur Springs wells is summarized in Table 2.

Table 2 Well information for the White Sulphur Springs PWS.

| Information                | Well #1                   | Well #2                   |  |  |
|----------------------------|---------------------------|---------------------------|--|--|
| PWS Source Code            | WL003                     | WL004                     |  |  |
| Well Location              | T. 9 N., R. 7 E., Sec. 07 | T. 9 N., R. 7 E., Sec. 07 |  |  |
| (T, R, Sec)                | SW1/4 SE1/4SE1/4 (DDC)    | SW1/4 SE1/4SE1/4 (DDC)    |  |  |
| Latitude/ Longitude        | 46.5498/110.8899          | 46.5482/ 110.8883         |  |  |
| MBMG #                     | 260672                    | 172711                    |  |  |
| Water Right #              | NA                        | C061342-00                |  |  |
| Date Well was<br>Completed | 06/23/86                  | 04/21/1999                |  |  |
| Total Depth                | 200                       | 201                       |  |  |
| Perforated Interval        | 90' 200'                  | 145' – 195'               |  |  |
| Static Water Level         | 19                        | 22                        |  |  |
| Pumping Water Level        | 42                        | 58                        |  |  |
| Drawdown                   | 23                        | 36                        |  |  |
| Test Pumping Rate          | NA                        | NA                        |  |  |
| Specific Capacity          | 35                        | 28                        |  |  |

Currently, Well #2 is used primarily along with water obtained via the Willow Creek surface water intake to supply White Sulphur Springs with drinking water. Well #1 is used as a backup well as needed depending on water demand.

#### Surface Water Intake Information

The slow sand filter system, located approximately five miles southeast of town in Willow Creek, consists of a concrete dam with earthen sides and approximately 4.5 feet of masonry sand as the filter media with collectors below. An infiltration gallery is used in conjunction with the slow sand filter to help collect water. The dam creates a pond, holding approximately 314,160 gallons of water, above the slow sand filter when Willow Creek is diverted into the slow sand filter (DEQ, 1999 Sanitary Survey). Because the slow sand filter requires the use of supplemental pumping to drain and it is difficult to clean, filtered water has a higher turbidity than water in the creek before filtration

#### Methods and Criteria

DEQ's Source Water Protection Program specifies methods and criteria used to delineate sub regions of the source water protection area for the White Sulphur Springs PWS. Because the White Sulphur Springs PWS obtains water from both groundwater wells and a surface water intake, a control zone, and inventory region have been delineated for the wells. A spill response region has been identified for the Willow Creek surface water intake. A combined recharge/ watershed region has been delineated for both the wells and surface water intake

#### **Delineation Results**

Because wells 1 and 2 are only about **20**-feet apart, a one hundred-foot radius control zone was delineated around both of the wells. A 1000-foot fixed radius inventory region was also delineated around both of the wells.

The spill response region for the Willow Creek intake extends ½-mile downstream and ten miles upstream (or at the watershed boundary) from the intake and, includes ½-mile wide buffers adjacent to all shorelines.

The delineation of the recharge/watershed region for the White Sulphur Springs PWS wells and surface water intake is based on hydrogeological mapping.

# CHAPTER 3 INVENTORY

Inventory of potential contaminant sources was conducted within the White Sulphur Springs PWS well control zones, inventory region, and recharge region. Inventory of potential contaminant sources was also conducted within the spill response region and watershed region of the PWS intake on Willow Creek. Potential sources of all primary drinking water contaminants and Cryptosporidium were identified; however, only significant potential contaminant sources were selected for the detailed inventory. Significant potential contaminants in the White Sulphur Springs' inventory region and spill response region include nitrate, pathogens, fuels, solvents, agricultural chemicals, and metals.

The potential contaminant source inventory for White Sulphur Springs focuses on all activities in the control zone, certain sites or land use activities in the inventory region, and general land uses and large facilities in the recharge region. In the spill response region potential contaminant sources that have the potential to impact the intake are identified. General land uses and large facilities within the watershed region are identified.

#### **Inventory Method**

Available databases were initially searched to identify businesses and land uses that are potential sources of regulated contaminants in the inventory region. The following steps were followed:

Step 1: Urban and agricultural land uses were identified using the United States Geological Survey National Landcover Dataset 2000.

Step 2: EPA's Envirofacts System was queried to identify EPA regulated facilities. This system accesses the following databases: Resource Conservation and Recovery Information System (RCRIS), Biennial Reporting System (BRS), Toxic Release Inventory (TRI), Permit Compliance System (PCS), and Comprehensive Environmental Response Compensation and Liability Information System (CERCLIS). The available reports were browsed for facility information including the Handler/Facility Classification to be used in assessing whether a facility is a significant potential contaminant source.

Step 3: DEQ databases were queried to identify Underground Storage Tanks (UST); hazardous waste contaminated sites, landfills, and abandoned mines.

Step 4: A business phone directory was consulted to identify businesses that generate, use, or store chemicals in the inventory region. Equipment manufacturing and/or repair facilities, printing or photographic shops, dry cleaners, farm chemical suppliers, and wholesale fuel suppliers were targeted by SIC code.

Step 5: Major road and rail transportation routes were identified.

Step 6. All significant potential contaminant sources were identified in the inventory region and land uses and facilities that generate, store, or use large quantities of hazardous materials were identified within the recharge region.

Potential contaminant sources are designated as significant if they fall into one of the following categories:

- -Large quantity hazardous waste generators
- -Landfills
- -Hazardous waste contaminated sites
- -Underground storage tanks
- -Major roads or rail transportation routes
- -Cultivated cropland
- -Animal feeding operations
- -Wastewater lagoons or spray irrigation
- -Septic systems
- -Sewered residential areas
- -Storm sewer outflows
- -Floor drains, sumps, or dry wells
- -Abandoned or active mines

#### Inventory Results/Control Zone

White Sulphur Springs Wells 1 and 2 are located on the northeast side of town. The City controls the land within the 100-foot control zone (Personal Communication, December 2002, Rick Cottingham, DEQ Drinking Water Section).

# Inventory Results/Inventory Region

Land cover within the inventory region for the White Sulphur Springs PWS is predominantly grassland at 44% and residential land at 40% (Figure 8). Additional land use types and their percentages are also identified on Figure 8. Septic system density in the inventory region is low. The municipal sewer system covers approximately 40% of the inventory region (Figure 9).

Significant potential contaminant sources in the inventory region are listed in Table 3 and indicated on Figure 10.

**Table 3.** Significant Potential Contaminant Sources in the White Sulphur Springs PWS Inventory Region

| Significant Potential<br>Contaminant<br>Sources | Figure/<br>Map ID | Contaminants                       | Hazard                                                          |
|-------------------------------------------------|-------------------|------------------------------------|-----------------------------------------------------------------|
| Municipal Sewer<br>System                       | Figure<br>10 #1   | Nitrates and pathogens             | Main line breaks and contents leaching into groundwater         |
| US Highway 12 & 89                              | Figure<br>10 #2   | VOCs, SOCs,<br>nitrates, pathogens | Accidental spills with migration of contaminants to groundwater |
| Septic Systems                                  | Figure 9          | Nitrates and pathogens             | Effluent leaching into area groundwater                         |
| Pasture Hay Land                                | Figure 8          | Nitrates and pathogens             | Agricultural chemicals leaching into groundwater                |
| Class V Injection<br>Wells                      | Unknown           | VOCs, SOCs, metals                 | Infiltration of contaminated water into groundwater             |

Municipal sewer system - Municipal sewer lines underlay approximately 40% of the inventory region. A sewer main break could allow nitrates and pathogens to enter area groundwater.

**Transportation routes -** Spills of fertilizers, pesticides, volatile organic compounds (VOCs), and synthetic organic compounds (SOCs) could occur along US Highways 12 and 89.

**Septic systems** – Septic system malfunctions could cause nitrates and pathogens to leach into area groundwater.

**Agricultural land** - Nitrates and pathogens found in fertilizers and manure applied to pasture/hay land could potentially leach into area groundwater.

Class V Injection wells – Locations have not been determined to date for this type of discharge. However, if any are located in the inventory region they could allow infiltration of contaminated water into area groundwater.

(No Injection wells are located within the area – communication from Rocky Vinton, 2015)

# Inventory Results/Surface Water Intake Spill Response Region

Land cover within the Willow Creek Spill Response Region includes 92% forests, 7% grassland, and 1% bare rock and deciduous trees (<u>Figure 11</u>). Septic density within the spill response region is low.

A past producing mine, the Ringling Mine, appears to be located upgradient of the Willow Creek intake. While no confined animal feeding operations have been identified, cattle from area ranches graze in the vicinity of Willow Creek.

#### Inventory Results/ Watershed-Recharge Region

Land cover in the White Sulphur Springs watershed/recharge consists predominantly of 48% grasslands and 40% forests (Figure 12). Additional land use types and percentages are also identified on Figure 12. Residential land covered less than one percent of land area and was not broken out in the pie chart.

Septic density in the watershed region is low. The only significant potential contaminant sources identified in the watershed region in addition to those mentioned in the inventory region and spill response region are scattered mines (Figure 13).

#### Inventory Limitations

The potential contaminant inventory was conducted using various databases to acquire readily available information. Consequently, unregulated activities or unreported contaminant releases may have been overlooked. The use of multiple sources of information, however, should ensure that the major threats to the White Sulphur Springs PWS wells and surface water intake in Willow Creek have been identified.

#### CHAPTER 4 SUSCEPTIBILITY ASSESSMENT

Susceptibility is the potential for a public water supply to draw water contaminated by inventoried sources at concentrations that would pose concern. Susceptibility is assessed in order to prioritize potential pollutant sources for management actions by local entities, in this case White Sulphur Springs.

The goal of Source Water Management is to protect the sources of the White Sulphur Springs PWS water by 1) controlling activities in the control zone, 2) managing significant potential contaminant sources in the Inventory Region for the wells and in the spill response region for the intake, and 3) ensuring that land use activities in the Recharge/ Watershed Regions pose minimal threat to the source water. Management priorities in the Inventory Region for the wells and Spill Response Region for the intake are determined by ranking the significant potential contaminant sources identified in the previous chapter according to susceptibility. Alternative management approaches that could be pursued by the White Sulphur Springs PWS to reduce susceptibility are recommended.

Susceptibility is determined by considering the hazard ranking for each potential contaminant source and the existence of barriers that may decrease the likelihood that contaminated water will flow to the White Sulphur Springs' wells and surface water intake (Table 4).

Table 4. Relative susceptibility to specific contaminant sources as determined by

hazard and the presence of barriers

|                   | High Hazard         | Moderate Hazard | Low Hazard     |
|-------------------|---------------------|-----------------|----------------|
| No Barriers       | Very                | High            | Moderate       |
| No barriers       | High Susceptibility | Susceptibility  | Susceptibility |
| One Berrier       | High                | Moderate        | Low            |
| One Barrier       | Susceptibility      | Susceptibility  | Susceptibility |
| Multiple Devices  | Moderate            | Low             | Very Low       |
| Multiple Barriers | Susceptibility      | Susceptibility  | Susceptibility |

Proximity or density of significant potential contaminant sources and nature of contaminants determines hazard (Table 5).

Table 5. Hazard of potential contaminant sources associated with proximity to a PWS well or

intake or density within a PWS inventory or spill response region.

|                       | oe of Contaminant Source                          | High                                                                               | Moderate                                                                                           | Low                                                                            |
|-----------------------|---------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1                     |                                                   | Hazard                                                                             | Hazard                                                                                             | Hazard                                                                         |
| SURFACE               | Point Sources of Nitrate or Microbes              | Potential for direct discharge to source water                                     | Potential for discharge to groundwater hydraulically connected to source water                     | Potential contaminant sources in the watershed region                          |
| W<br>A<br>T<br>E<br>R | Point Sources of VOCs,<br>SOCs, or Metals         | Potential for direct discharge of large quantities from roads, rails, or pipelines | Potential for direct discharge of small quantities to source water                                 | Potential for discharge to groundwater hydraulically connected to source water |
|                       | Point Sources of All<br>Contaminants (Unconfined) | Within 1-year<br>TOT                                                               | 1 to 3 years TOT                                                                                   | Over 3 years TOT                                                               |
| W E L L S             | Point Sources of All<br>Contaminants (Confined)   | PWS well is not sealed through the confining layer                                 | Well(s) in the inventory region other than the PWS well are not sealed through the confining layer | All wells in the inventory region are sealed through the confining layer       |
|                       | Septic Systems                                    | More than 300 per sq. mi.                                                          | 50 – 300<br>per sq. mi.                                                                            | Less than 50 per sq. mi.                                                       |
| L                     | Municipal Sanitary<br>Sewer<br>(% land use)       | More than 50 percent of region                                                     | 20 to 50<br>percent<br>of region                                                                   | Less than 20 percent of region                                                 |
|                       | Cropped Agricultural Land                         | More than 50 percent of region                                                     | 20 to 50<br>percent                                                                                | Less than 20 percent of region                                                 |
|                       | (% land use)                                      | <u> </u>                                                                           | of region                                                                                          |                                                                                |

Susceptibility rankings are presented individually for each significant potential contaminant source and each associated contaminant in Table 6 and in text following the table. Management recommendations that indicate how significant potential contaminant sources could be better managed to prevent impacts to the White Sulphur Springs' wells and surface water intake are also provided in Table 6.

December 2015

**Table 6.** Susceptibility assessment for significant potential contaminant sources in the White Sulphur Springs Inventory and Spill Response Regions

| Potential<br>Contaminant<br>Sources                    | Potential<br>Contamina<br>nts         | Hazard                                                                               | Hazard<br>Ranking              | Barriers                                                   | Susceptibility                               | Management<br>Recommend<br>ation                                            |  |
|--------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|--|
| Inventory Region                                       |                                       |                                                                                      |                                |                                                            |                                              |                                                                             |  |
| Municipal Sewer<br>(40%)                               | Nitrates<br>and<br>pathogens          | Main<br>breaks,<br>contaminat<br>ed water<br>mixing with<br>ground<br>Water          | Modera<br>te                   | Weil intake<br>depth,<br>upward<br>groundwater<br>gradient | Very Low                                     | Periodic inspection and upgrades of older sewer mains                       |  |
| US Highway 12 &<br>89                                  | VOCs,<br>SOCs,<br>nitrates            | Accidental spills                                                                    | Low                            | Well intake<br>depth,<br>upward<br>groundwater<br>gradient | Very Low                                     | Spill<br>Response<br>Plan                                                   |  |
| Septic Systems                                         | Nitrates<br>and<br>pathogens          | Effluent<br>leaching<br>into<br>ground<br>Water                                      | Low                            | Well intake<br>depth, upward<br>groundwater<br>gradient    | Very Low                                     | Proper<br>maintenance                                                       |  |
| Pasture Hay Land                                       | Nitrates<br>and<br>pathogens          | Spills, over<br>application<br>surface<br>runoff<br>leaching<br>into ground<br>Water | Low                            | Welf intake<br>depth, upward<br>groundwater<br>gradient    | Very Low                                     | Use Best<br>Management<br>Practices                                         |  |
| Stormwater<br>Discharges<br>Class V Injection<br>Wells | VOCs,<br>SOCs,<br>metals              | Infiltration<br>into ground<br>Water                                                 | Unkno<br>wn at<br>this<br>time | Not available                                              | No know<br>injection<br>wells in the<br>area | Work with<br>EPA to<br>identify<br>locations and<br>appropriate<br>response |  |
| Spill Response Region                                  |                                       |                                                                                      |                                |                                                            |                                              |                                                                             |  |
| Mines<br>Ringling Mine                                 | VOCs,<br>SOCs,<br>nitrates,<br>metals | Leaching into area surface water                                                     | Hìgh                           | Dilution                                                   | Moderate                                     | Revegetation tailings management                                            |  |

Municipal Sewer - Hazard is ranked moderate because the municipal sewer system underlies approximately 40% of the inventory region. The susceptibility of the wells is ranked low based on the depth of the well intakes and there appears to be an upward groundwater flow gradient.

December 2015

U.S. Highway 12 and 89 – Hazard is ranked low for these transportation routes. The overall susceptibility is very low based on the depth of the well intakes and there appears to be an upward groundwater flow gradient.

Septic Systems – Hazard is ranked low based on the low density of septic systems in the inventory region. The susceptibility of the wells is ranked low based on the depth of the well intakes and there appears to be an upward groundwater flow gradient.

Pasture Hay Land – Hazard is ranked low because this agricultural land occupies only 6 percent of the inventory region. The susceptibility of the wells is ranked low based on the depth of the well intakes and there appears to be an upward groundwater flow gradient.

Storm Water Discharges (Class V Injection Wells) – Hazard has not been ranked because the location and quantity of Class V Injection Wells in White Sulphur Springs is unknown. They have been identified in this report because if present, they have the potential to discharge into area groundwater. The susceptibility is also unknown at this time. No injections wells identified in the area (Rocky Vinton communication, 2015)

Mines (Ringling Mine) – Hazard is ranked high in the Willow Creek Spill Response region. The past producing Ringling Mine appears to be upgradient of the Willow Creek intake. The overall susceptibility is high based on dilution. **2015 update: Mine is currently off line and not in operation – Communication with Rocky Vinton, 2015.**Mine will be monitored for activity and communicated.

#### MANAGEMENT PLANNING

The goal of the Source Water Protection Plan is to protect the two sources of the White Sulphur Springs PWS by:

- 1) Keeping potentially polluting materials and activities out of the Control Zones, and
- 2) Manage the *Inventory Region* for the wells and *Spill Response Region* for the intake to ensure that susceptibility to land use activities and potential contaminant sources is the lowest possible.

Planning meetings and site visits were conducted in 2015 by the SWP planning team. Updates and corrections were made to the 2002 Source Water Delineation and Assessment report (SWDAR). Future management ideas for the contaminant sources identified in the 2002 SWDAR were discussed and plans are detailed in this chapter.

The SWP planning team members included:

# City of White Sulphur Springs (WSS)

JulianTheriault, Mayor
George Kirkwood, Council member
Rocky Vinton, Water Superintendent
Daryl Mesecher, Wastewater Superintendent

#### Montana Rural Water Systems

Kristi Kline, Source Water Protection Specialist

The City of White Sulphur Springs is a rural community that is surrounded by three mountain ranges that include the Little Belt Mountains to the northeast, the Castle Mountains to the southeast, and the Big Belt Mountains to the southwest. The headwaters for Willow Creek, the White Sulphur Springs PWS surface water source, are located in the Castle Mountains. Surface waters are identified as having high source water sensitivity (Table 1, DEQ). The PWS groundwater sources are completed in confined deep fractured siltstones that underlie the City. This siltstone aquifer provides a low sensitivity to potential contaminant sources (Table 1, DEQ).

Management protection for this SWP Plan will focus on the main PWS supply, the Willow Creek surface water supply and the two PWS wells that currently serve as supplemental sources. Both sources have an important collaboration element that will be fundamental to a successful source water protection program. As, source water protection is an ongoing effort, extending for the life of the water sources, an active participation and communication effort by the City of White Sulphur Springs' Council

members and Public Works staff in this collaboration are important roles to be continued in the future.

The City of White Sulphur Springs maintains a small PWS work force of operators who are cross-trained and certified in water and wastewater treatment operations. This cross training enables a communication and knowledge of all utility operations for the City of White Sulphur Springs that is very beneficial in the collaboration of services for all water users.

#### Collaborations

<u>Lewis and Clark US National Forest (USNF), White Sulphur Springs (WSS) Ranger</u>
<u>District</u>

A portion of the Willow Creek Municipal Watershed, a primary source of water for the City of White Sulphur Springs, is located in the western portion of the Castle Mountains within this USNF. The City of White Sulphur Springs owns the water rights that date back to the late 1800's for the South Fork of Willow Creek. The Willow Creek intake is located on USNF land. The While Sulphur Springs Ranger District office manages this region and is located in White Sulphur Springs which allows an opportunity to work closely together on SWP management plans and any other future plans. Maintaining a working collaboration with this staff will be imperative to the success of the 2015 SWP plan.

The daily average demand for groundwater well #2 is approximately 300,000 gallons per day (gpd), and about 150,000 gpd for the slow sand filter. The production from the Willow Creek system limited during irrigation season as the irrigation water rights have priority. During irrigation season withdrawal from Willow Creek is limited to approximately 112 gpm.

#### Private Landowners

Private property borders the access to the PWS Willow Creek intake, located in the western portion of the Castle Mountains. The City of White Sulphur Springs PWS staff has maintained a working cooperation with past and current landowners for access through their land to the entrance of the USNF land and the PWS intake. Maintaining a cooperative communication with the current landowners will be an important portion of the 2015 SWP plan.

#### Control Zone Management

The PWS Wells #1 and #2 are 20-feet apart from each other and located on land controlled by the City of White Sulphur Springs. Future activities or construction projects within this area will include protective barriers managed by the WSS Public Works Department staff.

Future Action plans:

Replace existing line between Well #1 and Well #2

# Inventory Region/Spill Response Region Management

#### PWS Wells #1 and #2

Susceptibility of groundwater sources is very low due to the depth of the PWS wells and existing groundwater gradient. To maintain a barrier of protection that ensures a low susceptibility for these wells, the PWS staff should continue to inspect, maintain and plan for future replacement of municipal sewer lines within this region. In addition, coordination of spill response action plans with the Meagher County Disaster and Emergency Response staff will provide barriers to any spills that may occur on US Highway 12 and 89 within this region.

Management planning will include these outreach projects:

- Presentation of 2015 SWP plan by City of White Sulphur Springs PWS staff to Meagher County LEPC
  - Assisted by Montana Rural Water Source Water Protection Specialist
- Future planning by City of White Sulphur Springs Council will include source water protection management planning in developing future construction plans for the public water system

#### Willow Creek Intake

Meetings were held with the White Sulphur Springs PWS staff and USFS Ranger and District staff to discuss several SWP management planning ideas. The Spill Response Zone around the Willow Creek intake is identified as roadless and somewhat remote. Some trails exist within the area but are very rugged and private land surrounds the entrance to this area and is fenced and locked. In recent years, the White Sulphur Springs PWS staff has encountered road access problems near the Willow Creek PWS intake due to downed trees on forest land. SWP planning discussions with the USFS Ranger District staff resulted in a site inspection with the WSS PWS staff and a road clearing project was collaborated and completed in October 2015. Future planning will include a PWS Operation and Maintenance plan for the PWS intake to communicate with the USFS District Ranger staff. This O&M plan will convey access needs for monitoring, sampling and maintenance needs for the Willow Creek. This communication will allow the Ranger District staff to include future management review of access for the area.

In 2015, The WSS Ranger District began a project scoping proposal to implement the Castle Mountains Restoration project. This project contains a suite of forest treatments focused on maintaining, restoring and improving the resiliency of forests and grasslands in the Castle Mountains on the White Sulphur Springs and Musselshell Ranger Districts. Reducing wildfire hazards, implementing mechanical and hand vegetation treatments

including some prescribed fire, weed control and enhancing and restoring quaking aspen and white bark pine stands are some of the proposed action plans.

This project is a great opportunity for the City of White Sulphur Springs' Council and PWS staff to communicate the importance of the Willow Creek PWS source water and participate in any future planning efforts for the area. The City of White Sulphur Springs PWS staff continues to monitor the water quality for Safe Drinking Water Act (SDWA) regulations. Additional monitoring by the PWS staff will be added and reviewed to note any changes in the current quality of the water. New information will be communicated with the WSS Ranger District staff that may further assist in future restoration planning efforts.

The Ringling Mine is currently inactive at the time of this writing. This is an old mining claim that has changed hands over the years. Current information of activities will be investigated. Contacts with Lewis and Clark USFS and MT DEQ staff will be identified to communicate with any updates on activities of this mine.

- Lewis and Clark USFS-Judith Basin Ranger District (406) 566-4000
- MT DEQ SWP program staff (406) 444- 4806

#### Future concerns

At the time of this writing, a copper mining proposal to be located at the head of Sheep Creek north of White Sulphur Springs and the Gordon Butte Hydro Pumped Storage Facility project located near Martinsdale, are currently under review by state agencies. Communication of maintaining protective barriers for the WSS PWS sources is an important management tool. As a prospective economic benefit to both the City of White Sulphur Springs Council and Meagher County, a cooperative effort of planning will ensure that protective barriers for the City of White Sulphur Springs' source waters are included

# Management planning:

- WSS PWS staff to develop an O&M plan for the Willow Creek intake to share with USFS Ranger District for future management of the access roads
  - Include Duties and equipment needed
- WSS Council and PWS staff continue cooperative communication with private landowners to access Willow Creek on USFS land
  - o "Neighborhood watch"
  - Current WSS PWS staff and vehicle information
- WSS Council and PWS support the USFS Castle Mountains Restoration project
  - Participate and communicate protection of the Willow Creek PWS source with future restoration project treatments
    - Monitor and review of Willow Creek water quality data

- Identify contacts with Lewis and Clark USFS and MT DEQ staff to communicate with any updates on activities of the Ringling Mine.
  - Lewis and Clark USFS-Judith Basin Ranger District (406) 566-4000
  - o MT DEQ SWP program staff (406) 444- 4806
- The City of White Sulphur Springs Council will communicate source water protection management planning in developing future planning within The City of White Sulphur Springs and Meagher County

#### **EMERGENCY RESPONSE PLANNING**

The City of White Sulphur Springs Mayor, Council members and Public Water System (PWS) staff evaluated the current emergency response plan (ERP) and developed an updated ERP addressing drinking water emergencies for this SWP plan. The team evaluated the principal threats to the source water, designated a PWS emergency coordinator, and developed potential responses in the event that a problem arises. Another important aspect of this plan is an estimate of the equipment and materials that would be needed in the event of an emergency, a description of how a short-term replacement water supply would be handled, and a description of the funding available to deal with an emergency response.

The evaluation team included:

#### City of White Sulphur Springs

Julian Theriault, Mayor Rocky Vinton, Water Superintendent George Kirkwood, Council member Daryl Mesecher, Wastewater Superintendent

#### Montana Rural Water Systems,

Kristi Kline, Source Water Protection Specialist

This Source Water Protection emergency response planning chapter includes coordinating communication efforts with the City of White Sulphur Springs staff, customers and Meagher County.

This chapter will also address:

-Equipment and material resources

-Replacement water supply

-Emergency funding availability

-Future water source supply

This collaboration and the following items listed are also important for the implementation of this emergency response plan:

#### **ACTION ITEMS**

- City of White Sulphur Springs Council and PWS staff will coordinate with Meagher County DES and Public Health Emergency Preparedness Coordinators on emergency planning exercises, Local Emergency Planning Committee (LEPC) activities and any funding opportunities for emergency equipment resources important to the City of White Sulphur Springs ERP.

City of White Sulphur Springs Council and PWS staff will coordinate with Lewis and Clark National Forest-White Sulphur Springs Ranger District staff on road maintenance and fire fighting response plans in Willow Creek Municipal Watershed.

City of White Sulphur Springs Council will continue to budget for PWS utility repairs and contingency funding yearly.

City of White Sulphur Springs Council and PWS staff will develop Standard
 Operating Procedures (SOPs) to evaluate emergency thresholds for ERP planning and
 water conservation programs that could be implemented during water restriction events
 -assistance from Montana Rural Water System staff

# Identification of possible disruption threats

The principal threats to the PWS have been identified as chemical spills, storm and wildfire events in the Control Zone of Willow Creek. Secondary threats are earthquakes

#### Designation of an emergency coordinator

The emergency coordinator for the City of White Sulphur Springs PWS is the Water Superintendent and the backup emergency coordinator is the City of White Sulphur Springs Wastewater Superintendent. The City of White Sulphur Springs office number is (406) 547-3911. Please refer to Emergency Contacts table at the end of this chapter for all contact phone numbers.

The emergency coordinator is familiar with the county and state DES procedures and is responsible for contacting the appropriate officials should a spill or other threat to the source water occur.

The Meagher County Sheriff/Dispatch contact number is:

- 24-hour phone number - (406) 547-3397 or 911

The State of Montana DES 24 hour phone number is (406) 324-4777, request the Duty Officer.

#### Equipment and material resources

The principal identified threats to the intake and springs are *chemical spills, storm or wildfire events*. Resources that may be needed to respond to these are listed below. Should additional resources be needed the City of White Sulphur Springs will contract with an emergency response firm properly trained and equipped. A list of possible contractors is maintained and updated by the DEQ Enforcement Division (406) 444-0379.

#### Available resources

#### City of White Sulphur Springs

- Various equipment and spare parts
- Remote SCADA for operation of water treatment facilities
  - City of White Sulphur Springs Volunteer Fire Department

Other Resources — Mayor of White Sulphur Springs will coordinate with County staff Meagher County Various equipment Coordination with Meagher County Emergency Response staff

Lewis and Clark National Forest –White Sulphur Springs Ranger District Various equipment Staff assistance
Area resources – Harlowton, Townsend and Helena Municipality and business resources

- Montana Rural Water Systems, Inc. - staff available for on-site assistance

In the event of a catastrophic loss of water, the City of White Sulphur Springs would consult all resources available

#### Procedures to shut down the intake and wells

The PWS intake on Willow Creek and two wells can be turned off and isolated from the water supply system. Under ideal conditions the system can operate without the supply sources by using water in the PWS storage tank for approximately 1-2 days. Shut down operations can be performed by the White Sulphur Springs PWS certified operators.

#### **Coordination Procedures**

The City of White Sulphur Springs SWP Plan has been made available to the **Meagher** County Disaster and Public Health Emergency Coordinators. Additionally, reportable spills will be handled as per the mandated reporting requirements as follows:

X Meagher County Sheriff/Dispatch 24/7– (406) 547-3397 MT DES - (406) 324-4777 - to report spills/emergencies

#### Procedures to communicate with water users

The White Sulphur Springs PWS Emergency Coordinator will communicate with the White Sulphur Springs Mayor and City Council about the emergency situation. A statement would be prepared and approved by all council members to be distributed to the White Sulphur Springs water users. The Mayor is the designated Public Information Officer (PIO) for the City of White Sulphur Springs.

Further communication efforts will be coordinated with these additional contacts depending on the incident: Meagher County Sheriff/Dispatch (406) 547-3397 (Sheriff/Dispatch) or 911 White Sulphur Springs Volunteer Fire Department Meagher County Disaster and Public Health Emergency Coordinators MT DEQ Public Water Supply Section and/or MT DES

# Phone calls to water users - by Town of White Sulphur Springs' staff and/or designated volunteers

- White Sulphur Springs High School (406) 547-3351
- White Sulphur Springs Grade School (406) 547-3751
- Mountainview Medical Center (406) 547-3321
- Area business as needed

# Door to Door Notification – by White Sulphur Springs' PWS staff and/or designated volunteers

in person Bullhorn to broadcast information

# Postings - by White Sulphur Springs' PWS staff and/or designated volunteers

- White Sulphur Springs City Hall White Sulphur Springs US Post Office
- Meagher County Courthouse

Media - In coordination with City of White Sulphur Springs PIO (Mayor) and Meagher County DES and Emergency and Communication Coordinators as needed

Reverse 911 Websites: City of White Sulphur Springs Meagher County Social Media Facebook

#### Source of emergency water

The short-term plan for emergency water will be coordinated with Meagher County Public Health Emergency Coordinator. Possible resources are listed below:

#### Bottled water supplies

City of White Sulphur Springs Council and PWS staff will coordinate with Meagher County Public Emergency Coordinator for bottled water supplies and delivery

Distribution Center – depending on incident White Sulphur Springs City Hall Meagher County Rodeo Arena Meagher County Ambulance Barn

Certified water hauler list can be obtained from MT DEQ Operator Certification Office at (406) 444-3434.

Plans and specifications for any new water source will require MT DEQ-Public Water Supply Section review and approval prior to construction. The City of White Sulphur Springs would consult their current engineering firm for any new design projects.

# Disinfection and resumption of water service

The storage tank and distribution system can be disinfected for bacteriological contamination as per the City of White Sulphur Springs standard disinfection and tank cleaning procedures under the direction of the certified operator. Normal water service resumption will occur after sample results indicate the supply is safe as approved by DEQ-Public Water Supply Section and the City of White Sulphur Springs certified operator.

Outreach methods of communication of resumption of service to the public may include:

Phone calls to water users

Area Postings

Various media announcements/newsletters/press releases/ social media

#### **Funds**

The City Council of White Sulphur Springs has budgeted contingency funding for public utilities repairs. In addition, the City Council is aware of all state and federal funding available through state and federal grants and loans and would apply for available funds for any emergencies.

#### **ACTION ITEM:**

-City of White Sulphur Springs Council will continue to budget for PWS utility repairs and contingency funding yearly.

# Long-term or Alternate Water Sources

The City of White Sulphur Springs' public water system is currently meeting the summer and winter demands for usage. A low growth of 1% has prevailed over the last few years for White Sulphur Springs and Meagher County.

Meagher County is currently updating the 2014 Growth Policy and is reviewing two new economic projects for the area. A copper mining proposal to be located at the head of Sheep Creek north of White Sulphur Springs and the Gordon Butte Hydro Pumped Storage Facility project located near Martinsdale, would both bring an increase in jobs and population to the County and most likely White Sulphur Springs. Growth plans to anticipate potential changes and accommodate this growth will be reviewed. Coordination between Meagher County and the City of White Sulphur Springs is contained within the current growth plan with the goal of ensuring long term benefits for the City and the County. Water and Wastewater infrastructure needs will be examined with this update.

# City of White Sulphur Springs SWP

# **Emergency Contacts and Phone Numbers**

| CONTACT NAME                                               | TITLE                                                   | PHONE                                                   | RESPONSIBILITY                                                                                         |
|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Rocky Vinton<br>Emergency PWS<br>Coordinator               | Water<br>Superintendent                                 | (406) 521-0209<br>Cell #<br>(406) 547-3788<br>City Shop | Operation and management of<br>City of White Sulphur Springs<br>Public Water System                    |
| Daryl Mesecher<br>Backup Emergency PWS<br>Coordinator      | Wastewater<br>Superintendent/<br>Backup PWS<br>Operator | (406) 224-3429<br>Cell #                                | Operation and management of<br>White Sulphur Springs<br>Wastewater facility and backup<br>PWS Operator |
| Meagher County Sheriff                                     | Meagher County<br>Dispatch-24/7                         | (406) 547-3397<br>or<br>911                             | Emergency response coordination for Meagher County                                                     |
| Montana DES - 24 hr/7 -<br>Spill Hotline - Duty<br>officer |                                                         | (406) 324-4777                                          | All reportable spills.                                                                                 |
| MT DEQ Public Water<br>Supply<br>MT DEQ Duty Officer       |                                                         | (406)444-4400<br>(406)431-0014                          | Responds to any event that will pollute surface or ground waters.                                      |

#### REFERENCES

Cottingham, Rick, December 2002, Montana Department of Environmental Quality, Public Drinking Water Section.

Freeze, R. Allan and Cherry, John A., 1979, Groundwater.

Groff, S.L., 1965, <u>Reconnaissance Ground-Water and Geological Studies, Western Meagher County, Montana</u>, Montana Bureau of Mines and Geology, Special Publication 35, Ground-Water Report 3.

Grove, Michael and Dunn, Darrel E., 1980, <u>Geothermal Heating System For the First National Bank of White Sulphur Springs, Montana.</u>

Montana: A Visitors Guide at Montana.ms

Montana Bureau of Mines and Geology, Groundwater Information Center.

Montana Department of Environmental Quality (DEQ) Public Water Supply Program Safe Drinking Water Information System (SDWIS).

Montana DEQ, 2002. City of White Sulphur Springs Source Water Delineation and Assessment Report, Carolyn DeMartino, Source Water Protection Section.

Montana Department of Environmental Quality Underground Storage Tank Program web-site.

Montana Department of Environmental Quality, 2000, "303(d) List, Montana List of Waterbodies In Need of Maximum Daily Load Development".

Montana Department of Natural Resources and Conservation Water Rights Bureau.

Ross, Clyde P., Andrews, David A., and Witkind, Irving J., 1955, <u>Geologic Map of Montana</u>, Montana Bureau of Mines and Geology.

United States Census Bureau, 2000, and 2010

United States Environmental Protection Agency "Envirofacts Data Warehouse and Applications".

United States Environmental Protection Agency "Know Your Watershed".

United States Geological Survey. 2000. National Landcover Dataset, Montana. 30 meter electronic digital landcover dataset interpreted from satellite imagery.

Western Regional Climate Center wrcc@dri.edu, Montana Climate Summaries.White Sulphur Springs 2, Montana (Station 248930).

# APPENDIX A

# **WELL LOGS**

Well #2-WL004 - GWIC # 172711 - Primary well

Well #1-WL003 - GWIC # 260672 - Backup well

Site Name: CITY OF WHITE SULPHUR SPRINGS

GWIC Id: 172711

DNRC Water Right: C061342-00

#### Well #2 - WL004

Section 1: Well Owner(s)

1) CITY OF WHITE SULPHUR SPRINGS (MAIL) 102 8TH AVE NE

WHITE SULPHUR SPRINGS MT 59645 [04/21/1999]

Section 2: Location

Township Range Section **Quarter Sections** 09N 075 SW% SE% SE%

County

**MEAGHER** 

Latitude Longitude 46 54985488145 110.888469034 TRS-SEC NAD83 **Ground Surface Altitude** Method Datum Date

Addition

Block

Lot

Geocode

Section 3: Proposed Use of Water

PUBLIC WATER SUPPLY (1)

Section 4: Type of Work

**Drilling Method: ROTARY** 

Status: NEW WELL

Section 5: Well Completion Date

Date well completed: Wednesday, April 21, 1999

Section 6: Well Construction Details

Borehole dimensions

From To Diameter

0 30 14.75 30 201 12.25

Casing

Wall Pressure From To Diameter Thickness Rating Joint Type 201 10.75 0.25 WELDED STEEL

Completion (Perf/Screen)

# of Size of

From To Diameter Openings Openings Description

195,10

3/16X1 AIR **MECHANICAL** 

Annular Space (Seal/Grout/Packer)

Cont.

From To Description

35 NEAT CEMENT

#### Section 7: Well Test Data

Total Depth; 201 Static Water Level: 22 Water Temperature:

#### Pump Test\*

Depth pump set for test \_ feet.

\_1000\_gpm pump rate with \_ feet of drawdown after \_10\_

hours of pumping.

Time of recovery 0.03 hours Recovery water level 22 feet. Pumping water level 58 feet.

Geomethod Datum • During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

#### Section 8: Remarks

Section 9: Welf Log Geologic Source

Unassigned

| From | To | Description                                  |                  |                                         |
|------|----|----------------------------------------------|------------------|-----------------------------------------|
| o    |    | 3 TOPSOIL                                    |                  | • • •                                   |
| 3    |    | 11 DRY SANDY CLAY                            |                  | •                                       |
| 11   |    | 28 MOIST SANDY CLAY                          |                  |                                         |
| 28   |    | 31 MUDSTONE BROWN                            | 2 GPM            |                                         |
| 31   |    | 55HARDER BROWN SI                            | LTSTONE 20 C     | SPM                                     |
| 55   |    | BROWN SILTSTONE<br>75 OF A HARD GREEN<br>GPM |                  |                                         |
| 75   | 2  | 01 FRACTURED SILTST                          | ONE              |                                         |
|      |    | #···                                         |                  | m 1 700000 with 646                     |
|      | -  |                                              | THE CHIEFLE LAND | * * * * * * * * * * * * * * * * * * * * |

#### **Driller Certification**

All work performed and reported in this well log is in compliance with the Montana well construction standards.

This report is true to the best of my knowledge.

Name: BILL MAXWELL Company:BUSH DRILLING License No:WWC-597 Date Completed: 4/21/1999

|                                             |                                           | me: Cl<br>1: 260                  | TY OF WH                   | ITE SULP           | HUR                                              | SPRING            | s                                                                    | Section                                                           | t 7: Well Test Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------|--------------------|--------------------------------------------------|-------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WELL #1 - WL003                             |                                           |                                   |                            |                    |                                                  |                   | Total Depth: 200 Static Water Level: 19 Water Temperature:           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sec                                         | tlon                                      | 1: We                             | II Owner(s                 | )                  |                                                  |                   |                                                                      | ********                                                          | williams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 1) CITY OF WHITE SULPHUR SPRINGS (MAIL) N/A |                                           |                                   |                            |                    |                                                  | S (MAIL)          | Pump Test *  Depth pump set for test 42 feet.                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             | ITE SULPHUR SPRINGS MT 59645 [06/23/1986] |                                   |                            |                    |                                                  |                   |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Seci                                        | ction 2: Location                         |                                   |                            |                    |                                                  |                   | 200 gpm pump rate with _ feet of drawdown after 24 hours of pumping. |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             | Township Range Section Quarter Sections   |                                   |                            |                    | arter Sect                                       |                   |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             | 091                                       | •                                 | 07E                        | 7                  |                                                  | N¼ SE¼ S          |                                                                      |                                                                   | recovery _ hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                             |                                           |                                   | unty                       | ·                  |                                                  | Geocode           |                                                                      |                                                                   | ry water levelfeet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| MEA                                         | GHE                                       |                                   | •                          |                    |                                                  |                   |                                                                      | Pumping                                                           | g water level _ feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| La                                          | atitu                                     | de                                | Longitude                  | Ger                | ometi                                            | nod l             | Datum                                                                |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4!                                          | 5.549                                     | 99                                | 110.8898                   |                    | V-GF                                             | PS I              | NAD27                                                                |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             |                                           |                                   | rface Altitu               |                    | atho                                             |                   |                                                                      | * During                                                          | the well test the discharge rate shall be as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                             |                                           |                                   |                            |                    |                                                  |                   |                                                                      | unitom i                                                          | as possible. This rate may or may not be the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Addi                                        | tion                                      |                                   |                            | Block              |                                                  | Lot               | t                                                                    |                                                                   | ble yield of the well. Sustainable yield does no<br>the reservoir of the well casing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                             |                                           |                                   | posed Use<br>SUPPLY (1)    |                    |                                                  |                   |                                                                      | Section 8: Remarks Section 9: Well Log Geologic Source Unassigned |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             | *                                         | # . T                             |                            |                    |                                                  |                   |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             |                                           |                                   | e of Work                  |                    |                                                  |                   |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             | _                                         |                                   | ROTARY                     |                    |                                                  |                   |                                                                      | From To                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Statu                                       | S: N                                      | EW WE                             | EL.                        |                    |                                                  |                   |                                                                      | 0                                                                 | 19FINE SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ×4                                          | t                                         | C. 161-1                          |                            |                    |                                                  |                   |                                                                      |                                                                   | 1 4 1 F F W W W W W W W W W W W W W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                             |                                           |                                   | II Completi<br>ted: Monday |                    | 000                                              |                   |                                                                      | 19 2                                                              | 200 FRACTURED SILTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Jaie                                        | AACH                                      | COLLIDIE                          | teu. Multuay               | , Julie 23, I      | 900                                              |                   |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sect                                        | lon                                       | 6: Wel                            | I Construc                 | tion Detai         | ile                                              |                   |                                                                      | -                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             |                                           | dimen                             |                            |                    |                                                  |                   |                                                                      | , ,                                                               | The second of th |  |
|                                             | -                                         | Diame                             |                            |                    |                                                  |                   |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             | _                                         |                                   |                            |                    |                                                  |                   |                                                                      |                                                                   | 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                             | 30                                        | _                                 | 18                         |                    |                                                  |                   |                                                                      |                                                                   | # V = V .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 0                                           | 200                                       | 1                                 | 14                         |                    |                                                  |                   |                                                                      | -                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| asir                                        | g.,                                       | .,                                | .,                         |                    |                                                  |                   | way ye                                                               |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| rom                                         | Tol                                       | Diamet                            | Wall<br>or Thickness       | Pressure<br>Rating | Joint                                            | Туре              |                                                                      | b                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             | 30                                        |                                   |                            | î                  | _                                                | CASING (          | TYPE                                                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ŧ                                           | 30                                        | 10                                |                            |                    |                                                  | UNKNOW            | N)                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| )                                           | 90                                        | 10                                |                            |                    |                                                  | STEEL             | • -                                                                  |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ome                                         |                                           |                                   | f/Screen)                  |                    |                                                  |                   |                                                                      |                                                                   | The Committee of the Market Ma |  |
|                                             |                                           |                                   | # of                       | Size of            | i                                                |                   |                                                                      | Driller Co                                                        | ertification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| rom                                         | To                                        | Diame                             | ter Opening                | 1                  | Desc                                             | cription          |                                                                      |                                                                   | performed and reported in this well log is in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| -                                           | 1441                                      | • • w-                            | 1                          |                    | '                                                | EEN-              |                                                                      |                                                                   | ce with the Montana well construction standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0                                           | 200                                       | 10                                | 1                          | 10                 |                                                  |                   | _                                                                    | -                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ~                                           |                                           | 20010 10 CONTINUOUS-<br>STAINLESS |                            |                    | This report is true to the best of my knowledge. |                   |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| n pro-1                                     | i<br>ge G                                 | nace (4                           | Sop)/Comment               | lankar!            | NI CA                                            | HELEGG            |                                                                      | · ·                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| nnular Space (Seal/Grout/Packer) Cont.      |                                           |                                   |                            |                    |                                                  | ipany:<br>se No:- |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| -                                           | To                                        | lanari-                           |                            |                    |                                                  |                   |                                                                      | LICONS                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                             |                                           | ** ******                         | tion Fed?                  |                    |                                                  |                   |                                                                      | Comp                                                              | Date<br>oleted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $\rightarrow$ $\leftarrow$                  |                                           | ENTO                              |                            |                    |                                                  |                   |                                                                      | Comb                                                              | igrau.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                             | 88                                        | EMEN                              | T                          |                    |                                                  |                   |                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Site Name: CITY OF WHITE SULPHUR SPRINGS

GWIC Id: 127777

DNRC Water Right: C080786-00

#### **TEST WELL**

#### Section 1: Well Owner(s)

1) CITY OF WHITE SULPHUR SPRINGS (MAIL) N/A

WHITE SULPHUR SPRINGS MT 59645 [10/08/1991]

#### Section 2: Location

| Township | Range | Section | Quarter Sections |
|----------|-------|---------|------------------|
| 09N      | 07E   | 17      | NW% NW% SW%      |
| C        | ounty |         | Geocode          |

MEAGHER

| Latitude  | Longitude        | Geomethod | i D   | atum |
|-----------|------------------|-----------|-------|------|
| 46.540826 | 110.8833         | TRS-SEC   | N/    | AD83 |
| Ground    | Surface Aititude | Method    | Datum | Date |

Addition

Block

Lot

Section 3: Proposed Use of Water

DOMESTIC (1)

#### Section 4: Type of Work

Drilling Method: ROTARY Status: NEW WELL

#### Section 5: Well Completion Date

Date well completed: Tuesday, October 08, 1991

#### Section 6: Well Construction Details

Borehole dimensions From To Diameter 0219 6

Casino

| Casill | ¥ .   |            |                 |     |                    |        |       |
|--------|-------|------------|-----------------|-----|--------------------|--------|-------|
| From   | To    | Diameter   | Wali<br>Thickne | 988 | Pressure<br>Rating | Joint  | Туре  |
| -1.5   | 18.5  | 6          |                 |     |                    |        | STEEL |
| 9      | 219   | i4         |                 |     |                    |        | PVC   |
| Comp   | letio | n (Perf/Sc | reen)           |     |                    |        |       |
|        | ţ     | ¥          | of              | Siz | e of               |        |       |
| From   | To I  | Diameter ( | penings         | Op  | enings;De          | script | ion   |
| 199    | 2194  | ,          |                 |     | (2)                | .20 FA | CTORY |
| Annul  | ar Sj | ace (Sea   | /Grout/P        | ack | er)                |        |       |
|        |       |            | Cont.           |     |                    |        |       |

#### Section 7: Well Test Data

Total Depth: 219 Static Water Level: 110 Water Temperature:

#### Air Test\*

<u>5</u> gpm with drill stem set at \_\_feet for <u>1</u> hours. Time of recovery \_\_hours. Recovery water level \_\_feet. Pumping water level \_\_209\_ feet.

\* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

#### Section 8: Remarks

#### Section 9: Well Log Geologic Source

| From | To  | Description |             |
|------|-----|-------------|-------------|
|      |     | 1 1 4 2 781 |             |
| 0    |     | CLAY        |             |
| 11   |     | GRAVEL      | <u>-</u>    |
| 13.  | 219 | CLAY        | est to the  |
| -    |     |             |             |
|      |     |             |             |
|      |     |             |             |
|      | 4   |             |             |
|      | _   |             |             |
| -    |     |             |             |
|      |     | 21 N        | A.,         |
|      |     |             |             |
| i    | -   |             |             |
| 11   | - , |             | · · · · · · |
| ·    |     |             | N TN 84 THA |
|      |     |             |             |

#### **Driller Certification**

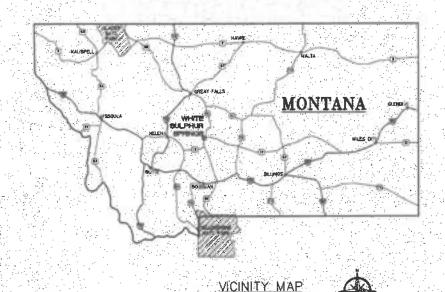
All work performed and reported in this well log is in compliance with the Montana well construction standards.

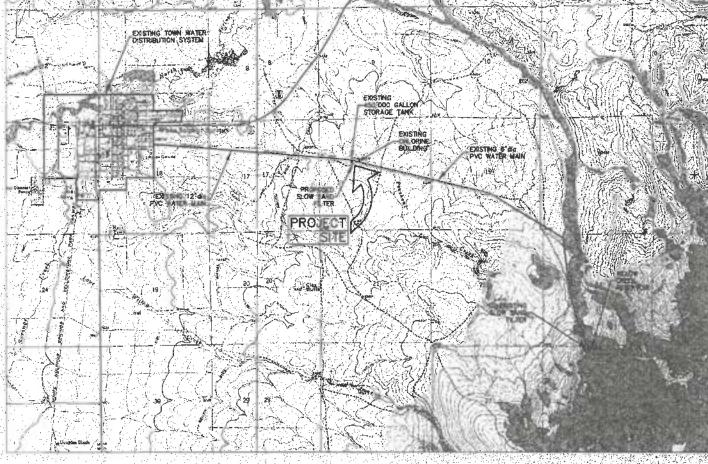
This report is true to the best of my knowledge.

Name: SHAWN TONEY
Company: H & L DRILLING INC
License No: WWC-447

Date Completed: 10/8/1991

From To Description Fed?


0 18.5 BENTONITE


# **Appendix R**

**Slow Sand Filter Construction Plans** 

#### CONSTRUCTION PLANS

FOR WHITE SULPHUR SPRINGS WATER TREATMENT SYSTEM IMPROVEMENTS





SCALE: 1"=2000"



2 of 11 SITE PLAN 3 of 11 PROCESS DIAGRAM / HYDRAULIC PROFILE

SCALE: NTS

A of 11 FILTER PLAN AND PROFILE / FILTER DIMENSIONS FILTER PLAN AND PROFILE DETAILS

1 of 11 TITLE SHEET / MCINITY MAP / AREA MAP

6 of 11 FILTER CROSS SECTIONS

REINFORCEMENT DETAILS / STRUCTURE PLAN

8 of 11 WALXWAY DETAILS

S of 11 WATER LINE PROFILES

10 of 11 DETAILS

H of 11 CHLORINE PIT DETAILS

PROTECTION OF ADJACENT IMPROVEMENTS / BENCH MARKS:
RETAIN AND PROTECT ALL ADJACENT IMPROVEMENTS INCLUDING TREES; SHRUBS, FENCES, ETC. RESTOREMATERIAL STORAGE SITES ME KIND, ENGINEER MILL PROTODE CLEARING LIMITS STAKES AS NECESSARY
DURING CONSTRUCTION. CONTRACTOR SHALL PROTECT, TEMPORARY AND PERMANENT DENCH MARKS
PROMOED BY ENGINEER.
CONTRACTOR SHALL MAINTAIN BUSTING WATER TREATMENT AND SUPPLY OPERATIONS DURING
CONSTRUCTION OF NEW SCOW SAND FILTER. CONTRACTOR SHALL MAKE ARRANGEMENTS WITH CITY
PERSONNEL AND ENGINEER PRIOR TO CONNECTION TO EXISTING WATER MAINS.

EXPLORATORY EXCAVATION: WILL BE PAID AT HOURLY RATES, AND ONLY WHEN DIRECTED BY THE ENGINEER EXPLORATORY EXCAVATION AT ALL LOCATIONS SHALL BE COMPLETED PRIOR TO BEGINNING CONSTRUCTION AND REFORE ORDERING SPECIALTY MATERIALS AND EQUIPMENT.

UNDERGROUND/OVERHEAD UTILITIES:
CONTRACTOR SHALL BE RESPONSIBLE TO CONTACT EXISTING UTILITY COMPANIES AND COORDINATE WITH
SUCH PRIOR TO BEGINNING CONSTRUCTION. EXISTING UTILITIES SHOWN ON THE PLANS ARE SHOWN AT
THEIR APPROXIMATE LOCATION AND TO THE BEST KNOWLEDGE OF THE ENGINEER. CONTRACTOR SHALL BE
RESPONSIBLE TO ENSURE THAT ALL EXISTING UTILITIES HAVE BEEN PROPERLY LOCATED BY THEIR.
RESPECTIVE OWNERS.

ONE CALL WHLITY LOCATE ..... ....(-80D-424-5555

CONTRACTOR SHALL MAKE MARANGEMENTS WITH UTDITY COMPANY TO PROTECT, SUPPORT AND/OR RELOCATE ALL ENSTING UTDITIES, UTDITY BOXES OR UTDITY POLES AS NECESSARY DURING CONSTRUCTION.

ROAD SECTION REPLACEMENT.
THE CONTRACTOR SHALL BE RESPONSIBLE TO RESTORE ALL EXISTING DRAVEL AND PAVED STREETS OR SURFACES TO THOSE REP CONSTRUCTION CONDITION. THE CONTRACTOR SHALL REPLACE EXISTING GRAVEL AND PAVED SURFACES WITH LIKE KIND MATERIAL OF EQUAL DEPTH.

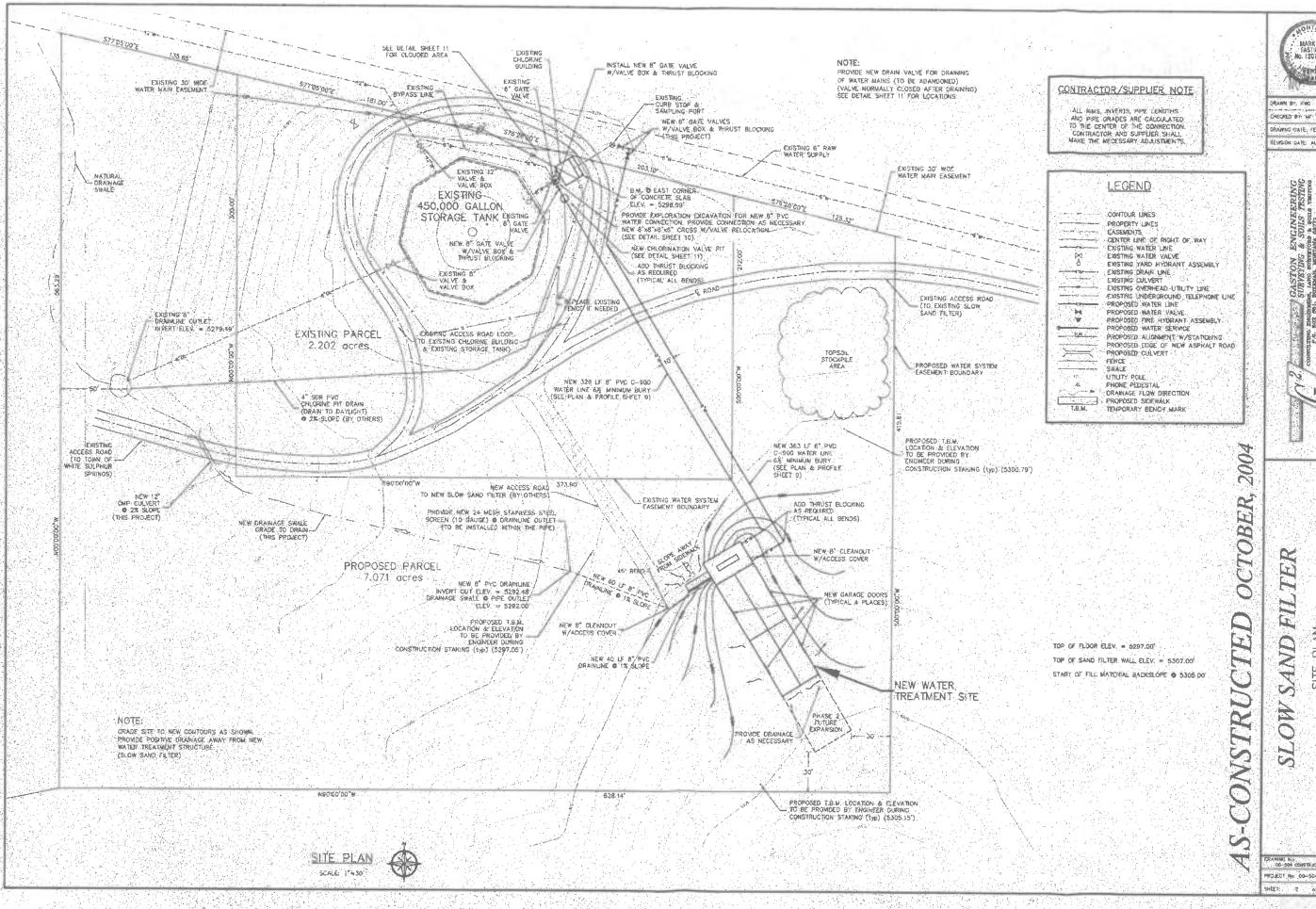


CHECKED BY: MF.

DRAWING DATE: FEBRUARY, 2002

REVISION DATE: JUNE 8, 2002 .

SAND


AND

2004

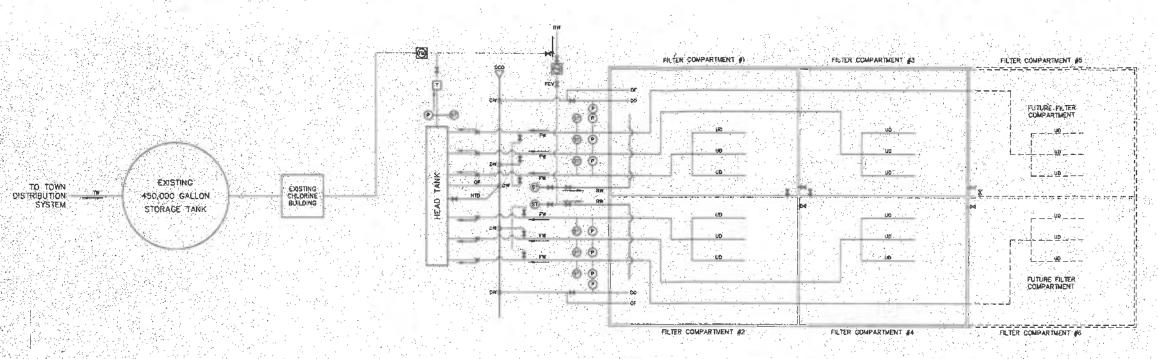
OCTOBER

DRAWING No. CONSTRUCTION PLANS MAY PROJECT, No. 10-504 SHEET 1 of Th

크리아 토어크림 제<u>글로벌</u> 사용

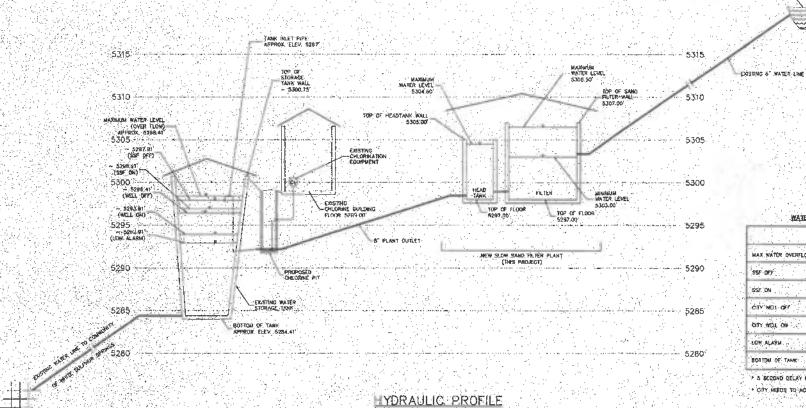





RAWING DATE, FEBRUARY, 2002

REVISION DATE: AUG. 20, 2002

SAND MO


SPRINGS, ā SITE PHUR S

AMMS NO: 00-504 COMBTRUCTION PLANS 444 PROJECT No. 00-504 SHEET: 2 6/ 11



#### PROCESS DIAGRAM

SCALE: NTS



|                    | SLEVATION | WATER<br>DEPTH | WATER    |
|--------------------|-----------|----------------|----------|
| MAX WATER OVERFLOW | 5298 41   | 14.0           | DIPPEREN |
| SSF OFF            | 5287.91   | 13:5           | 0.5      |
| SSF ON             | 5298.91   | 12.5           | 2 + 4,0% |
| CITY WELL OFF      | 5295.41   | 12.0           | 0,5      |
| CITY WELL ON       | 5293.01   | 9:5            | 2.5      |
| LOW ALARM          | 5292.91"  | 8.5            | . 100    |

- \* 5 SECOND DELAY FOR POWER SURGE HAS BEEN APPLIED
- CITY NEEDS TO ACKNOWLEDGE THE ALARM

CHECKED BY: MF

DRAWING DATE: FEBRUARY, 2002

REVISION DATE: AUG 20, 2002

2004

# OCTOBER, S-CONSTRUCTED

**LEGEND** 

BY PASS

DRAW DOWN

DRAIN CLEANOUT

DRAIN TO WASTE

HEAD TANK DRAIN DVER FLOW

RAW WATER

TREATED WATER

UNDER DRAIN

FLOW METER

TURBIDITY METER PIEZOMETER SAMPLE TAP

BUTTERFLY VALVE (THROTTLING) GATE VALVE (NORMALLY CLOSED)

GATE VALVE (NORMALLY OPEN)

SOLENOID VALVE (POWER OFF CLOSED)

FLOW CONTROL VALVE FILTERED. WATER

ВÞ

DD.

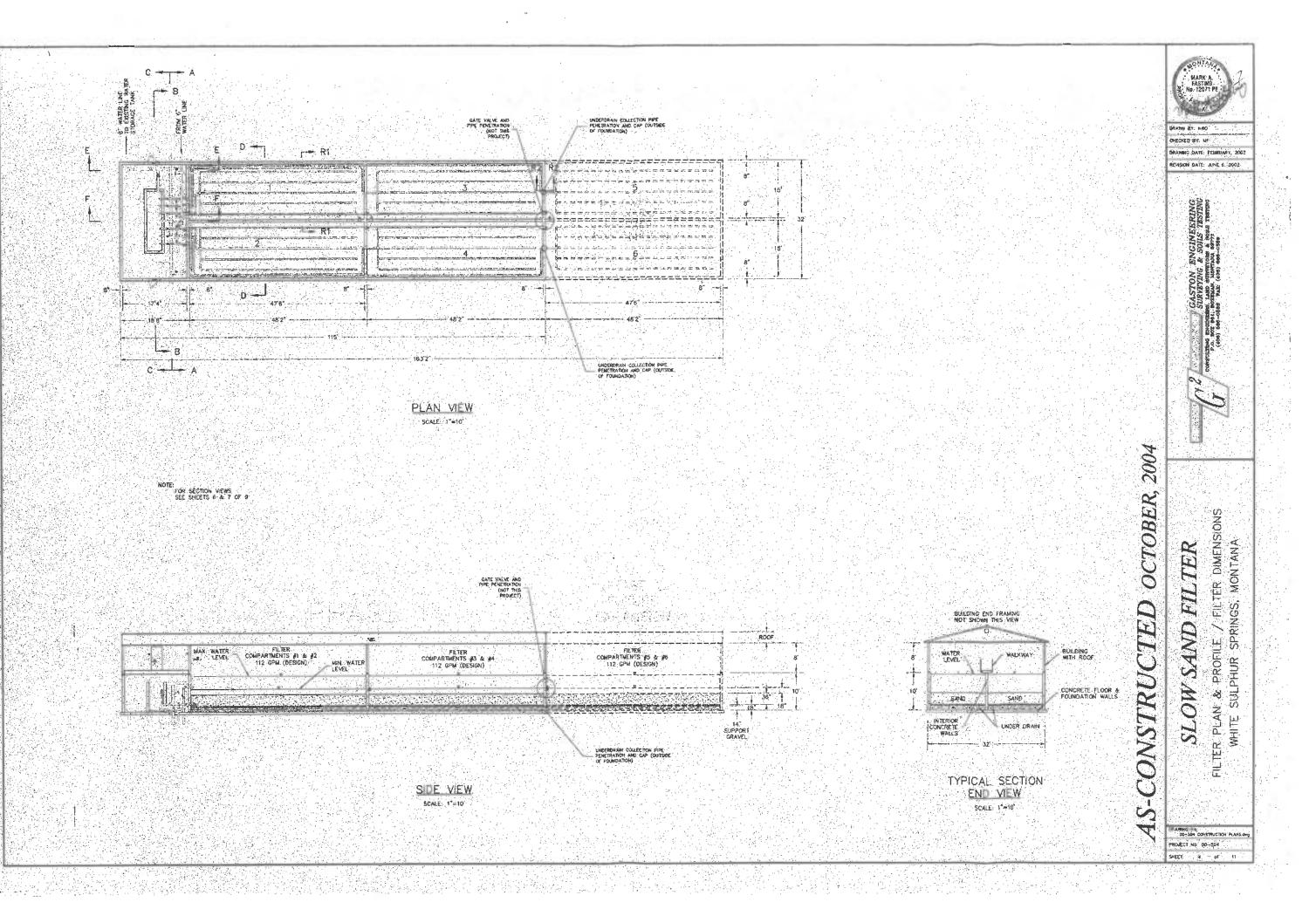
000

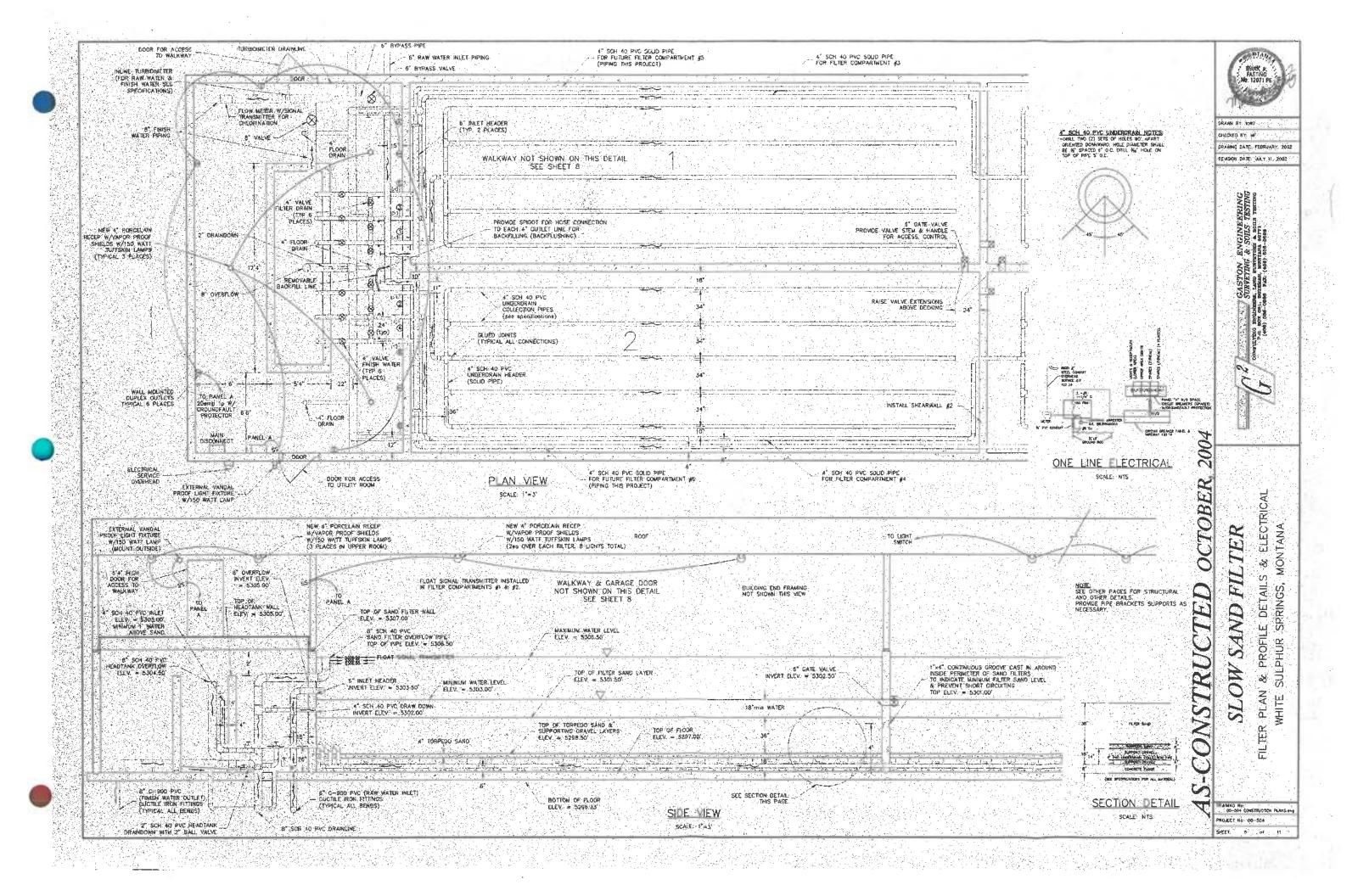
DW

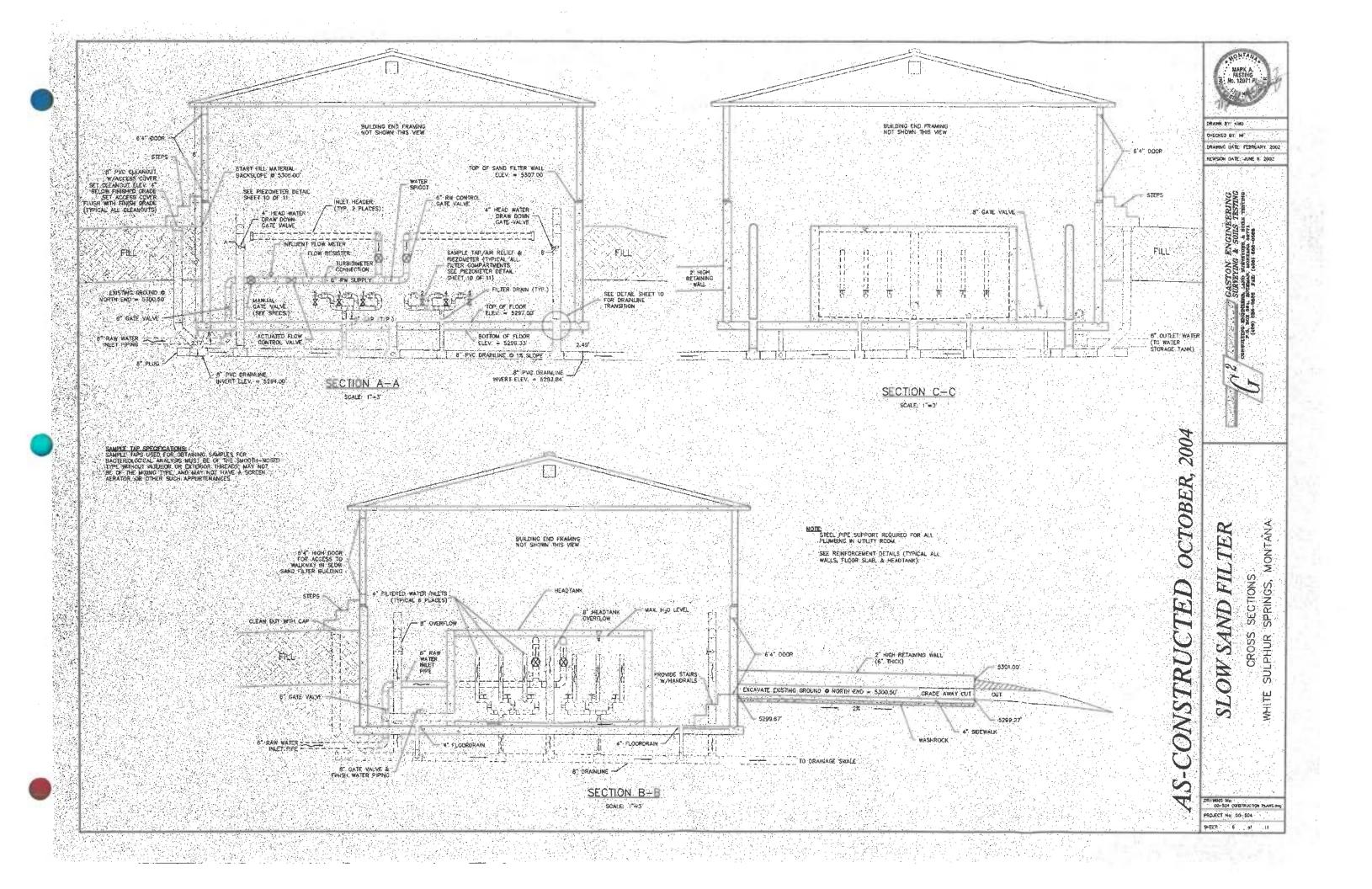
FCV

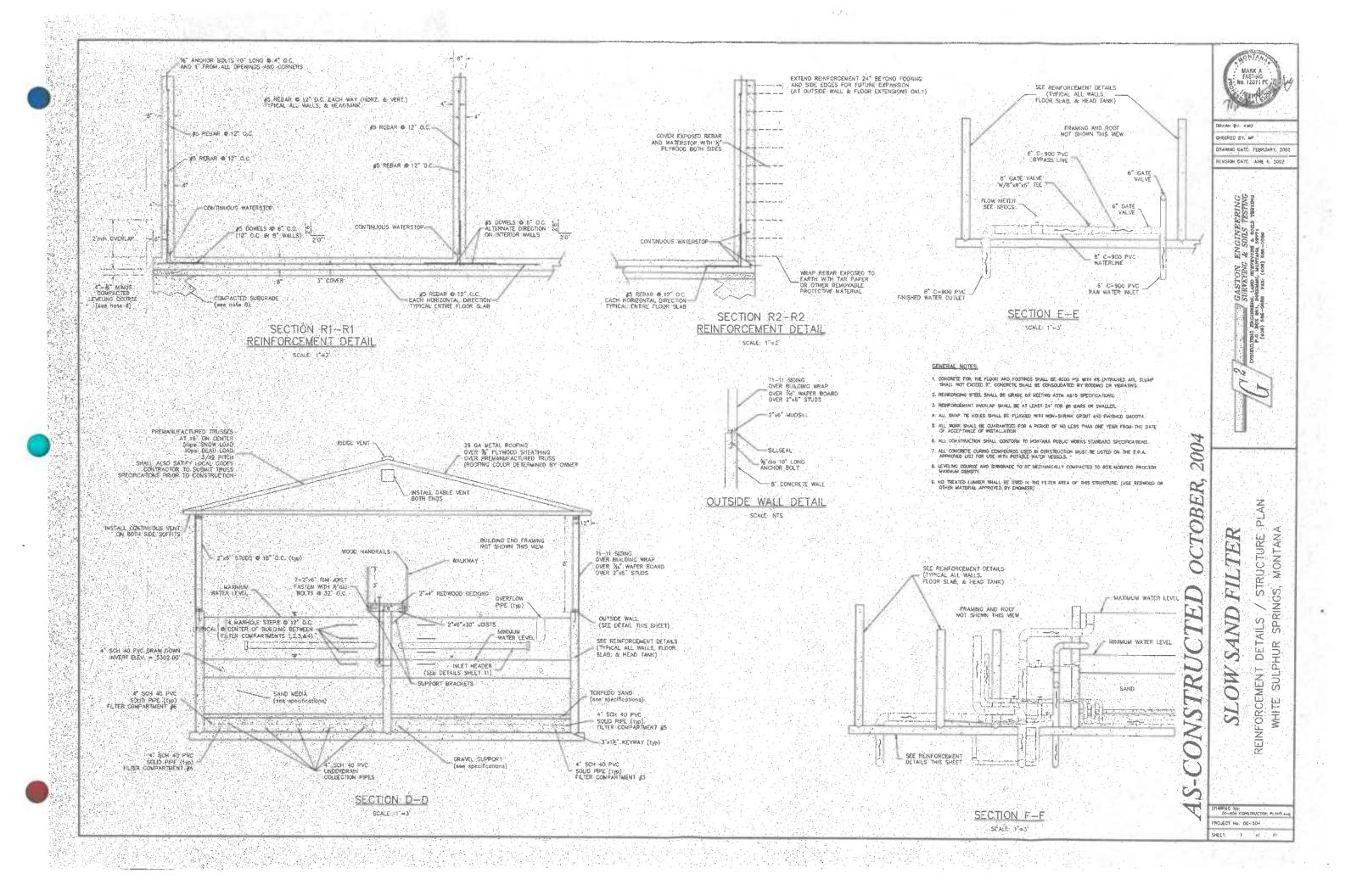
HTD

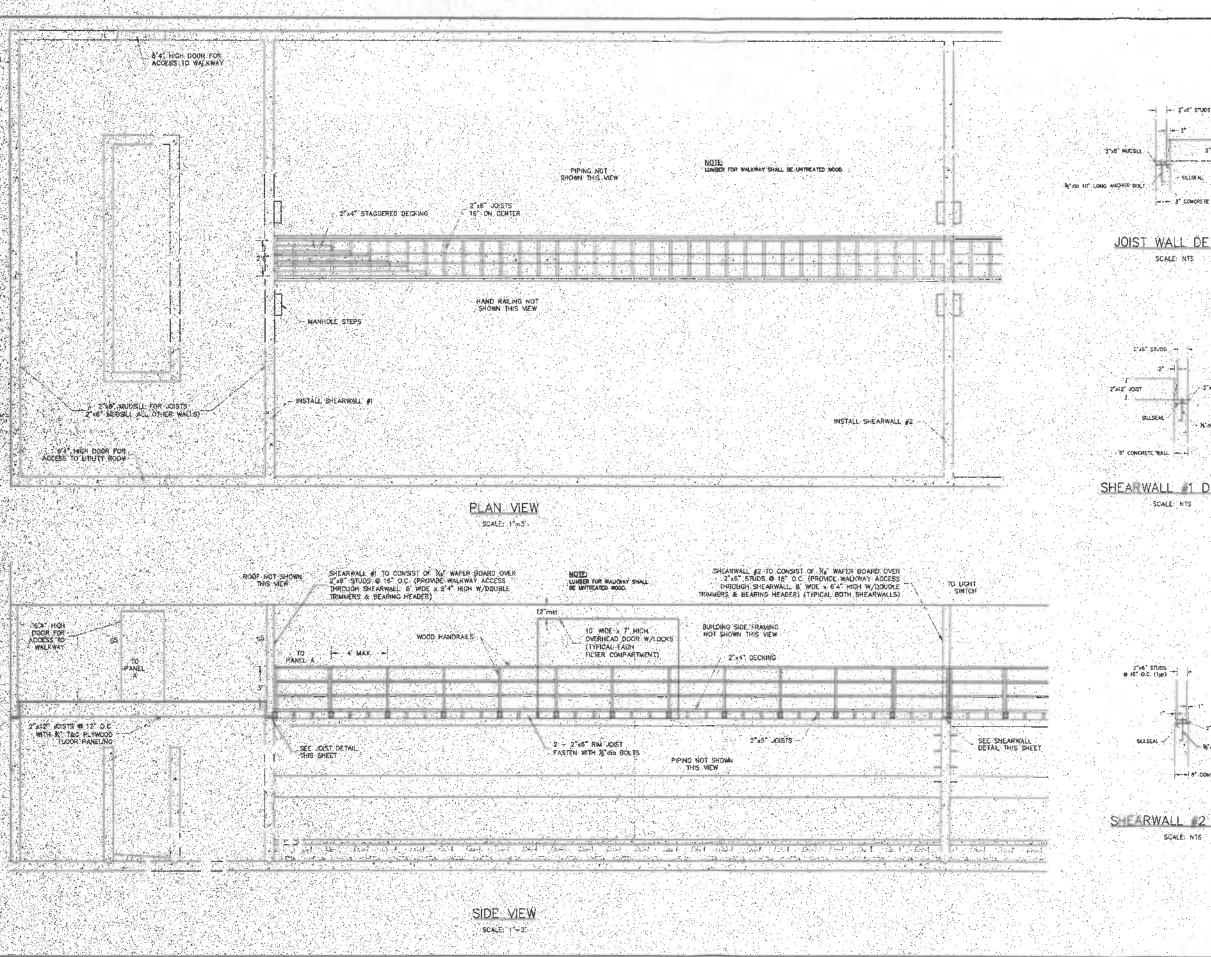
RW


UD


bd


PROFILE AND HYDRAULIC PRO OW SAND FILTER PROCESS DIAGRAM WHITE SULPHUR


SULPHUR


DRAWANT 0: --- 00-504 CONSTRUCTION PLANS ON PROJECT NO 00-504 SMEET: 3 of 11













MANN BY: KWU

CHECKED BY: NF.

DRAWING DATE: FEBRUARY, 2002 REVISION DATE: JUNE 6, 4002

ENGINE & SOILS 1 FYORS & SOILS TANA 59771 SEC-DOSS

--- 8" COMORETE WALL

2">12" JUIST

JOIST WALL DETAIL

SCALE: NTS

2 16 STVDS -- --2" N8" WUDSILL "Midia 10" LONG ANCHOR BOLT

SHEAR WALL -1 DETAIL

SCALE: NTS

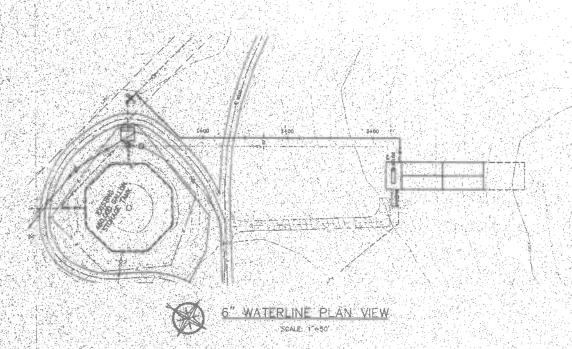
---- 8" CONCRETE WALL

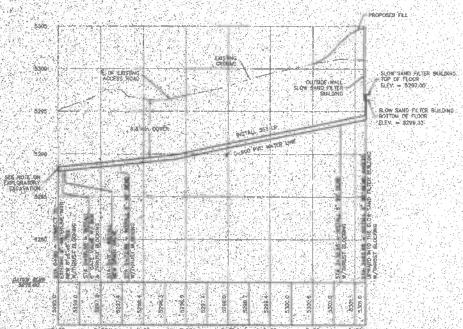
SHEARWALL #2 DETAIL SCALE: NTS

# OCTOBER, CONSTR S

SAND

2004

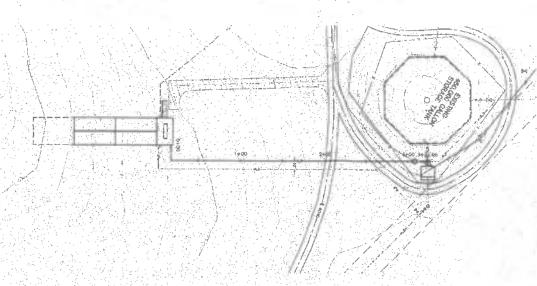

SULPHUR MO SL


MONTANA

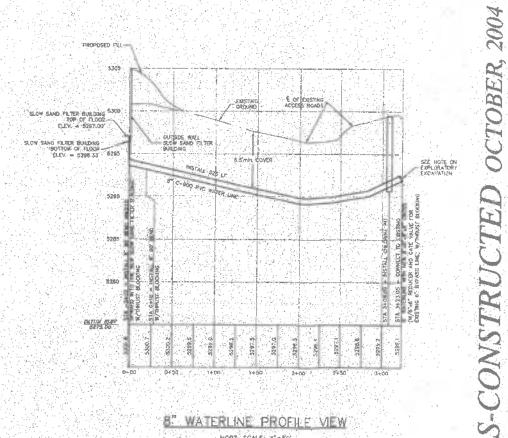
SPRINGS, DETAIL

WALKWAY

DRAMING NO. 90-304 CONSTRUCTION PLANS. dag PROJECT No: 00-504 SHEET: B of IT







HOTE: DESTING, WATER WANN AS-BURLTS, BY CASHE AS ASSOCIATER, INC. BUILDING ASSOCIATES, INC. BUILDING ASSOCIATES, BY SURV. PROOF TO ANY WATER LINE USTAILLATION CONTRACTION, SHALL PROVINCE EDUCATATORY DISCALATION TO WORSY DESTING WATER MAIN DESTING ASSOCIATION OF PORTS.

#### 6" WATERLINE PROFILE VIEW

HORZ SCALE 1"=50" VERT SCALE 1"=50"







#### S" WATERLINE PROFILE VIEW

HORZ. SCALE: 17+501 VERT. SCALE: 1"=5"

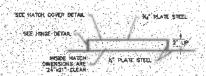


NAWN BY KWO HECKED BY MF

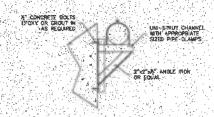
RAWING DATE MAY 2002

EVISION DATE: JULY 19, 2002

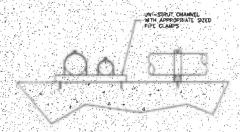
PROFILES S. MONTANA


ND 8" WATERLINE P SULPHUR SPRINGS,

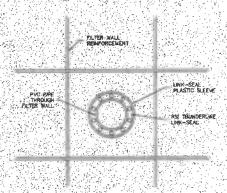
QNA


ညိ

FILTER SLOW SAND


> AMING No. 00-504 CONSTRUCTION PLANS one PROJECT No: 80-504

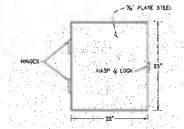



HEADTANK HATCH DETAIL SCALE: NTS

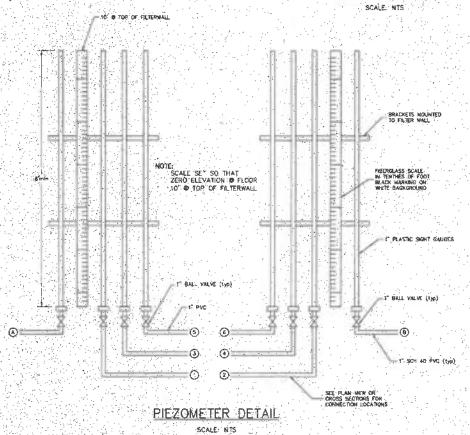


WALL PIPE BRACKET SCALE! NTS



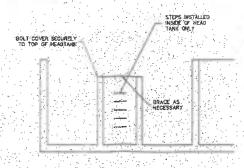

FLOOR PIPE BRACKET

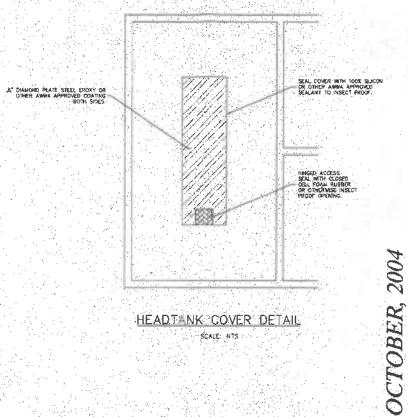



LINK-SEAL DETAIL SCALE: NIS

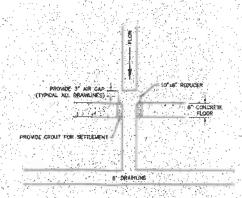


HINGE D TAIL SCALE: NTS





HEADTANK HATCH COVER DETAIL






OVERFLOW PIPE S PPO I DETAIL SCALE: NTS





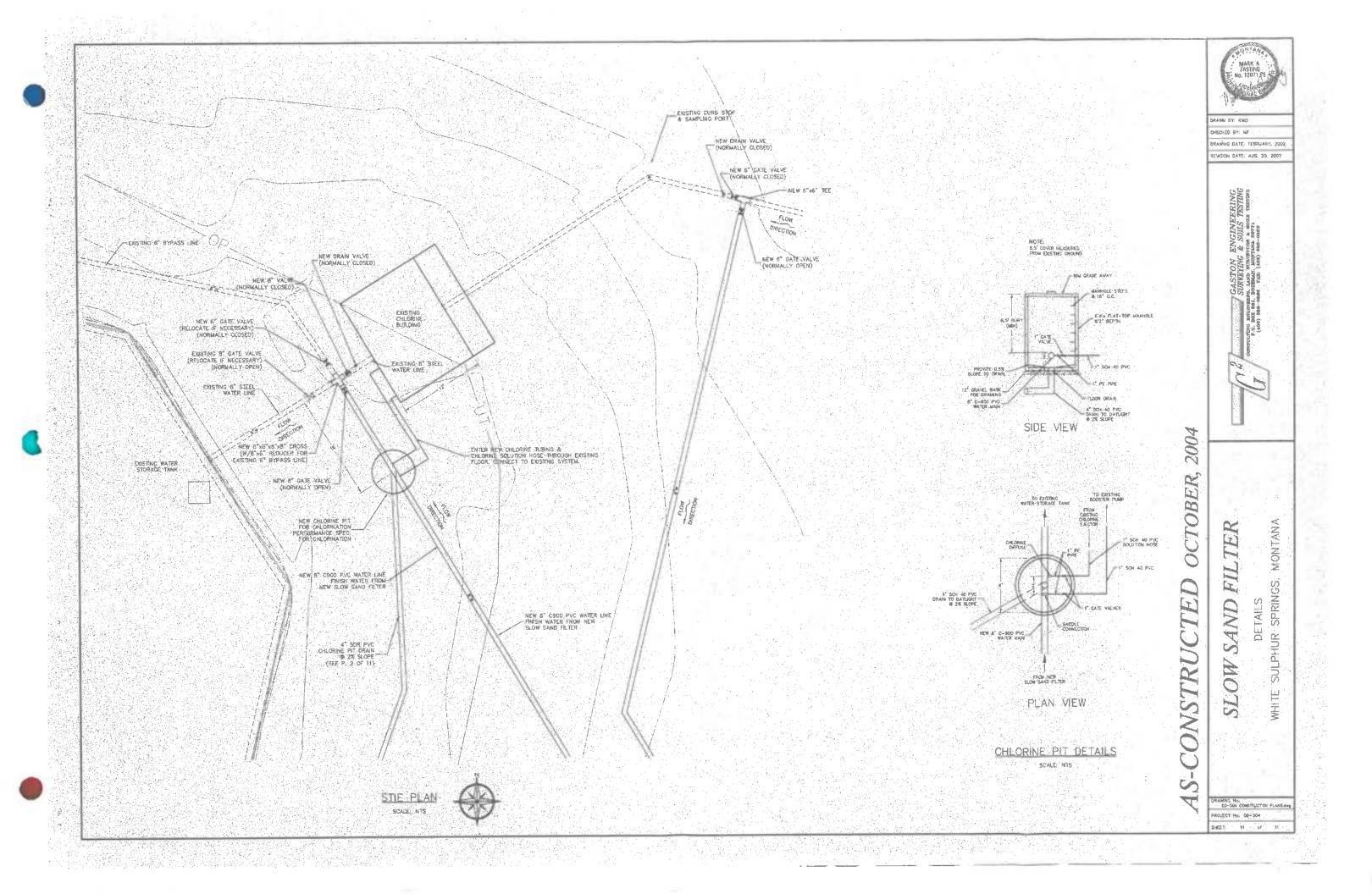
HEADTANK COVER DETAIL SCAUE: NTS



DRAINLINE DETAIL SCALE: NIS



CHECKED BY: NE


DRAWING DATE: FEBRUARY, 2002 REVISION DATE: JUNE 6, 2002

DETAILS SULPHUR SPRINGS, SAND MOTS

S-CONSTRUCTED

MONTANA

PROJECT No. 00-504 SHEET: TO of 11



# **Appendix S**

**DEQ Surface Water Treatment Rule Reports** 

Return Completed Form by 10th of Following Month to: SWTR Manager, Public Water Supply PO BOX 200901 Helena, MT 59620-0901

| Month: March    | Year:                                                                                                            | 2020                            | 20                                       | PWSID*                     | MT000                    | 0360                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|----------------------------|--------------------------|---------------------------------------------|
| System: White   | Sulphur Springs                                                                                                  |                                 |                                          | Water So                   | ırce:                    | Surface Water                               |
| Prepared by:    | Clyde Vinton                                                                                                     |                                 |                                          | Date:                      | 4/6/202                  | 0                                           |
| Total           | Spreadsheet to determing CT required = 0.3 x  Log Reduction Required =                                           | ine disinfectio<br>pH^2.69 x c^ | n inactivation<br>0.15 x (log<br>Giardia | on ratio bas<br>reduction) | sed upon f<br>x 0.933^(i | he formula: CEIVED<br>emp-5)<br>APR -9 2020 |
| Log Reduction R | n Allowed for Treatment =<br>Required for Disinfection =<br>Enter Baffling Factor =<br>Indian Volume (Gallons) = | 2.0<br>1.0<br>0.2<br>276,000.00 | Giardia<br>Giardia                       |                            |                          | DEQ WATER QUALITY DIVISION                  |

|     | CL <sub>2</sub> | Peak  | Vol Min  | Vol Eff | T10   |         |      | Temp   |          |      |
|-----|-----------------|-------|----------|---------|-------|---------|------|--------|----------|------|
| DAY | (mg/L)          | (GPM) | (gal)    | (gal)   | (min) | CT calc | pH   | (Cels) | CT reg'd | I.R. |
| 1   | 0.23            | 115.0 | 276000.0 | 55200.0 | 480.0 | 110.4   | 6.89 | 3.4    | 48.3     | 2.3  |
| 2   | 0.22            | 115.0 | 276000.0 | 55200.0 | 480.0 | 105.6   | 6.87 | 3.2    | 48.3     | 2.2  |
| 3   | 0.21            | 114.0 | 276000.0 | 55200.0 | 484.2 | 101.7   | 6.93 | 3.3    | 48.8     | 2.1  |
| 4   | 0.23            | 114.0 | 276000.0 | 55200.0 | 484.2 | 111.4   | 6.91 | 3.3    | 49.1     | 2.3  |
| 5   | 0.22            | 114.0 | 276000.0 | 55200.0 | 484.2 | 106.5   | 6.86 | 3.2    | 48.1     | 2.2  |
| 6   | 0.22            | 114.0 | 276000.0 | 55200.0 | 484.2 | 106.5   | 6.84 | 3.3    | 47.4     | 2.2  |
| 7   | 0.22            | 115.0 | 276000.0 | 55200.0 | 480.0 | 105.6   | 6.87 | 3.3    | 48.0     | 2.2  |
| 8   | 0.21            | 114.0 | 276000.0 | 55200.0 | 484.2 | 101.7   | 6.82 | 3.3    | 46.7     | 2.2  |
| 9   | 0.21            | 114.0 | 276000.0 | 55200.0 | 484.2 | 101.7   | 6.86 | 3.0    | 48.5     | 2.1  |
| 10  | 0.19            | 114.0 | 276000.0 | 55200.0 | 484.2 | 92.0    | 6.86 | 3.3    | 46.8     | 2.0  |
| 11  | 0.20            | 115.0 | 276000.0 | 55200.0 | 480.0 | 96.0    | 6.82 | 3.0    | 47.4     | 2.0  |
| 12  | 0.19            | 114.0 | 276000.0 | 55200.0 | 484.2 | 92.0    | 6.91 | 3.0    | 48.7     | 1.9  |
| 13  | 0.19            | 115.0 | 276000.0 | 55200.0 | 480.0 | 91.2    | 6.98 | 3.0    | 50.0     | 1.8  |
| 14  | 0.17            | 114.0 | 276000.0 | 55200.0 | 484.2 | 82.3    | 6.97 | 2.7    | 50.0     | 1.6  |
| 15  | 0.16            | 115.0 | 276000.0 | 55200.0 | 480.0 | 76.8    | 6.98 | 2.9    | 49.1     | 1.6  |
| 16  | 0.16            | 114.0 | 276000.0 | 55200.0 | 484.2 | 77.5    | 7.04 | 3.0    | 49.9     | 1.6  |
| 17  | 0.12            | 115.0 | 276000.0 | 55200.0 | 480.0 | 57.6    | 7.01 | 2.8    | 47.9     | 1.2  |
| 18  | 0.23            | 115.0 | 276000.0 | 55200.0 | 480.0 | 110.4   | 7.02 | 2.9    | 52.6     | 2.1  |
| 19  | 0.29            | 115.0 | 276000.0 | 55200.0 | 480.0 | 139.2   | 6.88 | 2.9    | 51.6     | 2.7  |
| 20  | 0.48            | 115.0 | 276000.0 | 55200.0 | 480.0 | 230.4   | 6.85 | 2.9    | 55.0     | 4.2  |
| 21  | 0.56            | 115.0 | 276000.0 | 55200.0 | 480.0 | 268.8   | 6.87 | 2.9    | 56.8     | 4.7  |
| 22  | 0.62            | 115.0 | 276000.0 | 55200.0 | 480.0 | 297.6   | 7.01 | 3.0    | 60.4     | 4.9  |
| 23  | 0.62            | 115.0 | 276000.0 | 55200.0 | 480.0 | 297.6   | 6.59 | 3.1    | 50.8     | 5.9  |
| 24  | 0.65            | 115.0 | 276000.0 | 55200.0 | 480.0 | 312.0   | 6.47 | 3.0    | 49.0     | 6.4  |
| 25  | 0.64            | 115.0 | 276000.0 | 55200.0 | 480.0 | 307.2   | 6.46 | 3.1    | 48.4     | 6.3  |
| 26  | 0.45            | 115.0 | 276000.0 | 55200.0 | 480.0 | 216.0   | 6.46 | 3.4    | 45.0     | 4.8  |
| 27  | 0.43            | 115.0 | 276000.0 | 55200.0 | 480.0 | 206.4   | 6.51 | 3.3    | 45.9     | 4.5  |
| 28  | 0.33            | 115.0 | 276000.0 | 55200.0 | 480.0 | 158.4   | 6.42 | 3.1    | 43.1     | 3.7  |
| 29  | 0.29            | 115.0 | 276000.0 | 55200.0 | 480.0 | 139.2   | 6.57 | 3.2    | 44.7     | 3.1  |
| 30  | 0.27            | 115.0 | 276000.0 | 55200.0 | 480.0 | 129.6   | 6.85 | 3.2    | 49.4     | 2.6  |
| 31  | 0.26            | 115.0 | 276000.0 | 55200.0 | 480.0 | 124.8   | 6.88 | 3.4    | 49.1     | 2.5  |

March Month: Year: 2020

White Sulphur Springs

Name of Water System:

#### STATE OF MONTANA: DEPARTMENT OF ENVIRONMENTAL QUALITY

Return Completed Form to Public Water Supply Section, PWSS Bureau, 1620 E. Sixth Avenue P.O. Box 200901, Helens, MT 59620-0901 - by the 10th of the Following Month

Log Inactivation Ratio ≥

yn T 0000360 Check Type of NTU Measurements Used Prepared by: Clyde Vinton PWSID: Filtration Type: MCL= 1.0 MAX» 5.0 NTU Distribution ☐ In-Line ☐ Bench-Top No. of Sites where Disinfectant From Data Entry Form Number of Turbidity Residual was: Concentration Baffling Factor (s) Individual or Combined Values Turbidity Meas. s Mess. > Measured. Not Mees, At POE Minimum Click on cell below to select Operating Mnimum Contact Mex. NTU Meas. Specified Max Limit Individual or Record Chlorine Selected No. Coagulant Polymer During Peak Peak Hourly Time Raw Water Operating Operating Effective Time Finish Water Limit CT calc = Finished Water Combined Umit Residuel Value HPC. Hourly Flow Flow Volume Volume Volume TeT<sub>10</sub> 3 (A) (CxT) Water pH Temp LR Su 96 10 11 12 DAY. Hrs/Day GPD pH NTU PPM 13 14 PPM Nhu (mg/L) (mg/L) (GPM) (gal) (peq) 1 24.0 (24) (min) (\*C) 0.43 0.31 6 1 0.43 0.2 115 276000 2 24.0 55200 480.0 110.4 0.42 6.89 3.4 2.3 0.30 8 0.35 0.2 115 276000 3 24.0 55200 460.0 105.6 6.87 0.41 3.2 22 0.30 6 0.15 0.2 114 276000 4 55200 484.2 24.0 0.41 101.7 6.93 3.3 2.1 0.30 6 0.31 0.2 114 276000 5 55200 484.2 24.0 111.4 0.65 6.91 3.3 23 0.31 6 0.30 0.2 114 276000 6 24.0 55200 484.2 106.5 0.66 6.86 3.2 22 0.30 6 0.09 0.2 114 276000 55200 7 484.2 106.5 24.0 6.84 3.3 1,02 22 0.31 6 4 0.17 0.2 115 276000 8 55200 480.0 105.6 24.0 1.32 6.87 3.3 22 0.44 6 0.11 0.2 114 278000 55200 484.2 101.7 9 24.0 1.16 6.82 3.3 22 0.59 6 1 0.06 0.2 114 276000 55200 484.2 10 101.7 6.86 24.0 3.0 21 0.98 0.58 6 0.23 0.2 114 276000 55200 484.2 11 24.0 92.0 6.86 3.3 1.01 2.0 0.53 8 0.17 0.2 115 276000 55200 480.0 96.0 12 24.0 6.82 3.0 1.13 2.0 0.47 6 0.08 0.2 114 276000 55200 484.2 13 92.0 6.91 3.0 24.0 1.15 1.9 0.44 6 0.17 0.2 115 276000 55200 480.0 91.2 14 24.0 6.98 3.0 1.18 1.8 0.41 6 0.20 0.2 116 276000 55200 484.2 82.3 15 24.0 6.97 2.7 1.6 1.15 0.38 6 0.27 0.2 115 276000 55200 480.0 76.8 16 6.98 2.9 24.0 1.14 1.6 0.35 8 0.14 0.2 114 276000 55200 484.2 77.5 17 7.04 3.0 24.0 1.13 1.6 0.34 6 0.22 0.1 115 276000 55200 480.0 18 24.0 57.6 7.01 2.8 12 1.12 0.33 6 0.12 0.2 115 276000 55200 480.0 110.4 19 7.02 2.9 2.1 24.0 0.75 0.32 6 0.33 0.3 115 276000 55200 480.0 139.2 20 6.88 2.9 27 24,0 0.90 0.32 6 0.21 0.5 115 276000 55200 480.0 230.4 21 6.85 2.9 24.0 0.96 42 0.32 8 0.38 0.6 115 276000 55200 480.0 22 268.8 6.87 2.9 24.0 47 1.00 0.30 6 1 0.34 0.6 115 276000 55200 480.0 297.6 7.01 3.0 23 24.0 1.10 4.9 0.30 6 0.07 0.6 115 276000 55200 480.0 297.6 6.59 3.1 24 24.0 5.9 1.12 0.30 6 0.74 0.7 115 276000 55200 480.0 312.0 8.47 3.0 25 24.0 6.4 1.12 0.30 6 0.93 0.6 115 278000 55200 480.0 307.2 6.46 3.1 26 6.3 24.0 1,10 0.29 6 0.50 0.5 115 276000 55200 480.0 216.0 27 6.46 3.4 4.8 24.0 1.13 0.29 8 0.46 0.4 115 276000 55200 480.0 206.4 6.51 28 3.3 24.0 1.13 4.5 0.29 6 1 0.51 0.3 115 276000 55200 480.0 29 158.4 6.42 3.1 24.0 1.13 37 0.29 6 0.43 0.3 115 276000 55200 480.0 139.2 6.57 30 3.2 3.1 24.0 1.07 0.28 6 0.41 0.3 115 276000 55200 480.0 129.6 6.85 3.2 24.0 31 1.05 2.6 0.29 6 0.05 0.3 115 276000 55200 480.0 124.8 6.68 3.4 MGD 2.5 Max NTU» 0.590 186 31 12 Lowest LR. = 1.2 The % of turbidity massurements meeting the specified limits = BIA x 100 × V = D/C x 500 = Date: By Whom:

Record the date and furbidity value for any measurements exceeding maximum allowed If none, enter "None" Turbidity, NTU DEQ WATER QUALITY DIVISION Fam F-8 (10-8008) RECEIVED APR - 9 2020

By Whom: Last Calibration Date:

Checked against:

☐ Bench-Top Turbidimeter

Primary Turbidity Standard

Return Completed Form by 10th of Following Month to: SWTR Manager, Public Water Supply PO BOX 200901 Helena, MT 59620-0901

| Month:   | April   |                 | Year: | 2020 | PWSID.   | MT0000360 |               |  |  |  |
|----------|---------|-----------------|-------|------|----------|-----------|---------------|--|--|--|
| System:  | White S | Sulphur Springs |       |      | Water So | urce:     | Surface Water |  |  |  |
| Prepared | by:     | Clyde Vinton    |       |      | Date:    | 5/5/2020  |               |  |  |  |
|          |         |                 |       |      |          |           |               |  |  |  |

Spreadsheet to determine disinfection inactivation ratio based upon the formula: CT required = 0.3 x pH^2.69 x c^0.15 x (log reduction) x 0.933^(temp-5)

Giardia

Giardia

Giardia

Total Log Reduction Required = 3.0

Log Reduction Allowed for Treatment = 2.0

Log Reduction Required for Disinfection = 1.0

Enter Baffling Factor = 0.2

Minimum Volume (Gallons) = 276,000.00

|     | CL <sub>2</sub> | Peak  | Vol Min  | Vol Eff | T10   |         |        | Temp      |          |      |
|-----|-----------------|-------|----------|---------|-------|---------|--------|-----------|----------|------|
| DAY | (mg/L)          | (GPM) | (gal)    | (gal)   | (min) | CT calc | pH     | (Cels)    | CT req'd | I.R. |
| 1   | 0.21            | 116.0 | 276000.0 | 55200.0 | 475.9 | 99.9    | 6.90   | 2.9       | 49.6     | 2.0  |
| 2   | 0.22            | 115.0 | 276000.0 | 55200.0 | 480.0 | 105.6   | 7.05   | 3.0       | 52.5     | 2.0  |
| 3   | 0.19            | 114.0 | 276000.0 | 55200.0 | 484.2 | 92.0    | 6.93   | 2.9       | 49.4     | 1.9  |
| 4   | 0.15            | 115.0 | 276000.0 | 55200.0 | 480.0 | 72.0    | 6.94   | 2.8       | 48.2     | 1.5  |
| 5   | 0.19            | 115.0 | 276000.0 | 55200.0 | 480.0 | 91.2    | 6.99   | 3.0       | 50.2     | 1.8  |
| 6   | 0.22            | 114.0 | 276000.0 | 55200.0 | 484.2 | 106.5   | 6.92   | 3.0       | 50.0     | 2.1  |
| 7   | 0.24            | 115.0 | 276000.0 | 55200.0 | 480.0 | 115.2   | 6.79   | 3.0       | 48.1     | 2.4  |
| 8   | 0.25            | 115.0 | 276000.0 | 55200.0 | 480.0 | 120.0   | 7.33   | 3.0       | 59.5     | 2.0  |
| 9   | 0.20            | 115.0 | 276000.0 | 55200.0 | 480.0 | 96.0    | 6.86   | 2.8       | 48.8     | 2.0  |
| 10  | 0.23            | 115.0 | 276000.0 | 55200.0 | 480.0 | 110.4   | 6.85   | 3.2       | 48.3     | 2.3  |
| 11  | 0.30            | 102.0 | 276000.0 | 55200.0 | 541.2 | 162.4   | 6.87   | 3.0       | 51.3     | 3.2  |
| 12  | 0.27            | 102.0 | 276000.0 | 55200.0 | 541.2 | 146.1   | 6.84   | 35.0      | 61.5     | 2.4  |
| 13  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 14  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 15  |                 |       | 276000.0 |         |       | Ja 1    |        |           |          |      |
| 16  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 17  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 18  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 19  |                 |       | 276000.0 |         |       |         | RECE   | IVED      |          |      |
| 20  |                 |       | 276000.0 |         | 3 - 5 | - 5     | 2      |           |          |      |
| 21  |                 |       | 276000.0 |         | 1 2 9 | 10 5    | MAY 8  | 2020      |          |      |
| 22  |                 |       | 276000.0 |         |       |         | mm o   | 2020      |          |      |
| 23  |                 |       | 276000.0 |         |       |         |        |           | mercar   |      |
| 24  |                 |       | 276000.0 |         |       | DEQ     | WATERU | JALITY DI | TSION    |      |
| 25  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 26  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 27  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 28  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 29  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 30  |                 |       | 276000.0 |         |       |         |        |           |          |      |
| 31  |                 |       | 276000.0 |         |       |         |        |           |          |      |

Month: April Year: 2020

Return Completed Form to Public Water Supply Section, PWSS Bureau, 1520 E. Sixth Avenue P.O. Box 200901, Helena, MT 59620-0901 - by the 10th of the Following Month.

Log Inactivation Ratio ≥

Primary Turbidity Standard

PWSID: MT 0000360Check Type of NTU Measurements Used Name of Water System: White Sulphur Springs Prepared by: Clyde Vinton Filtration Type: Slow Sand MCL= 1.0 MAX= 5.0 NTU Distribution No. of Sites where Disinfectant From Date Entry Form Number of Turbidity Residual was: Concentration Baffing Factor (s) Individual or Combined Values Turbidity Meas, 5 Meas. > Measured. Meas, At POE Minimum Minimum Click on cell below to select Max. NTU Operating Contact Finished Individual or Meas. Specified Max Umit Record Chilorine detected No During Peak **Peak Hourly** Operating Operating Effective Finished Raw Weter Time CT este w Time Coagulant Polymer Finish Water Winter Combined Limit Unit Residual Value HPC: Hourly Flow Flow Volume Volume. Volume TYTu: (CxT) Water pH Temp I.R. 3 645 5 (0) 9a 60 10 \*\* 12 13 54 18 DAY OPD PH Hrs/Day NTU PPM PPM Ntu (mg/L) (mg/L) (GPM) (pat) (gal) (min) (gel) ("0) 1 24.0 1.00 0.35 6 0.09 0.2 116 278000 55200 475.9 99.9 6.90 2.9 2.0 2 24.0 1.01 0.36 6 0.15 0.2 115 276000 55200 480.0 105.6 7.05 3.0 2.0 3 24.0 0.99 0.37 6 0.10 0.2 114 276000 55200 484.2 92.0 6.93 2.9 1.9 4 24.0 0.96 0.33 6 0.37 0.2 115 276000 55200 480.0 72.0 6.94 2.8 1.5 5 24.0 0.93 0.36 6 0.39 0.2 115 276000 55200 480.0 91.2 6.99 3.0 1.8 6 24.0 0.91 0.36 6 0.41 0.2 114 276000 55200 484.2 106.5 6.92 3.0 2.1 7 24.0 0.89 0.40 6 0.07 0.2 115 276000 55200 480.0 115.2 6.79 3.0 2.4 8 24.0 0.87 48 6 0.31 0.3 115 276000 55200 480.0 120.0 7.33 3.0 2.0 9 24.0 0.86 0.49 6 0.04 0.2 115 276000 55200 480.0 96.0 6.86 2.8 2.0 10 24.0 0.86 0.61 6 0.13 0.2 115 276000 55200 480.0 110.4 8.85 3.2 2.3 11 24.0 0.87 0.67 6 0.22 0.3 102 276000 55200 541.2 162.4 6.87 3.0 3.2 12 24.0 0.86 0.87 6 1 0.18 0.3 102 276000 55200 541.2 146.1 6.84 13 2.4 1 0.22 276000 55200 14 0.25 276000 55200<sub>1</sub>-15 0.30 276000 55200 0 16 1 0.25 276000 55200 17 13 0.19 276000 55200 18 1 0.13 276000 55200 19 0.09 276000 55200 0 20 1 0.13 0 276000 55200 21 0.18 276000 55200 22 0.24 276000 55200 23 1 0.04 276000 55200 24 1 0.28 278000 55200 25 0.25 276000 55200 26 0.23 1 276000 55200 M 27 0.05 276000 55200 28 0.07 276000 55200 29 143 1 0.06 276000 55200 30 0.18 276000 55200 31 276000 55200 Total MGO Max NTU= 0.870 72 17 Lowest LR. = The % of turbidity measurements meeting the specified limits = B/A x 100 = 1.5 V = D/C x 100 = Date Record the date and furbidity value for any measurements exceeding maximum allowed: Date: By Whom: By Whom: If none, enter "None" Turbidity, NTU Last Calibration Date: Checked against: Fam F-6 (10-2008) Bench-Top Turbidimeter

Return Completed Form by 10th of Following Month to: SWTR Manager, Public Water Supply PO BOX 200901 Helena, MT 59620-0901

| Month:    | Feb      | Year: 2022                                                                      | PWSID*                                           | MT000036                   | 30            |
|-----------|----------|---------------------------------------------------------------------------------|--------------------------------------------------|----------------------------|---------------|
| System: _ | White Su | lphur Springs                                                                   | Water Source                                     | ce:                        | Surface Water |
| Prepared  | by:      | Clyde Vinton                                                                    | Date:                                            | 3/9/2022                   |               |
|           |          | Spreadsheet to determine disinfection in<br>CT required = 0.3 x pH^2.69 x c^0.1 | nactivation ratio base<br>15 x (log reduction) x | ed upon the<br>0.933^(terr | formula:      |

Total Log Reduction Required = 3.0 Giardia
Log Reduction Allowed for Treatment = 2.0 Giardia
Log Reduction Required for Disinfection = 1.0 Giardia

Enter Baffling Factor = 0.2 Minimum Volume (Gallons) = 276,000.00 MAR 1 0 2022 MT DEQ PUBLIC WATER

|     | CL <sub>2</sub> | Peak  | Vol Min  | Vol Eff  | T10        |         |          | Temp    |          |      |      |     |      |     |
|-----|-----------------|-------|----------|----------|------------|---------|----------|---------|----------|------|------|-----|------|-----|
| DAY | (mg/L)          | (GPM) | (gal)    | (gal)    | (min)      | CT calc | pH       | (Cels)  | CT reg'd | I.R. |      |     |      |     |
| 1   |                 |       | 276000.0 |          |            |         |          | V       |          |      |      |     |      |     |
| 2   |                 |       | 276000.0 |          |            |         |          |         |          |      |      |     |      |     |
| 3   |                 |       | 276000.0 |          |            |         |          |         |          |      |      |     |      |     |
| 4   |                 |       | 276000.0 |          |            |         |          |         |          |      |      |     |      |     |
| 5   |                 |       | 276000.0 |          |            |         |          |         |          |      |      |     |      |     |
| 6   |                 |       | 276000.0 |          |            |         |          |         |          |      |      |     |      |     |
| 7   |                 |       | 276000.0 |          |            |         |          |         |          |      |      |     |      |     |
| 8   | 0.28            | 77.0  | 276000.0 | 55200.0  | 716.9      | 200.7   | 7.06     | 6.6     | 42.6     | 4.7  |      |     |      |     |
| 9   | 0.51            | 77.0  | 276000.0 | 55200.0  | 716.9      | 365.6   | 7.07     | 6.4     | 47.4     | 7.7  |      |     |      |     |
| 10  | 0.48            | 100.0 | 276000.0 | 55200.0  | 552.0      | 265.0   | 7.10     | 6.4     | 47.5     | 5.6  |      |     |      |     |
| 11  | 0.45            | 100.0 | 276000.0 | 55200.0  | 552.0      | 248.4   | 7.06     | 5.9     | 48.0     | 5.2  |      |     |      |     |
| 12  | 0.42            | 112.0 | 276000.0 | 55200.0  | 492.9      | 207.0   | 7.07     | 6.0     | 47.4     | 4.4  |      |     |      |     |
| 13  | 3 0.15 113.0    |       |          |          | 0.15 113.0 |         | 276000.0 | 55200.0 | 488.5    | 73.3 | 7.11 | 6.7 | 39.3 | 1.9 |
| 14  | 0.15            | 114.0 | 276000.0 | 55200.0  | 484.2      | 72.6    | 7.01     | 5.4     | 41.3     | 1.8  |      |     |      |     |
| 15  | 0.14            | 113.0 | 276000.0 | 55200.0  | 488.5      | 68.4    | 7.08     | 4.9     | 43.5     | 1.6  |      |     |      |     |
| 16  | 0.13            | 113.0 | 276000.0 | 55200.0  | 488.5      | 63.5    | 7.12     | 4.9     | 43.7     | 1.5  |      |     |      |     |
| 17  | 0.13            | 113.0 | 276000.0 | 55200.0  | 488.5      | 63.5    | 7.26     | 5.1     | 45.4     | 1.4  |      |     |      |     |
| 18  | 0.13            | 113.0 | 276000.0 | 55200.0  | 488.5      | 63.5    | 7.22     | 4.8     | 45.7     | 1.4  |      |     |      |     |
| 19  | 0.12            | 113.0 | 276000.0 | 55200.0  | 488.5      | 58.6    | 7.25     | 5.1     | 44.7     | 1.3  |      |     |      |     |
| 20  | 0.12            | 113.0 | 276000.0 | 55200.0  | 488.5      | 58.6    | 7.21     | 5.0     | 44.3     | 1.3  |      |     |      |     |
| 21  | 0.11            | 113.0 | 276000.0 | 55200.0  | 488.5      | 53.7    | 7.23     | 4.8     | 44.7     | 1.2  |      |     |      |     |
| 22  | 0.13            | 114.0 | 276000.0 | 55200.0  | 484.2      | 62.9    | 7.19     | 4.2     | 47.1     | 1.3  |      |     |      |     |
| 23  | 0.14            | 113.0 | 276000.0 | 55200.0  | 488.5      | 68.4    | 7.26     | 4.4     | 48.2     | 1.4  |      |     |      |     |
| 24  | 0.15            | 114.0 | 276000.0 | 55200.0  | 484.2      | 72.6    | 7.28     | 4.7     | 48.1     | 1.5  |      |     |      |     |
| 25  | 0.15            | 114.0 | 276000.0 | 55200.0  | 484.2      | 72.6    | 7.11     | 4.2     | 46.7     | 1.6  |      |     |      |     |
| 26  | 0.16            | 114.0 | 276000.0 | 55200.0  | 484.2      | 77.5    | 7.16     | 4.4     | 47.4     | 1.6  |      |     |      |     |
| 27  | 0.15            | 114.0 | 276000.0 | 55200.0  | 484.2      | 72.6    | 7.06     | 4.3     | 45.5     | 1.6  |      |     |      |     |
| 28  | 0.13            | 113.0 | 276000.0 | 55200.0  | 488.5      | 63.5    | 7.22     | 4.4     | 47.0     | 1.4  |      |     |      |     |
| 29  | 0.70            | 110.0 | 276000.0 | 502.00.0 | 400.0      | 00.0    | 1166     | 4.4     | 47.0     | 1.4  |      |     |      |     |
| 30  |                 |       | 276000.0 |          |            |         |          |         |          | _    |      |     |      |     |
| 31  |                 |       | 276000.0 |          |            |         |          |         |          | _    |      |     |      |     |

2022 Month:

#### STATE OF MONTANA: DEPARTMENT OF ENVIRONMENTAL QUALITY

Return Completed Form to Public Water Supply Section, PWSS Bureau, 1520 E. Sixth Avenue P.O. Box 200901, Helena, MT 5962D-0901 - by the 10th of the Following Month

| Name     | of Water          | System |          | - 4   | White Sul | phur Spring                       | 8                        |                    |                                                 |                                       | Pre                             | pared by                                          | : Clyde                                           | Vinton                                                                      |                     | PWSID:                             | M1000                                                            | 20360                                  | Check                    | Type of I          | NTU Mea              | sureme                    | nts Used                        |
|----------|-------------------|--------|----------|-------|-----------|-----------------------------------|--------------------------|--------------------|-------------------------------------------------|---------------------------------------|---------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|---------------------|------------------------------------|------------------------------------------------------------------|----------------------------------------|--------------------------|--------------------|----------------------|---------------------------|---------------------------------|
| Filtrati | on Type:          |        |          | Slow  | Sand      |                                   | MCL-                     | 1.0                | MAXO                                            | 5.0 NTU                               |                                 | Distribut                                         | tion                                              |                                                                             |                     |                                    |                                                                  |                                        |                          | PK In-             | Line                 | Ben                       | ich-Top                         |
|          | Operating<br>Time | R      | aw Water |       | Coagui    | Il below to select<br>ant Polymer | Max. NTU<br>Finish Water | Turbidity<br>Meas. | umber of Turbi<br>Meas, 5<br>Specified<br>Limit | Sity<br>Meas. ><br>Max Limit<br>Limit | No. of<br>Mes<br>Reson<br>Resid | Residual v<br>asured,<br>d Chlorine<br>lual Value | Disinfectant<br>ves:<br>Not<br>detected No<br>HPC | Disinfectant<br>Concentration<br>Meas. At POE<br>During Peak<br>Hourly Flow | Peak Hourly<br>Flow | Batting<br>Mnimum                  | Entry Form<br>Factor (s)<br>Minimum<br>Operating<br>Volume<br>Sb | Individua<br>Effective<br>Volume<br>10 | Contact<br>Time<br>TwTrs | CT calc =<br>(CxT) | Finished<br>Water pH | Finished<br>Water<br>Temp | Individual o<br>Combined<br>LR. |
| Notes:   |                   |        | Torre    | Trans | None      | None                              |                          | 2 (8)              | 3 (A)                                           | 4                                     | 5.03                            | (5)                                               | -                                                 | -                                                                           |                     |                                    | -                                                                | _                                      | _                        |                    | 10                   | (10)                      | -                               |
| DAY      | Hrs/Oay           | GPD    | pH       | NTU   | PPM       | PPM                               | Ntu                      |                    |                                                 |                                       | -                               | (mg/L)                                            |                                                   | (mg/L)                                                                      | (GPM)               | (gal)                              | (gal)                                                            | (98)                                   | (min)                    |                    |                      | 1.07                      | 1000                            |
| 1        |                   |        | +        | -     | -         | -                                 |                          |                    | _                                               |                                       | 1                               | 0.20                                              | -                                                 |                                                                             |                     | 276000                             |                                                                  | 55200<br>55200                         |                          | _                  | _                    |                           | _                               |
| 2        |                   | _      | +        | +     | -         | +                                 |                          | _                  | -                                               | -                                     | 1                               | 0,10                                              | -                                                 |                                                                             |                     | 276000<br>276000                   |                                                                  | 55200                                  |                          | _                  | -                    |                           |                                 |
| 3        | -                 |        | +        | -     | -         | +                                 |                          | _                  | _                                               | -                                     | 1                               | 0.13                                              | -                                                 | _                                                                           |                     | THE RESERVE OF THE PERSON NAMED IN |                                                                  | 55200                                  |                          | -                  | -                    |                           | _                               |
| -        |                   | _      | +-       | -     | -         | +                                 | -                        |                    | -                                               |                                       | 1                               | 0.24                                              | -                                                 | _                                                                           | -                   | 276000<br>276000                   | _                                                                | 55200                                  | -                        | -                  |                      |                           |                                 |
| 6        |                   | _      | +        | +     | -         | -                                 | _                        | _                  | -                                               | -                                     | 1                               | 0.16                                              | -                                                 |                                                                             |                     | 276000                             | _                                                                | 55200                                  | -                        | _                  | -                    |                           |                                 |
| 7        |                   | _      | -        | -     | -         | -                                 |                          | _                  | -                                               |                                       | 1                               | -                                                 | _                                                 | -                                                                           |                     | 276000                             |                                                                  | 55200                                  |                          | _                  | _                    |                           |                                 |
| 8        | 24.0              | _      | +        | 0.53  | -         | +                                 | 0.43                     | 8                  | -                                               |                                       | 1                               | 0.14                                              | -                                                 | 0.3                                                                         | 77                  | 276000                             |                                                                  | 55200                                  | 716.9                    | 200.7              | 7.06                 | 6.6                       | 4.7                             |
| 9        | 24.0              | _      | +        | 0.53  | -         | +                                 | 0.43                     | 6                  | _                                               | -                                     | 1                               | 0.10                                              | -                                                 | 0.5                                                                         | 77                  | 276000                             |                                                                  | 55200                                  | 716.9                    | 365.6              | 7.07                 | 6.4                       | 7.7                             |
| 10       | 24.0              | _      | -        | 0.53  | +         | -                                 | 0.43                     | 6                  | _                                               | _                                     | 1                               | 0.04                                              | -                                                 | 0.5                                                                         | 100                 | 276000                             |                                                                  | 55200                                  | 552.0                    | 265.0              | 7.10                 | 6.4                       | 5.6                             |
| 11       | 24.0              |        | -        | 0.53  | _         | _                                 | 0.42                     | 6                  |                                                 |                                       | 1                               | 0.05                                              |                                                   | 0.5                                                                         | 100                 | 276000                             |                                                                  | 55200                                  | 552.0                    | 248.4              | 7.06                 | 5.9                       | 5.2                             |
| 12       | 24.0              |        | -        | 0.53  | _         | _                                 | 0.40                     | 6                  | -                                               |                                       | 1                               | 0.03                                              |                                                   | 0.4                                                                         | 112                 | 276000                             | 3                                                                | 55200                                  | 492.9                    | 207.0              | 7.07                 | 6.0                       | 4.4                             |
| 13       | 24.0              |        | +        | 0.53  | _         | -                                 | 0.41                     | 6                  | -                                               |                                       | 1                               | 0.14                                              |                                                   | 0.2                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 73.3               | 7.11                 | 6.7                       | 1.9                             |
| 14       | 24.0              |        | -        | 0.54  | _         |                                   | 0.40                     | 6                  |                                                 |                                       | 1                               | 0.46                                              |                                                   | 0.2                                                                         | 114                 | 276000                             |                                                                  | 55200                                  | 484.2                    | 72.6               | 7.01                 | 5.4                       | 1.8                             |
| 15       | 24.0              |        | -        | 0.54  |           | _                                 | 0.39                     | 6                  |                                                 |                                       | 1                               | 0.23                                              |                                                   | 0.1                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 68.4               | 7.08                 | 4.9                       | 1.6                             |
| 16       | 24.0              |        | _        | 0.53  |           |                                   | 0.38                     | 6                  |                                                 |                                       | 1                               | 0.22                                              |                                                   | 0.1                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 63.5               | 7.12                 | 4.9                       | 1.5                             |
| 17       | 24.0              |        |          | 0.52  |           | 100                               | 0.37                     | 6                  |                                                 |                                       | - 1                             | 0.11                                              |                                                   | 0.1                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 63.5               | 7.26                 | 5.1                       | 1.4                             |
| 18       | 24.0              |        |          | 0.54  |           |                                   | 0.36                     | 6                  |                                                 |                                       | 1                               | 0.24                                              |                                                   | 0.1                                                                         | 113                 | 276000                             | 0                                                                | 55200                                  | 488.5                    | 63.5               | 7.22                 | 4.8                       | 1.4                             |
| 19       | 24.0              |        |          | 0.54  |           |                                   | 0.36                     | 6                  |                                                 |                                       | - 4                             | 0.07                                              |                                                   | 0.1                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 58.6               | 7.25                 | 5.1                       | 1.3                             |
| 20       | 24.0              |        |          | 0.54  |           |                                   | 0.36                     | 6                  |                                                 |                                       | - 1                             | 0.20                                              |                                                   | 0.1                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 58.6               | 7.21                 | 5.0                       | 1.3                             |
| 21       | 24.0              |        |          | 0.53  |           |                                   | 0.35                     | - 6                |                                                 |                                       | 1                               | 0.11                                              |                                                   | 0.1                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 53.7               | 7.23                 | 4.8                       | 1.2                             |
| 22       | 24.0              |        |          | 0.54  |           |                                   | 0.32                     | 6                  |                                                 |                                       | . 1                             | 0.10                                              |                                                   | 0.1                                                                         | 114                 | 276000                             |                                                                  | 55200                                  | 484.2                    | 62.9               | 7.19                 | 4.2                       | 1.3                             |
| 23       | 24.0              |        |          | 0.54  |           |                                   | 0.31                     | 6                  |                                                 |                                       | 1                               | 0.25                                              |                                                   | 0.1                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 68.4               | 7.26                 | 4.4                       | 1.4                             |
| 24       | 24.0              |        |          | 0.54  |           |                                   | 0.32                     | 6                  |                                                 |                                       | - 1                             | 0.18                                              |                                                   | 0.2                                                                         | 114                 | 276000                             |                                                                  | 55200                                  | 484.2                    | 72.6               | 7.28                 | 4.7                       | 1.5                             |
| 25       | 24.0              |        |          | 0.54  |           |                                   | 0.34                     | 6                  |                                                 |                                       | 1                               | 0.32                                              |                                                   | 0.2                                                                         | 114                 | 276000                             |                                                                  | 55200                                  | 484.2                    | 72.6               | 7.11                 | 4.2                       | 1.6                             |
| 26       | 24.0              |        |          | 0.54  |           |                                   | 0.34                     | 6                  |                                                 |                                       | 1                               | 0.07                                              |                                                   | 0.2                                                                         | 114                 | 276000                             |                                                                  | 55200                                  | 484.2                    | 77.5               | 7.16                 | 4.4                       | 1.6                             |
| 27       | 24.0              |        |          | 0.54  |           |                                   | 0.33                     | 6                  |                                                 |                                       | 1                               | 0.19                                              |                                                   | 0.2                                                                         | 114                 | 276000                             |                                                                  | 55200                                  | 484.2                    | 72.6               | 7.06                 | 4.3                       | 1.6                             |
| 28       | 24.0              | 7      |          | 0.54  |           |                                   | 0.33                     | 6                  |                                                 |                                       | -1                              | 0.14                                              |                                                   | 0.1                                                                         | 113                 | 276000                             |                                                                  | 55200                                  | 488.5                    | 63.5               | 7.22                 | 4.4                       | 1.4                             |
| 29       |                   |        |          |       |           |                                   |                          |                    |                                                 |                                       |                                 |                                                   |                                                   | -                                                                           | 1                   | 276000                             |                                                                  | 55200                                  | -                        |                    | -                    |                           |                                 |
| 30       |                   |        |          |       |           |                                   |                          |                    |                                                 |                                       |                                 |                                                   |                                                   |                                                                             |                     | 276000                             |                                                                  | 55200                                  | 1                        |                    | 9                    |                           | -                               |
| 31       |                   | 0      |          | 1/2   |           |                                   | 9                        |                    |                                                 | 1.1                                   |                                 | 1-3                                               |                                                   |                                                                             | 0 1                 | 276000                             |                                                                  | 55200                                  |                          |                    |                      | 1                         |                                 |
|          | Total             |        | MGD      |       |           | Max NTU=                          | 0.430                    | 126                |                                                 |                                       | 26                              | 17                                                |                                                   |                                                                             | V                   |                                    |                                                                  | 72 33                                  |                          | 5                  | Lowes                | tI.R. =                   | 1.2                             |

The % of furbidity measurements meeting the specified limits = B/A x 100 =

By Whom:

Date: By Whom: Last Calibration Date:

Log inscrivation Hatio ≥ | 1.0

Record the date and turbidity value for any measurements exceeding maximum allowed.

If none, enter "None"

Fam: F-6 (10-2000)

Turbidity, NTU

Checked against:

☐ Bench-Top Turbidimeter

Primary Turbidity Standard

3-8-22 willow creek online

RECEIVED

MAR 1 0 2022

MT DEQ PUBLIC WATER

Return Completed Form by 10th of Following Month to: SWTR Manager, Public Water Supply PO BOX 200901 Helena, MT 59620-0901

| Month:   | March                 | Year: 2022 | PWSID" MT0000  | 360           |
|----------|-----------------------|------------|----------------|---------------|
| System:  | White Sulphur Springs |            | Water Source:  | Surface Water |
| Prepared | by: Clyde Vinton      |            | Date: 4/8/2022 | 2             |

Spreadsheet to determine disinfection inactivation ratio based upon the formula: CT required = 0.3 x pH<sup>2</sup>.69 x c<sup>0</sup>.15 x (log reduction) x 0.933<sup>(temp-5)</sup>

Total Log Reduction Required = 3.0 Giardia
Log Reduction Allowed for Treatment = 2.0 Giardia
Log Reduction Required for Disinfection = 1.0 Giardia
Enter Baffling Factor = 0.2
Minimum Volume (Gallons) = 276,000.00



|     | CL <sub>2</sub> | Peak  | Vol Min  | Vol Eff | T10   |         |      | Temp   |          |      |
|-----|-----------------|-------|----------|---------|-------|---------|------|--------|----------|------|
| DAY | (mg/L)          | (GPM) | (gal)    | (gal)   | (min) | CT calc | pH   | (Cels) | CT reg'd | I.R. |
| 1   | 0.23            | 113.0 | 276000.0 | 55200.0 | 488.5 | 112.4   | 7.19 | 5.0    | 48.5     | 2.3  |
| 2   | 0.21            | 113.0 | 276000.0 | 55200.0 | 488.5 | 102.6   | 7.64 | 4.6    | 57.9     | 1.8  |
| 3   | 0.20            | 118.0 | 276000.0 | 55200.0 | 467.8 | 93.6    | 7.16 | 3.9    | 50.7     | 1.8  |
| 4   | 0.29            | 119.0 | 276000.0 | 55200.0 | 463.9 | 134.5   | 7.16 | 4.2    | 52.5     | 2.6  |
| 5   | 0.21            | 118.0 | 276000.0 | 55200.0 | 467.8 | 98.2    | 7.18 | 4.7    | 48.7     | 2.0  |
| 6   | 0.24            | 118.0 | 276000.0 | 55200.0 | 467.8 | 112.3   | 7.17 | 4.9    | 48.8     | 2.3  |
| 7   | 0.29            | 119.0 | 276000.0 | 55200.0 | 463.9 | 134.5   | 7.16 | 4.5    | 51.4     | 2.6  |
| 8   | 0.29            | 118.0 | 276000.0 | 55200.0 | 467.8 | 135.7   | 7.14 | 4.2    | 52.1     | 2.6  |
| 9   | 0.29            | 118.0 | 276000.0 | 55200.0 | 467.8 | 135.7   | 7.10 | 3.5    | 53.9     | 2.5  |
| 10  | 0.20            | 118.0 | 276000.0 | 55200.0 | 467.8 | 93.6    | 7.16 | 3.6    | 51.8     | 1.8  |
| 11  | 0.20            | 118.0 | 276000.0 | 55200.0 | 467.8 | 93.6    | 7.27 | 4.2    | 51.7     | 1.8  |
| 12  | 0.21            | 118.0 | 276000.0 | 55200.0 | 467.8 | 98.2    | 7.21 | 3.9    | 52.1     | 1.9  |
| 13  | 0.19            | 118.0 | 276000.0 | 55200.0 | 467.8 | 88.9    | 7.22 | 3.7    | 52.2     | 1.7  |
| 14  | 0.18            | 119.0 | 276000.0 | 55200.0 | 463.9 | 83.5    | 7.09 | 3.8    | 49.0     | 1.7  |
| 15  | 0.17            | 118.0 | 276000.0 | 55200.0 | 467.8 | 79.5    | 6.96 | 3.8    | 46.2     | 1.7  |
| 16  | 0.17            | 118.0 | 276000.0 | 55200.0 | 467.8 | 79.5    | 7.17 | 4.1    | 49.0     | 1.6  |
| 17  | 0.24            | 119.0 | 276000.0 | 55200.0 | 463.9 | 111.3   | 7.13 | 3.7    | 52.3     | 2.1  |
| 18  | 0.26            | 119.0 | 276000.0 | 55200.0 | 463.9 | 120.6   | 7.09 | 3.8    | 51.7     | 2.3  |
| 19  | 0.26            | 118.0 | 276000.0 | 55200.0 | 467.8 | 121.6   | 7.16 | 3.9    | 52.7     | 2.3  |
| 20  | 0.26            | 119.0 | 276000.0 | 55200.0 | 463.9 | 120.6   | 6.93 | 3.6    | 49.3     | 2.4  |
| 21  | 0.25            | 119.0 | 276000.0 | 55200.0 | 463.9 | 116.0   | 7.21 | 3.8    | 53.8     | 2.2  |
| 22  | 0.23            | 119.0 | 276000.0 | 55200.0 | 463.9 | 106.7   | 7.13 | 3.9    | 51.2     | 2.1  |
| 23  | 0.19            | 119.0 | 276000.0 | 55200.0 | 463.9 | 88.1    | 7.18 | 4.1    | 50.0     | 1.8  |
| 24  | 0.26            | 119.0 | 276000.0 | 55200.0 | 463.9 | 120.6   | 7.20 | 4.0    | 53.2     | 2.3  |
| 25  | 0.28            | 119.0 | 276000.0 | 55200.0 | 463.9 | 129.9   | 7.19 | 4.2    | 52.8     | 2.5  |
| 26  | 0.27            | 119.0 | 276000.0 | 55200.0 | 463.9 | 125.2   | 7.22 | 4.5    | 52.0     | 2.4  |
| 27  | 0.27            | 119.0 | 276000.0 | 55200.0 | 463.9 | 125.2   | 7.14 | 4.8    | 49.5     | 2.5  |
| 28  | 0.24            | 119.0 | 276000.0 | 55200.0 | 463.9 | 111.3   | 7.16 | 4.5    | 50.0     | 2.2  |
| 29  | 0.25            | 119.0 | 276000.0 | 55200.0 | 463.9 | 116.0   | 7.30 | 4.0    | 54.9     | 2.1  |
| 30  | 0.25            | 119.0 | 276000.0 | 55200.0 | 463.9 | 116.0   | 7.24 | 4.1    | 53.3     | 2.2  |
| 31  | 0.25            | 130.0 | 276000.0 | 55200.0 | 424.6 | 106.2   | 6.88 | 4.5    | 45.2     | 2.3  |

| onth: | March | Year | 2022 |  |
|-------|-------|------|------|--|

#### STATE OF MONTANA: DEPARTMENT OF ENVIRONMENTAL QUALITY

Return Completed Form to Public Water Supply Section, PWSS Bureau, 1520 E. Sixth Avenue P.O. Box 200901, Helena, MT 59620-0901 - by the 10th of the Following Month

Log Inactivation Ratio ≥

|          | of Water          | System:  |         |        |     | hur Springs                          |                                    |                             |                                        | -                             | _             | The second second                                                 | Clyde 1                                               | Vinton                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PWSID:            |                                                                  |                     | Check'                               | Type of h          | VTU Mea  | sureme                    | nts Used        |
|----------|-------------------|----------|---------|--------|-----|--------------------------------------|------------------------------------|-----------------------------|----------------------------------------|-------------------------------|---------------|-------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------|---------------------|--------------------------------------|--------------------|----------|---------------------------|-----------------|
| iltratio | on Type:          | Seens    |         | Slow 5 | and |                                      | MCL=                               | 1.0                         | MAX-                                   | 5.0 NTU                       |               | Distribut                                                         |                                                       |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                  |                     |                                      | □ In-l             | Line     | Ben                       | ch-Top          |
| ofee:    | Operating<br>Time | Ra       | w Water |        |     | below to select<br>t Polymer<br>None | Max. NTU<br>Finish Water           | Nutridity<br>Meas.<br>2 (8) | Meas. s<br>Specified<br>Limit<br>3 (A) | Meas. ><br>Max Limit<br>Limit | Mea<br>Record | ites where<br>Residual w<br>sured.<br>Chlorine<br>al Value<br>(C) | Disinfectant<br>ss:<br>Not<br>detected No<br>HPC<br>6 | Concentration<br>Meas. At POE<br>During Peak<br>Hourly Flow | Pask Hourly<br>Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | Entry Form<br>factor (x)<br>Minimum<br>Operating<br>Volume<br>Sb | Effective<br>Volume | Contact<br>Time<br>T+T <sub>10</sub> | CT calc =<br>(CaT) | Water pH | Finished<br>Water<br>Temp | Combine<br>I.R. |
| DAY      | Hrs/Day           | GPD      | pH      | NTU    | PPM | PPM                                  | Nhi                                | - 101                       | 1                                      |                               | 2 101         | -                                                                 | -                                                     | -                                                           | O CONTRACTOR OF THE PARTY OF TH | The second second | -                                                                | 10                  | 11                                   | 12                 | 13       | 14                        | - 16            |
| 1        | 24,0              | - Gr - D | -       | 0.54   |     | 77'90                                | 0.30                               | 6                           |                                        |                               |               | (mg/L)<br>0.21                                                    |                                                       | (mg/L)                                                      | (GPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (gal)             | (940)                                                            | (24)                | (min)                                |                    |          | (0)                       |                 |
| 2        | 24.0              |          |         | 0.55   |     |                                      | 0.35                               | 6                           |                                        |                               | -             | 0.06                                                              |                                                       | 0.2                                                         | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 488.5                                | 112.4              | 7.19     | 5.0                       | 2.3             |
| 3        | 24.0              |          |         | 0.55   |     |                                      | 0.40                               | 6                           |                                        |                               | -             | 0.22                                                              | _                                                     | 0.2                                                         | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 275000            |                                                                  | 55200               | 488.5                                | 102.6              | 7.64     | 4.6                       | 1.8             |
| 4        | 24.0              |          |         | 0.55   |     |                                      | 0.48                               | 6                           |                                        |                               | 1             | -                                                                 | -                                                     | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 457.8                                | 93.6               | 7.16     | 3.9                       | 1.8             |
| 5        | 24.0              |          |         | 0.55   |     |                                      | 0.46                               | 6                           |                                        | -                             | 1             | 0.11                                                              | -                                                     | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 134.5              | 7.16     | 4.2                       | 2.6             |
| 6        | 24.0              |          |         | 0.55   |     |                                      | 0.40                               | 6                           | -                                      |                               |               | -                                                                 | _                                                     | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 457.8                                | 98.2               | 7.18     | 4.7                       | 2.0             |
| 7        | 24.0              |          |         | 0.55   |     |                                      | 0.32                               | 6                           | -                                      | _                             | 1             | 0.24                                                              |                                                       | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 467.8                                | 112.3              | 7.17     | 4.9                       | 2.3             |
| 8        | 24.0              |          |         | 0.55   |     |                                      | 0.28                               |                             | _                                      |                               | -             | 0.11                                                              | _                                                     | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 134.5              | 7.16     | 4.5                       | 2.6             |
| 9        | 24.0              |          | _       | 0.55   | _   |                                      | 0.24                               | 6                           | _                                      |                               | 1             | 0.31                                                              |                                                       | 0.3                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 467.8                                | 135.7              | 7.14     | 4.2                       | 2.6             |
| 10       | 24.0              |          |         | 0.55   | -   |                                      | 0.26                               | 6                           | -                                      |                               | 1             | 0.24                                                              | -                                                     | 0.3                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 457.8                                | 135.7              | 7.10     | 3.5                       | 2.5             |
| 11       | 24.0              |          |         | 0.55   |     |                                      | 0.19                               | 6                           | -                                      |                               | 1             | 0.17                                                              | -                                                     | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 467.8                                | 93.6               | 7.16     | 3.6                       | 1.8             |
| 12       | 24.0              | _        |         | 0.55   |     |                                      | 0.19                               | 6                           | -                                      |                               | 1             | 0.12                                                              | _                                                     | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 467.8                                | 93.6               | 7.27     | 4.2                       | 1.6             |
| 13       | 24.0              |          |         | 0.55   |     |                                      | The second second                  |                             | _                                      | _                             | 1             | 0.10                                                              | _                                                     | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 275000            |                                                                  | 55200               | 457.8                                | 98.2               | 7.21     | 3.9                       | 1.9             |
| 14       | 24.0              |          |         | 0.55   | _   |                                      | 0.26                               | 6                           | -                                      |                               | _             | 0.12                                                              | -                                                     | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 457.8                                | 88.9               | 7.22     | 3.7                       | 1.7             |
| 15       | 24.0              | _        | _       | 0.55   | _   |                                      | 0.25                               | 6                           | -                                      | -                             | 1             | 0.09                                                              | -                                                     | 0.2                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 453.9                                | 83.5               | 7.09     | 3.8                       | 1.7             |
| 16       | 24.0              |          |         | 0.55   |     |                                      | 0.25                               | 6                           |                                        |                               | 1             | 0.13                                                              | -                                                     | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 467.8                                | 79.5               | 6.96     | 3.8                       | 1.7             |
| 17       | 24.0              |          | -       | 0.55   | _   |                                      | 0.25                               | 6                           | -                                      |                               | - 1           |                                                                   | _                                                     | 0.2                                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 467.8                                | 79.5               | 7.17     | 4.1                       | 1.6             |
| 18       | 24.0              | -        | -       | 0.55   | _   |                                      | 0.24                               | 6                           |                                        |                               | 1             | 0.21                                                              | _                                                     | 0.2                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 111.3              | 7.13     | 3.7                       | 2.1             |
| 19       | 24.0              |          |         | 0.55   | _   | _                                    |                                    |                             | -                                      | _                             | - 1           | 0.22                                                              | -                                                     | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 120.6              | 7.09     | 3.8                       | 2.3             |
| 20       | 24.0              | _        | -       | 0.55   |     |                                      | 0.24                               | - 6                         | -                                      |                               | - 1           | 0.20                                                              | _                                                     | 0.3                                                         | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 467.8                                | 121,6              | 7.16     | 3.9                       | 2.3             |
| 21       | 24.0              | _        | -       | 0.55   |     |                                      | -                                  | 6                           | -                                      | -                             | - 1           | 0.26                                                              | -                                                     | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 120.6              | 6.93     | 3.6                       | 2.4             |
| 22       | 24.0              | _        | _       | 0.55   |     | _                                    | 0.26                               |                             | _                                      |                               | 1             | 0.21                                                              | _                                                     | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 116.0              | 7.21     | 3.8                       | 2.2             |
| 23       | 24.0              |          |         | 0.55   |     |                                      | 0.25                               | 6                           | -                                      | _                             | - 1           | 0.25                                                              | -                                                     | 0.2                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 106.7              | 7.13     | 3.9                       | 2.1             |
| 24       | 24.0              | _        | -       | 0.54   | _   |                                      |                                    |                             |                                        | -                             | 1             | 0.20                                                              | _                                                     | 0.2                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 88.1               | 7.18     | 4.1                       | 1.8             |
| 25       | 24.0              | -        |         | 0.54   |     |                                      | 0.33                               | - 6                         |                                        |                               | 1             | 0.18                                                              | -                                                     | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 120.6              | 7.20     | 4.0                       | 2.3             |
| 26       | 24.0              |          |         | 0.54   |     |                                      | -                                  | 6                           |                                        | -                             | 1             | 0.19                                                              |                                                       | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 129.9              | 7.19     | 4.2                       | 2.5             |
| 27       | 24.0              |          |         | 0.54   | _   |                                      | 0.49                               | 6                           |                                        |                               | - 1           | 0.25                                                              | _                                                     | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 125.2              | 7.22     | 4.5                       | 2.4             |
| 28       | 24.0              |          |         | 0.54   | _   |                                      | 0.57                               | 6                           | -                                      |                               | - 1           | 0.12                                                              | -                                                     | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 125.2              | 7.14     | 4.8                       | 2.5             |
| 29       | 24.0              | -        | -       | 0.54   | _   |                                      | 0.69                               | 6                           | _                                      |                               | - 1           | 0.05                                                              |                                                       | 0.2                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 111.3              | 7.16     | 4.5                       | 2.2             |
| 30       | The second        |          | -       |        |     | -                                    | 0.82                               | 6                           | -                                      |                               | - 1           | 0.12                                                              |                                                       | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 116.0              | 7.30     | 4.0                       | 2.1             |
| 31       | 24.0              |          | -       | 0.59   |     |                                      | 0.97                               | 6                           |                                        |                               | 1             | 0.25                                                              |                                                       | 0.3                                                         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276000            |                                                                  | 55200               | 463.9                                | 116.0              | 7.24     | 4.1                       | 2.2             |
| 31       | Total             | _        | MGD     | 0.09   |     | Max NTU=                             | 0.980                              | 186                         |                                        |                               | 1             | 0.18                                                              | -                                                     | 0.3                                                         | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 275000            |                                                                  | 55200               | 424.6                                | 106.2              | 6.88     | 4.5                       | 2.3             |
| _        | 1998              |          | MOD.    |        |     | e % of turbidity                     | THE RESERVE OF THE PERSON NAMED IN | _                           |                                        |                               | 31            | 16                                                                | _                                                     |                                                             | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                  |                     |                                      |                    | Lowes    | 11.R. =                   | 1.6             |

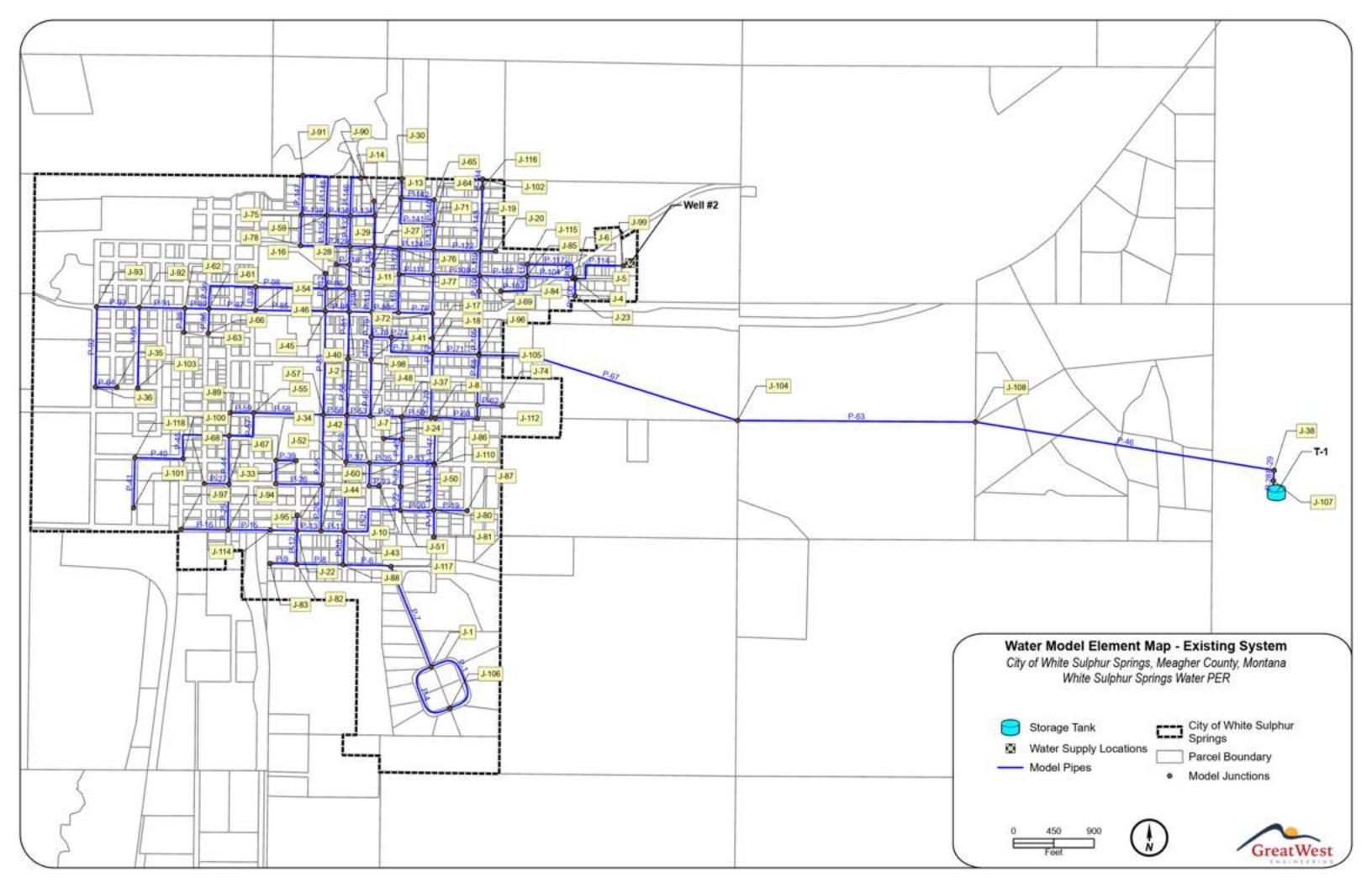
| The % of turbidity measuremen       | nts meeting the specific            | ed limits = B/A x 10  |
|-------------------------------------|-------------------------------------|-----------------------|
| title in an interest measure arrive | tion to be a street of the species. | AN WORLD - POLY V. LA |

Record the date and furbidity value for any measurements exceeding maximum allowed.

If none, enter "None"

Fem F-6-(10-2000)

Turbidity, NTU


| Annual Contract of the Contrac |        |                       | Services (C.) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|---------------|
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | Date:                 |               |
| By Whom:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | By Whom:              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Last Calibration Date | r.            |
| Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | danie. |                       | 1.1           |

Primary Turbidity Standard

Bench-Top Turbidimeter

# **Appendix T**

**Hydraulic Water Model Reports** 



| Label | Length   | Start Node | Stop Node | Diameter | Material | Hazen-Williams | Flow       | Velocity | Headloss | Status (Initial) |
|-------|----------|------------|-----------|----------|----------|----------------|------------|----------|----------|------------------|
|       | (Scaled) |            |           | (in)     |          | С              | (Absolute) | (ft/s)   | Gradient |                  |
|       | (ft)     |            |           |          |          |                | (gpm)      |          | (ft/ft)  |                  |
| P-1   | 940      | J-1        | J-106     | 6.0      | PVC      | 145.0          | 1          | 0.01     | 0.000    | Open             |
| P-4   | 855      | J-106      | J-1       | 6.0      | PVC      | 145.0          | 1          | 0.01     | 0.000    | Open             |
| P-6   | 532      | J-88       | J-117     | 6.0      | PVC      | 145.0          | 6          | 0.07     | 0.000    | Open             |
| P-7   | 1,204    | J-117      | J-1       | 6.0      | PVC      | 145.0          | 5          | 0.06     | 0.000    | Open             |
| P-8   | 518      | J-88       | J-82      | 6.0      | PVC      | 145.0          | 0          | 0.00     | 0.000    | Open             |
| P-9   | 299      | J-82       | J-83      | 6.0      | PVC      | 145.0          | 2          | 0.02     | 0.000    | Open             |
| P-10  | 372      | J-88       | J-43      | 6.0      | PVC      | 145.0          | 15         | 0.17     | 0.000    | Open             |
| P-11  | 257      | J-43       | J-44      | 6.0      | PVC      | 145.0          | 34         | 0.38     | 0.000    | Open             |
| P-12  | 374      | J-22       | J-82      | 6.0      | PVC      | 145.0          | 7          | 0.08     | 0.000    | Open             |
| P-13  | 268      | J-44       | J-22      | 6.0      | PVC      | 145.0          | 37         | 0.42     | 0.000    | Open             |
| P-14  | 294      | J-22       | J-114     | 6.0      | PVC      | 145.0          | 21         | 0.23     | 0.000    | Open             |
| P-15  | 476      | J-114      | J-94      | 6.0      | PVC      | 145.0          | 20         | 0.22     | 0.000    | Open             |
| P-16  | 521      | J-94       | J-97      | 6.0      | PVC      | 145.0          | 3          | 0.04     | 0.000    | Open             |
| P-17  | 172      | J-21       | J-22      | 2.0      | PVC      | 145.0          | 5          | 0.53     | 0.001    | Open             |
| P-18  | 298      | J-80       | J-81      | 4.0      | PVC      | 145.0          | 3          | 0.08     | 0.000    | Open             |
| P-19  | 371      | J-80       | J-87      | 4.0      | PVC      | 145.0          | 3          | 0.08     | 0.000    | Open             |
| P-20  | 374      | J-51       | J-80      | 6.0      | PVC      | 145.0          | 4          | 0.05     | 0.000    | Open             |
| P-21  | 870      | J-43       | J-51      | 6.0      | PVC      | 145.0          | 12         | 0.14     | 0.000    | Open             |
| P-22  | 261      | J-50       | J-51      | 6.0      | PVC      | 145.0          | 0          | 0.00     | 0.000    | Open             |
| P-23  | 114      | J-9        | J-10      | 2.0      | CU       | 145.0          | 5          | 0.53     | 0.001    | Open             |
| P-24  | 519      | J-95       | J-44      | 10.0     | PVC      | 145.0          | 74         | 0.30     | 0.000    | Open             |
| P-25  | 511      | J-94       | J-67      | 6.0      | PVC      | 145.0          | 7          | 0.08     | 0.000    | Open             |
| P-26  | 517      | J-95       | J-47      | 4.0      | Steel    | 80.0           | 11         | 0.29     | 0.000    | Open             |
| P-27  | 275      | J-67       | J-68      | 2.0      | PVC      | 145.0          | 5          | 0.53     | 0.001    | Open             |
| P-28  | 173      | T-1        | J-107     | 12.0     | PVC      | 145.0          | 672        | 1.91     | 0.001    | Open             |
| P-29  | 115      | J-107      | J-38      | 12.0     | PVC      | 145.0          | 672        | 1.91     | 0.001    | Open             |
| P-30  | 17       | J-86       | J-110     | 4.0      | PVC      | 145.0          | 13         | 0.34     | 0.000    | Open             |
| P-31  | 499      | J-110      | J-80      | 4.0      | PVC      | 145.0          | 8          | 0.21     | 0.000    | Open             |
| P-32  | 263      | J-50       | J-60      | 4.0      | PVC      | 145.0          | 4          | 0.10     | 0.000    | Open             |
| P-33  | 368      | J-60       | J-86      | 4.0      | PVC      | 145.0          | 9          | 0.23     | 0.000    | Open             |
| P-34  | 257      | J-42       | J-9       | 4.0      | CIP      | 45.0           | 9          | 0.24     | 0.001    | Open             |
| P-35  | 355      | J-42       | J-60      | 6.0      | PVC      | 145.0          | 11         | 0.13     | 0.000    | Open             |
| P-36  | 774      | J-52       | J-43      | 6.0      | CIP      | 45.0           | 3          | 0.03     | 0.000    | Open             |
| P-37  | 261      | J-52       | J-42      | 4.0      | CIP      | 45.0           | 3          | 0.08     | 0.000    | Open             |
| P-38  | 260      | J-34       | J-47      | 2.0      | PVC      | 145.0          | 5          | 0.53     | 0.001    | Open             |
| P-39  | 225      | J-33       | J-34      | 1.0      | cu       | 145.0          | 2          | 0.85     | 0.004    | Open             |
| P-40  | 538      | J-100      | J-118     | 6.0      | PVC      | 145.0          | 5          | 0.06     | 0.000    | Open             |

| Label | Length           | Start Node | Stop Node | Diameter | Material | Hazen-Williams | Flow                | Velocity | Headloss            | Status (Initial) |
|-------|------------------|------------|-----------|----------|----------|----------------|---------------------|----------|---------------------|------------------|
|       | (Scaled)<br>(ft) |            |           | (in)     |          | С              | (Absolute)<br>(gpm) | (ft/s)   | Gradient<br>(ft/ft) |                  |
| P-41  | 559              | J-118      | J-101     | 6.0      | PVC      | 145.0          | 3                   | 0.04     | 0.000               | Open             |
| P-42  | 270              | J-60       | J-25      | 6.0      | PVC      | 145.0          | 11                  | 0.12     | 0.000               | Open             |
| P-43  | 202              | J-24       | J-25      | 2.0      | PVC      | 145.0          | 5                   | 0.53     | 0.001               | Open             |
| P-44  | 537              | J-89       | J-67      | 4.0      | PVC      | 145.0          | 3                   | 0.09     | 0.000               | Open             |
| P-45  | 785              | J-100      | J-89      | 6.0      | PVC      | 145.0          | 13                  | 0.14     | 0.000               | Open             |
| P-46  | 3,376            | J-38       | J-108     | 12.0     | Steel    | 100.0          | 672                 | 1.91     | 0.002               | Open             |
| P-47  | 511              | J-8        | J-86      | 4.0      | PVC      | 145.0          | 27                  | 0.68     | 0.001               | Open             |
| P-48  | 50               | J-7        | J-8       | 6.0      | CIP      | 45.0           | 16                  | 0.19     | 0.000               | Open             |
| P-49  | 246              | J-37       | J-25      | 4.0      | AC       | 120.0          | 20                  | 0.51     | 0.000               | Open             |
| P-50  | 327              | J-37       | J-7       | 4.0      | PVC      | 145.0          | 26                  | 0.68     | 0.001               | Open             |
| P-51  | 352              | J-48       | J-37      | 4.0      | PVC      | 145.0          | 5                   | 0.13     | 0.000               | Open             |
| P-52  | 520              | J-3        | J-52      | 6.0      | CIP      | 45.0           | 14                  | 0.16     | 0.000               | Open             |
| P-53  | 260              | J-3        | J-48      | 4.0      | PVC      | 145.0          | 1                   | 0.03     | 0.000               | Open             |
| P-54  | 3                | J-2        | J-3       | 6.0      | CIP      | 45.0           | 16                  | 0.18     | 0.000               | Open             |
| P-55  | 777              | J-57       | J-95      | 10.0     | PVC      | 145.0          | 96                  | 0.39     | 0.000               | Open             |
| P-56  | 263              | J-57       | J-2       | 4.0      | CIP      | 45.0           | 2                   | 0.05     | 0.000               | Open             |
| P-57  | 530              | J-89       | J-55      | 6.0      | PVC      | 145.0          | 24                  | 0.28     | 0.000               | Open             |
| P-58  | 779              | J-57       | J-55      | 6.0      | PVC      | 145.0          | 37                  | 0.42     | 0.000               | Open             |
| P-59  | 262              | J-55       | J-56      | 6.0      | PVC      | 145.0          | 6                   | 0.07     | 0.000               | Open             |
| P-60  | 471              | J-8        | J-112     | 6.0      | CIP      | 45.0           | 52                  | 0.59     | 0.002               | Open             |
| P-61  | 148              | J-112      | J-73      | 6.0      | CIP      | 45.0           | 61                  | 0.69     | 0.003               | Open             |
| P-62  | 278              | J-73       | J-74      | 1.0      | CU       | 145.0          | 4                   | 1.71     | 0.015               | Open             |
| P-63  | 2,651            | J-108      | J-104     | 12.0     | PVC      | 145.0          | 672                 | 1.91     | 0.001               | Open             |
| P-64  | 238              | J-35       | J-36      | 1.0      | CIP      | 45.0           | 2                   | 0.85     | 0.035               | Open             |
| P-65  | 631              | J-41       | J-48      | 4.0      | CIP      | 45.0           | 11                  | 0.29     | 0.001               | Open             |
| P-66  | 627              | J-98       | J-2       | 6.0      | CIP      | 45.0           | 22                  | 0.25     | 0.000               | Open             |
| P-67  | 2,996            | J-104      | J-105     | 12.0     | PVC      | 145.0          | 672                 | 1.91     | 0.001               | Open             |
| P-68  | 555              | J-73       | J-105     | 6.0      | CIP      | 45.0           | 72                  | 0.82     | 0.004               | Open             |
| P-69  | 9                | J-105      | J-96      | 6.0      | CIP      | 45.0           | 593                 | 6.72     | 0.201               | Open             |
| P-70  | 717              | J-18       | J-7       | 4.0      | CIP      | 45.0           | 17                  | 0.45     | 0.002               | Open             |
| P-71  | 519              | J-18       | J-96      | 12.0     | PVC      | 145.0          | 549                 | 1.56     | 0.001               | Open             |
| P-72  | 171              | J-17       | J-18      | 12.0     | PVC      | 145.0          | 513                 | 1.45     | 0.001               | Open             |
| P-73  | 628              | J-32       | J-18      | 4.0      | CIP      | 45.0           | 5                   | 0.13     | 0.000               | Open             |
| P-74  | 461              | J-32       | J-17      | 6.0      | PVC      | 145.0          | 27                  | 0.31     | 0.000               | Open             |
| P-75  | 252              | J-31       | J-41      | 6.0      | PVC      | 145.0          | 25                  | 0.28     | 0.000               | Open             |
| P-76  | 221              | J-31       | J-32      | 4.0      | CIP      | 45.0           | 25                  | 0.64     | 0.004               | Open             |
| P-77  | 277              | J-72       | J-17      | 12.0     | PVC      | 145.0          | 481                 | 1.36     | 0.001               | Open             |

| Label | Length<br>(Scaled)<br>(ft) | Start Node | Stop Node | Diameter<br>(in) | Material | Hazen-Williams<br>C | Flow<br>(Absolute)<br>(gpm) | Velocity<br>(ft/s) | Headloss<br>Gradient<br>(ft/ft) | Status (Initial) |
|-------|----------------------------|------------|-----------|------------------|----------|---------------------|-----------------------------|--------------------|---------------------------------|------------------|
| P-78  | 380                        | J-72       | J-79      | 10.0             | CIP      | 80.0                | 252                         | 1.03               | 0.001                           | Open             |
| P-79  | 278                        | J-39       | J-31      | 6.0              | PVC      | 145.0               | 7                           | 0.08               | 0.000                           | Open             |
| P-80  | 298                        | J-79       | J-39      | 10.0             | CIP      | 80.0                | 255                         | 1.04               | 0.001                           | Open             |
| P-81  | 527                        | J-40       | J-98      | 6.0              | PVC      | 145.0               | 39                          | 0.44               | 0.000                           | Open             |
| P-82  | 252                        | J-39       | J-40      | 10.0             | CIP      | 80.0                | 232                         | 0.95               | 0.001                           | Open             |
| P-83  | 1,153                      | J-45       | J-57      | 10.0             | PVC      | 145.0               | 137                         | 0.56               | 0.000                           | Open             |
| P-84  | 264                        | J-40       | J-45      | 10.0             | CIP      | 80.0                | 212                         | 0.87               | 0.001                           | Open             |
| P-85  | 781                        | J-45       | J-54      | 10.0             | PVC      | 145.0               | 62                          | 0.25               | 0.000                           | Open             |
| P-86  | 273                        | J-61       | J-66      | 2.0              | CIP      | 45.0                | 5                           | 0.53               | 0.007                           | Open             |
| P-87  | 519                        | J-54       | J-61      | 6.0              | PVC      | 145.0               | 42                          | 0.48               | 0.000                           | Open             |
| P-88  | 269                        | J-62       | J-63      | 4.0              | CIP      | 45.0                | 4                           | 0.11               | 0.000                           | Open             |
| P-89  | 268                        | J-61       | J-62      | 4.0              | Steel    | 80.0                | 41                          | 1.04               | 0.003                           | Open             |
| P-90  | 899                        | J-92       | J-103     | 4.0              | CIP      | 45.0                | 1                           | 0.03               | 0.000                           | Open             |
| P-91  | 511                        | J-62       | J-92      | 6.0              | PVC      | 145.0               | 29                          | 0.33               | 0.000                           | Open             |
| P-92  | 898                        | J-93       | J-36      | 2.0              | CIP      | 45.0                | 6                           | 0.64               | 0.009                           | Open             |
| P-93  | 475                        | J-92       | J-93      | 6.0              | PVC      | 145.0               | 16                          | 0.18               | 0.000                           | Open             |
| P-94  | 260                        | J-40       | J-46      | 6.0              | PVC      | 145.0               | 28                          | 0.32               | 0.000                           | Open             |
| P-95  | 258                        | J-45       | J-15      | 6.0              | CIP      | 45.0                | 5                           | 0.06               | 0.000                           | Open             |
| P-96  | 262                        | J-46       | J-15      | 4.0              | CIP      | 45.0                | 11                          | 0.29               | 0.001                           | Open             |
| P-97  | 262                        | J-53       | J-54      | 6.0              | CIP      | 45.0                | 16                          | 0.19               | 0.000                           | Open             |
| P-98  | 779                        | J-15       | J-53      | 6.0              | CIP      | 45.0                | 10                          | 0.12               | 0.000                           | Open             |
| P-99  | 766                        | J-61       | J-53      | 6.0              | PVC      | 145.0               | 16                          | 0.18               | 0.000                           | Open             |
| P-100 | 193                        | J-6        | J-23      | 2.0              | PVC      | 145.0               | 2                           | 0.21               | 0.000                           | Open             |
| P-101 | 30                         | J-5        | J-6       | 8.0              | PVC      | 145.0               | 15                          | 0.09               | 0.000                           | Open             |
| P-102 | 13                         | J-4        | J-5       | 6.0              | PVC      | 145.0               | 16                          | 0.18               | 0.000                           | Open             |
| P-103 | 447                        | J-84       | J-85      | 6.0              | PVC      | 145.0               | 9                           | 0.11               | 0.000                           | Open             |
| P-104 | 508                        | J-85       | J-4       | 8.0              | PVC      | 145.0               | 17                          | 0.11               | 0.000                           | Open             |
| P-105 | 703                        | J-96       | J-113     | 6.0              | CIP      | 45.0                | 38                          | 0.43               | 0.001                           | Open             |
| P-106 | 175                        | J-113      | J-69      | 6.0              | CIP      | 45.0                | 31                          | 0.36               | 0.001                           | Open             |
| P-107 | 531                        | J-69       | J-85      | 8.0              | PVC      | 145.0               | 43                          | 0.27               | 0.000                           | Open             |
| P-108 | 434                        | J-72       | J-70      | 8.0              | PVC      | 145.0               | 219                         | 1.40               | 0.001                           | Open             |
| P-109 | 518                        | J-70       | J-69      | 8.0              | PVC      | 145.0               | 32                          | 0.21               | 0.000                           | Open             |
| P-110 | 430                        | J-79       | J-77      | 6.0              | PVC      | 145.0               | 10                          | 0.11               | 0.000                           | Open             |
| P-111 | 378                        | J-77       | J-70      | 8.0              | PVC      | 145.0               | 82                          | 0.53               | 0.000                           | Open             |
| P-112 | 164                        | J-15       | J-16      | 4.0              | CIP      | 45.0                | 3                           | 0.08               | 0.000                           | Open             |
| P-113 | 521                        | J-39       | J-27      | 4.0              | Steel    | 80.0                | 5                           | 0.12               | 0.000                           | Open             |
| P-114 | 683                        | J-6        | J-99      | 8.0              | PVC      | 145.0               | 8                           | 0.05               | 0.000                           |                  |

Pipe Table - Time: 0.00 hours

| Label | Length<br>(Scaled) | Start Node | Stop Node | Diameter<br>(in) | Material         | Hazen-Williams<br>C | Flow<br>(Absolute) | Velocity<br>(ft/s) | Headloss<br>Gradient | Status (Initial) |
|-------|--------------------|------------|-----------|------------------|------------------|---------------------|--------------------|--------------------|----------------------|------------------|
|       | (ft)               |            |           |                  |                  |                     | (gpm)              |                    | (ft/ft)              |                  |
| P-115 | 265                | J-46       | J-12      | 6.0              | PVC              | 145.0               | 47                 | 0.53               | 0.000                | Open             |
| P-116 | 133                | J-85       | J-115     | 6.0              | PVC              | 145.0               | 12                 | 0.14               | 0.000                | Open             |
| P-117 | 644                | J-115      | J-4       | 6.0              | PVC              | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-118 | 146                | J-11       | J-12      | 1.0              | CU               | 145.0               | 2                  | 0.85               | 0.004                | Open             |
| P-119 | 275                | J-69       | J-19      | 6.0              | CIP              | 45.0                | 13                 | 0.15               | 0.000                | Open             |
| P-120 | 172                | J-19       | J-20      | 6.0              | PVC              | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-121 | 276                | J-70       | J-71      | 8.0              | PVC              | 145.0               | 97                 | 0.62               | 0.000                | Open             |
| P-122 | 521                | J-71       | J-19      | 6.0              | PVC              | 145.0               | 12                 | 0.13               | 0.000                | Open             |
| P-123 | 284                | J-77       | J-76      | 6.0              | PVC              | 145.0               | 65                 | 0.73               | 0.000                | Open             |
| P-124 | 379                | J-76       | J-71      | 6.0              | PVC              | 145.0               | 55                 | 0.63               | 0.000                | Open             |
| P-125 | 209                | J-27       | J-28      | 6.0              | PVC              | 145.0               | 3                  | 0.04               | 0.000                | Open             |
| P-126 | 283                | J-28       | J-76      | 6.0              | PVC              | 145.0               | 111                | 1.26               | 0.001                | Open             |
| P-127 | 204                | J-12       | J-26      | 6.0              | PVC              | 145.0               | 52                 | 0.59               | 0.000                | Open             |
| P-128 | 273                | J-28       | J-26      | 6.0              | PVC              | 145.0               | 61                 | 0.69               | 0.000                | Open             |
| P-129 | 261                | J-26       | J-49      | 6.0              | PVC              | 145.0               | 13                 | 0.15               | 0.000                | Open             |
| P-130 | 287                | J-49       | J-78      | 6.0              | PVC              | 145.0               | 6                  | 0.07               | 0.000                | Open             |
| P-131 | 284                | J-71       | J-64      | 6.0              | PVC              | 145.0               | 22                 | 0.25               | 0.000                | Open             |
| P-132 | 340                | J-26       | J-58      | 6.0              | PVC              | 145.0               | 8                  | 0.09               | 0.000                | Open             |
| P-133 | 346                | J-28       | J-13      | 6.0              | PVC              | 145.0               | 41                 | 0.47               | 0.000                | Open             |
| P-134 | 273                | J-58       | J-13      | 6.0              | PVC              | 145.0               | 35                 | 0.40               | 0.000                | Open             |
| P-135 | 345                | J-49       | J-59      | 6.0              | PVC              | 145.0               | 2                  | 0.03               | 0.000                | Open             |
| P-136 | 263                | J-58       | J-59      | 6.0              | PVC              | 145.0               | 16                 | 0.19               | 0.000                | Open             |
| P-137 | 344                | J-78       | J-75      | 6.0              | PVC              | 145.0               | 2                  | 0.02               | 0.000                | Open             |
| P-138 | 282                | J-59       | J-75      | 6.0              | PVC              | 145.0               | 6                  | 0.07               | 0.000                | Open             |
| P-139 | 162                | J-13       | J-14      | 2.0              | PVC              | 145.0               | 2                  | 0.21               | 0.000                | Open             |
| P-140 | 272                | J-64       | J-65      | 6.0              | PVC              | 145.0               | 6                  | 0.07               | 0.000                | Open             |
| P-141 | 661                | J-64       | J-29      | 6.0              | PVC              | 145.0               | 10                 | 0.11               | 0.000                | Open             |
| P-142 | 368                | J-29       | J-65      | 2.0              | Galvanized Steel | 120.0               | 1                  | 0.06               | 0.000                | Open             |
| P-143 | 702                | J-19       | J-116     | 6.0              | CIP              | 45.0                | 10                 | 0.12               | 0.000                | Open             |
| P-144 | 100                | J-116      | J-102     | 6.0              | CIP              | 45.0                | 2                  | 0.02               | 0.000                | Open             |
| P-145 | 214                | J-29       | J-30      | 6.0              | PVC              | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-146 | 533                | J-58       | J-90      | 6.0              | PVC              | 145.0               | 5                  | 0.06               | 0.000                | Open             |
| P-147 | 438                | J-75       | J-91      | 6.0              | PVC              | 145.0               | 1                  | 0.01               | 0.000                | Open             |
| P-148 | 708                | J-59       | J-91      | 6.0              | PVC              | 145.0               | 4                  | 0.05               | 0.000                | Open             |

| Label | Elevation<br>(ft) | Zone          | Demand Collection                        | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|------------------------------------------|-----------------|----------------------------|-------------------|
| J-1   | 5,090.55          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,260.41                   | 73                |
| J-2   | 5,074.99          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,260.54                   | 80                |
| J-3   | 5,074.98          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,260.54                   | 80                |
| J-4   | 5,088.83          | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,261.53                   | 75                |
| J-5   | 5,088.97          | <none></none> | <collection: 1="" item=""></collection:> | 1               | 5,261.53                   | 75                |
| J-6   | 5,088.48          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,261.53                   | 75                |
| J-7   | 5,118.08          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,260.70                   | 62                |
| J-8   | 5,120.11          | <none></none> | <collection: 1="" item=""></collection:> | 9               | 5,260.71                   | 61                |
| J-9   | 5,091.56          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,260.24                   | 73                |
| J-10  | 5,097.08          | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,260.15                   | 71                |
| J-11  | 5,048.08          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,260.38                   | 92                |
| J-12  | 5,058.45          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,260.97                   | 88                |
| J-13  | 5,107.71          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,261.06                   | 66                |
| J-14  | 5,091.23          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,261.04                   | 73                |
| J-15  | 5,039.74          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,260.67                   | 96                |
| J-16  | 5,041.86          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,260.65                   | 95                |
| J-17  | 5,088.75          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,262.11                   | 75                |
| J-18  | 5,096.97          | <none></none> | <collection: 1="" item=""></collection:> | 14              | 5,262.21                   | 71                |
| J-19  | 5,087.49          | <none></none> | <collection: 1="" item=""></collection:> | 10              | 5,261.51                   | 75                |
| J-20  | 5,087.59          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,261.51                   | 75                |
| J-21  | 5,064.77          | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,260.29                   | 85                |
| J-22  | 5,061.85          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,260.42                   | 86                |
| J-23  | 5,090.66          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,261.51                   | 74                |
| J-24  | 5,099.33          | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,260.27                   | 70                |
| J-25  | 5,107.11          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,260.42                   | 66                |
| J-26  | 5,067.27          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,261.03                   | 84                |
| J-27  | 5,069.96          | <none></none> | <collection: 1="" item=""></collection:> | 8               | 5,261.12                   | 83                |
| J-28  | 5,087.30          | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,261.12                   | 75                |
| J-29  | 5,097.72          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,261.50                   | 71                |
| J-30  | 5,095.31          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,261.50                   | 72                |
| J-31  | 5,050.18          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,261.15                   | 91                |
| J-32  | 5,061.81          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,262.08                   | 87                |
| J-33  | 5,058.61          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,259.19                   | 87                |
| J-34  | 5,049.85          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,260.11                   | 91                |
| J-35  | 5,010.67          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,242.79                   | 100               |
| J-36  | 5,009.18          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,251.25                   | 105               |
| J-37  | 5,106.14          | <none></none> | <collection: 1="" item=""></collection:> | 11              | 5,260.53                   | 67                |

| Label | Elevation (ft) | Zone          | Demand Collection                         | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|----------------|---------------|-------------------------------------------|-----------------|----------------------------|-------------------|
| J-38  | 5,263.66       | Tank Node     | <collection: 0="" items=""></collection:> | 0               | 5,276.71                   | 6                 |
| J-39  | 5,048.66       | <none></none> | <collection: 1="" item=""></collection:>  | 10              | 5,261.15                   | 92                |
| J-40  | 5,041.60       | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,260.90                   | 95                |
| J-41  | 5,056.26       | <none></none> | <collection: 1="" item=""></collection:>  | 14              | 5,261.14                   | 89                |
| J-42  | 5,092.61       | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,260.41                   | 73                |
| J-43  | 5,078.04       | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,260.43                   | 79                |
| J-44  | 5,070.00       | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,260.46                   | 82                |
| J-45  | 5,037.84       | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,260.67                   | 96                |
| J-46  | 5,042.76       | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,260.92                   | 94                |
| J-47  | 5,051.79       | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,260.30                   | 90                |
| J-48  | 5,088.63       | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,260.54                   | 74                |
| J-49  | 5,042.46       | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,261.02                   | 95                |
| J-50  | 5,106.21       | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,260.41                   | 67                |
| J-51  | 5,097.31       | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,260.41                   | 71                |
| J-52  | 5,081.27       | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,260.43                   | 78                |
| J-53  | 5,029.00       | <none></none> | <collection: 1="" item=""></collection:>  | 10              | 5,260.58                   | 100               |
| J-54  | 5,027.73       | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,260.65                   | 101               |
| J-55  | 5,038.43       | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,260.42                   | 96                |
| J-56  | 5,029.39       | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,260.42                   | 100               |
| J-57  | 5,066.97       | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,260.53                   | 84                |
| J-58  | 5,068.85       | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,261.03                   | 83                |
| J-59  | 5,041.81       | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,261.02                   | 95                |
| J-60  | 5,106.38       | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,260.42                   | 67                |
| J-61  | 5,024.18       | <none></none> | <collection: 1="" item=""></collection:>  | 13              | 5,260.56                   | 102               |
| J-62  | 5,021.41       | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,259.62                   | 103               |
| J-63  | 5,020.41       | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,259.58                   | 103               |
| J-64  | 5,108.06       | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,261.50                   | 66                |
| J-65  | 5,121.04       | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,261.50                   | 61                |
| J-66  | 5,023.71       | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,258.75                   | 102               |
| J-67  | 5,032.50       | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,260.38                   | 99                |
| J-68  | 5,025.43       | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,260.17                   | 102               |
| J-69  | 5,078.56       | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,261.56                   | 79                |
| J-70  | 5,073.98       | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,261.57                   | 81                |
| J-71  | 5,091.91       | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,261.52                   | 73                |
| J-72  | 5,066.97       | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,261.96                   | 84                |
| J-73  | 5,131.56       | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,262.20                   | 57                |
| J-74  | 5,137.70       | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,258.13                   | 52                |

| Label | Elevation<br>(ft) | Zone          | Demand Collection                         | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|-------------------------------------------|-----------------|----------------------------|-------------------|
| J-75  | 5,034.40          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,261.02                   | 98                |
| J-76  | 5,101.86          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,261.41                   | 69                |
| J-77  | 5,075.31          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,261.52                   | 81                |
| J-78  | 5,036.50          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,261.02                   | 97                |
| J-79  | 5,057.50          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,261.51                   | 88                |
| J-80  | 5,100.76          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,260.41                   | 69                |
| J-81  | 5,087.54          | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,260.41                   | 75                |
| J-82  | 5,056.67          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,260.42                   | 88                |
| J-83  | 5,045.80          | <none></none> | <collection: 1="" item=""></collection:>  | 2               | 5,260.42                   | 93                |
| J-84  | 5,081.01          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,261.53                   | 78                |
| J-85  | 5,082.50          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,261.54                   | 77                |
| J-86  | 5,119.55          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,260.44                   | 61                |
| J-87  | 5,111.43          | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,260.41                   | 64                |
| J-88  | 5,063.58          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,260.42                   | 85                |
| J-89  | 5,030.14          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,260.39                   | 100               |
| J-90  | 5,056.93          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,261.03                   | 88                |
| J-91  | 5,027.47          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,261.02                   | 101               |
| J-92  | 5,015.59          | <none></none> | <collection: 1="" item=""></collection:>  | 13              | 5,259.58                   | 106               |
| J-93  | 5,012.00          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,259.57                   | 107               |
| J-94  | 5,031.81          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,260.39                   | 99                |
| J-95  | 5,071.86          | <none></none> | <collection: 1="" item=""></collection:>  | 10              | 5,260.48                   | 82                |
| J-96  | 5,110.08          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,262.57                   | 66                |
| J-97  | 5,018.60          | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,260.39                   | 105               |
| J-98  | 5,042.61          | <none></none> | <collection: 1="" item=""></collection:>  | 17              | 5,260.82                   | 94                |
| J-99  | 5,069.96          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,261.53                   | 83                |
| J-100 | 5,018.92          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,260.38                   | 104               |
| J-101 | 5,008.54          | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,260.37                   | 109               |
| J-102 | 5,119.06          | <none></none> | <collection: 1="" item=""></collection:>  | 2               | 5,261.43                   | 62                |
| J-103 | 5,012.39          | <none></none> | <collection: 1="" item=""></collection:>  | 1               | 5,259.57                   | 107               |
| J-104 | 5,141.69          | <none></none> | <collection: 0="" items=""></collection:> | 0               | 5,267.42                   | 54                |
| J-105 | 5,110.65          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,264.45                   | 67                |
| J-106 | 5,093.82          | <none></none> | <collection: 1="" item=""></collection:>  | 2               | 5,260.41                   | 72                |
| J-107 | 5,266.76          | Tank Node     | <collection: 0="" items=""></collection:> | 0               | 5,276.83                   | 4                 |
| J-108 | 5,130.43          | <none></none> | <collection: 0="" items=""></collection:> | 0               | 5,270.05                   | 60                |
| J-110 | 5,119.47          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,260.44                   | 61                |
| J-112 | 5,132.34          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,261.76                   | 56                |
| J-113 | 5,080.08          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,261.71                   | 79                |

#### **Junction Table - Time: 0.00 hours**

| Label | Elevation<br>(ft) | Zone          | Demand Collection                        | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|------------------------------------------|-----------------|----------------------------|-------------------|
| J-114 | 5,050.04          | <none></none> | <collection: 1="" item=""></collection:> | 1               | 5,260.41                   | 91                |
| J-115 | 5,082.63          | <none></none> | <collection: 1="" item=""></collection:> | 8               | 5,261.53                   | 77                |
| J-116 | 5,121.37          | <none></none> | <collection: 1="" item=""></collection:> | 8               | 5,261.43                   | 61                |
| J-117 | 5,067.58          | <none></none> | <collection: 1="" item=""></collection:> | 1               | 5,260.41                   | 83                |
| J-118 | 5,018.00          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,260.37                   | 105               |

#### Tank Table - Time: 0.00 hours

| Label | Elevation<br>(Base)<br>(ft) | Elevation<br>(Minimum)<br>(ft) | Elevation<br>(Initial)<br>(ft) | Elevation<br>(Maximum)<br>(ft) | Flow (Out net)<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Elevation<br>(ft) | Diameter<br>(ft) | Volume Full<br>(Calculated)<br>(MG) | Percent Full<br>(%) |
|-------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------|----------------------------|-------------------|------------------|-------------------------------------|---------------------|
| T-1   | 5,267.00                    | 5,267.00                       | 5,277.00                       | 5,282.00                       | 672                     | 5,277.00                   | 5,271.27          | 80.00            | 0.56                                | 66.7                |

| Label | Length   | Start Node | Stop Node | Diameter | Material | Hazen-Williams | Flow       | Velocity | Headloss | Status (Initial) |
|-------|----------|------------|-----------|----------|----------|----------------|------------|----------|----------|------------------|
|       | (Scaled) |            |           | (in)     |          | С              | (Absolute) | (ft/s)   | Gradient | ( ::-)           |
|       | (ft)     |            |           |          |          |                | (gpm)      |          | (ft/ft)  |                  |
| P-1   | 940      | J-1        | J-106     | 6.0      | PVC      | 145.0          | 1          | 0.02     | 0.000    | Open             |
| P-4   | 855      | J-106      | J-1       | 6.0      | PVC      | 145.0          | 1          | 0.01     | 0.000    | Open             |
| P-6   | 532      | J-88       | J-117     | 6.0      | PVC      | 145.0          | 8          | 0.09     | 0.000    | Open             |
| P-7   | 1,204    | J-117      | J-1       | 6.0      | PVC      | 145.0          | 7          | 0.08     | 0.000    | Open             |
| P-8   | 518      | J-88       | J-82      | 6.0      | PVC      | 145.0          | 0          | 0.00     | 0.000    | Open             |
| P-9   | 299      | J-82       | J-83      | 6.0      | PVC      | 145.0          | 3          | 0.03     | 0.000    | Open             |
| P-10  | 372      | J-88       | J-43      | 6.0      | PVC      | 145.0          | 19         | 0.22     | 0.000    | Open             |
| P-11  | 257      | J-43       | J-44      | 6.0      | PVC      | 145.0          | 43         | 0.49     | 0.000    | Open             |
| P-12  | 374      | J-22       | J-82      | 6.0      | PVC      | 145.0          | 9          | 0.10     | 0.000    | Open             |
| P-13  | 268      | J-44       | J-22      | 6.0      | PVC      | 145.0          | 48         | 0.54     | 0.000    | Open             |
| P-14  | 294      | J-22       | J-114     | 6.0      | PVC      | 145.0          | 26         | 0.30     | 0.000    | Open             |
| P-15  | 476      | J-114      | J-94      | 6.0      | PVC      | 145.0          | 25         | 0.28     | 0.000    | Open             |
| P-16  | 521      | J-94       | J-97      | 6.0      | PVC      | 145.0          | 4          | 0.05     | 0.000    | Open             |
| P-17  | 172      | J-21       | J-22      | 2.0      | PVC      | 145.0          | 7          | 0.69     | 0.001    | Open             |
| P-18  | 298      | J-80       | J-81      | 4.0      | PVC      | 145.0          | 4          | 0.10     | 0.000    | Open             |
| P-19  | 371      | J-80       | J-87      | 4.0      | PVC      | 145.0          | 4          | 0.10     | 0.000    | Open             |
| P-20  | 374      | J-51       | J-80      | 6.0      | PVC      | 145.0          | 6          | 0.06     | 0.000    | Open             |
| P-21  | 870      | J-43       | J-51      | 6.0      | PVC      | 145.0          | 15         | 0.17     | 0.000    | Open             |
| P-22  | 261      | J-50       | J-51      | 6.0      | PVC      | 145.0          | 0          | 0.00     | 0.000    | Open             |
| P-23  | 114      | J-9        | J-10      | 2.0      | CU       | 145.0          | 7          | 0.69     | 0.001    | Open             |
| P-24  | 519      | J-95       | J-44      | 10.0     | PVC      | 145.0          | 95         | 0.39     | 0.000    | Open             |
| P-25  | 511      | J-94       | J-67      | 6.0      | PVC      | 145.0          | 9          | 0.10     | 0.000    | Open             |
| P-26  | 517      | J-95       | J-47      | 4.0      | Steel    | 80.0           | 15         | 0.38     | 0.001    | Open             |
| P-27  | 275      | J-67       | J-68      | 2.0      | PVC      | 145.0          | 7          | 0.69     | 0.001    | Open             |
| P-28  | 173      | T-1        | J-107     | 12.0     | PVC      | 145.0          | 864        | 2.45     | 0.002    | Open             |
| P-29  | 115      | J-107      | J-38      | 12.0     | PVC      | 145.0          | 864        | 2.45     | 0.002    | Open             |
| P-30  | 17       | J-86       | J-110     | 4.0      | PVC      | 145.0          | 17         | 0.44     | 0.000    | Open             |
| P-31  | 499      | J-110      | J-80      | 4.0      | PVC      | 145.0          | 10         | 0.27     | 0.000    | Open             |
| P-32  | 263      | J-50       | J-60      | 4.0      | PVC      | 145.0          | 5          | 0.13     | 0.000    | Open             |
| P-33  | 368      | J-60       | J-86      | 4.0      | PVC      | 145.0          | 12         | 0.30     | 0.000    | Open             |
| P-34  | 257      | J-42       | J-9       | 4.0      | CIP      | 45.0           | 12         | 0.31     | 0.001    | Open             |
| P-35  | 355      | J-42       | J-60      | 6.0      | PVC      | 145.0          | 15         | 0.17     | 0.000    | Open             |
| P-36  | 774      | J-52       | J-43      | 6.0      | CIP      | 45.0           | 3          | 0.04     | 0.000    | Open             |
| P-37  | 261      | J-52       | J-42      | 4.0      | CIP      | 45.0           | 4          | 0.10     | 0.000    | Open             |
| P-38  | 260      | J-34       | J-47      | 2.0      | PVC      | 145.0          | 7          | 0.69     | 0.001    | Open             |
| P-39  | 225      | J-33       | J-34      | 1.0      | CU       | 145.0          | 3          | 1.10     | 0.006    | Open             |
| P-40  | 538      | J-100      | J-118     | 6.0      | PVC      | 145.0          | 7          | 0.08     | 0.000    | Open             |

| Label | Length   | Start Node | Stop Node | Diameter | Material | Hazen-Williams | Flow       | Velocity | Headloss | Status (Initial) |
|-------|----------|------------|-----------|----------|----------|----------------|------------|----------|----------|------------------|
|       | (Scaled) |            |           | (in)     |          | С              | (Absolute) | (ft/s)   | Gradient |                  |
|       | (ft)     |            |           |          |          |                | (gpm)      |          | (ft/ft)  | -                |
| P-41  | 559      | J-118      | J-101     | 6.0      | PVC      | 145.0          | 4          | 0.05     | 0.000    | Open             |
| P-42  | 270      | J-60       | J-25      | 6.0      | PVC      | 145.0          | 14         | 0.15     | 0.000    | Open             |
| P-43  | 202      | J-24       | J-25      | 2.0      | PVC      | 145.0          | 7          | 0.69     | 0.001    | Open             |
| P-44  | 537      | J-89       | J-67      | 4.0      | PVC      | 145.0          | 4          | 0.11     | 0.000    | Open             |
| P-45  | 785      | J-100      | J-89      | 6.0      | PVC      | 145.0          | 16         | 0.18     | 0.000    | Open             |
| P-46  | 3,376    | J-38       | J-108     | 12.0     | Steel    | 100.0          | 864        | 2.45     | 0.003    | Open             |
| P-47  | 511      | J-8        | J-86      | 4.0      | PVC      | 145.0          | 34         | 0.87     | 0.001    | Open             |
| P-48  | 50       | J-7        | J-8       | 6.0      | CIP      | 45.0           | 21         | 0.24     | 0.000    | Open             |
| P-49  | 246      | J-37       | J-25      | 4.0      | AC       | 120.0          | 26         | 0.65     | 0.001    | Open             |
| P-50  | 327      | J-37       | J-7       | 4.0      | PVC      | 145.0          | 34         | 0.87     | 0.001    | Open             |
| P-51  | 352      | J-48       | J-37      | 4.0      | PVC      | 145.0          | 6          | 0.16     | 0.000    | Open             |
| P-52  | 520      | J-3        | J-52      | 6.0      | CIP      | 45.0           | 18         | 0.21     | 0.000    | Open             |
| P-53  | 260      | J-3        | J-48      | 4.0      | PVC      | 145.0          | 2          | 0.04     | 0.000    | Open             |
| P-54  | 3        | J-2        | J-3       | 6.0      | CIP      | 45.0           | 21         | 0.23     | 0.000    | Open             |
| P-55  | 777      | J-57       | J-95      | 10.0     | PVC      | 145.0          | 123        | 0.50     | 0.000    | Open             |
| P-56  | 263      | J-57       | J-2       | 4.0      | CIP      | 45.0           | 2          | 0.06     | 0.000    | Open             |
| P-57  | 530      | J-89       | J-55      | 6.0      | PVC      | 145.0          | 31         | 0.35     | 0.000    | Open             |
| P-58  | 779      | J-57       | J-55      | 6.0      | PVC      | 145.0          | 47         | 0.54     | 0.000    | Open             |
| P-59  | 262      | J-55       | J-56      | 6.0      | PVC      | 145.0          | 8          | 0.09     | 0.000    | Open             |
| P-60  | 471      | J-8        | J-112     | 6.0      | CIP      | 45.0           | 67         | 0.76     | 0.004    | Open             |
| P-61  | 148      | J-112      | J-73      | 6.0      | CIP      | 45.0           | 78         | 0.88     | 0.005    | Open             |
| P-62  | 278      | J-73       | J-74      | 1.0      | CU       | 145.0          | 5          | 2.19     | 0.023    | Open             |
| P-63  | 2,651    | J-108      | J-104     | 12.0     | PVC      | 145.0          | 864        | 2.45     | 0.002    | Open             |
| P-64  | 238      | J-35       | J-36      | 1.0      | CIP      | 45.0           | 3          | 1.10     | 0.056    | Open             |
| P-65  | 631      | J-41       | J-48      | 4.0      | CIP      | 45.0           | 15         | 0.37     | 0.002    | Open             |
| P-66  | 627      | J-98       | J-2       | 6.0      | CIP      | 45.0           | 28         | 0.32     | 0.001    | Open             |
| P-67  | 2,996    | J-104      | J-105     | 12.0     | PVC      | 145.0          | 864        | 2.45     | 0.002    | Open             |
| P-68  | 555      | J-73       | J-105     | 6.0      | CIP      | 45.0           | 93         | 1.05     | 0.006    | Open             |
| P-69  | 9        | J-105      | J-96      | 6.0      | CIP      | 45.0           | 762        | 8.65     | 0.320    | Open             |
| P-70  | 717      | J-18       | J-7       | 4.0      | CIP      | 45.0           | 22         | 0.57     | 0.003    | Open             |
| P-71  | 519      | J-18       | J-96      | 12.0     | PVC      | 145.0          | 706        | 2.00     | 0.001    | Open             |
| P-72  | 171      | J-17       | J-18      | 12.0     | PVC      | 145.0          | 659        | 1.87     | 0.001    | Open             |
| P-73  | 628      | J-32       | J-18      | 4.0      | CIP      | 45.0           | 7          | 0.17     | 0.000    | Open             |
| P-74  | 461      | J-32       | J-17      | 6.0      | PVC      | 145.0          | 35         | 0.40     | 0.000    | Open             |
| P-75  | 252      | J-31       | J-41      | 6.0      | PVC      | 145.0          | 32         | 0.36     | 0.000    | Open             |
| P-76  | 221      | J-31       | J-32      | 4.0      | CIP      | 45.0           | 32         | 0.83     | 0.007    | Open             |
| P-77  | 277      | J-72       | J-17      | 12.0     |          | 145.0          | 619        | 1.75     | 0.001    | Open             |

| Label | Length   | Start Node | Stop Node | Diameter | Material | Hazen-Williams | Flow       | Velocity | Headloss | Status (Initial) |
|-------|----------|------------|-----------|----------|----------|----------------|------------|----------|----------|------------------|
|       | (Scaled) |            |           | (in)     |          | С              | (Absolute) | (ft/s)   | Gradient | , ,              |
|       | (ft)     |            |           | . ,      |          |                | (gpm)      |          | (ft/ft)  |                  |
| P-78  | 380      | J-72       | J-79      | 10.0     | CIP      | 80.0           | 325        | 1.33     | 0.002    | Open             |
| P-79  | 278      | J-39       | J-31      | 6.0      | PVC      | 145.0          | 9          | 0.10     | 0.000    | Open             |
| P-80  | 298      | J-79       | J-39      | 10.0     | CIP      | 80.0           | 327        | 1.34     | 0.002    | Open             |
| P-81  | 527      | J-40       | J-98      | 6.0      | PVC      | 145.0          | 50         | 0.57     | 0.000    | Open             |
| P-82  | 252      | J-39       | J-40      | 10.0     | CIP      | 80.0           | 299        | 1.22     | 0.002    | Open             |
| P-83  | 1,153    | J-45       | J-57      | 10.0     | PVC      | 145.0          | 176        | 0.72     | 0.000    | Open             |
| P-84  | 264      | J-40       | J-45      | 10.0     | CIP      | 80.0           | 273        | 1.11     | 0.001    | Open             |
| P-85  | 781      | J-45       | J-54      | 10.0     | PVC      | 145.0          | 80         | 0.32     | 0.000    | Open             |
| P-86  | 273      | J-61       | J-66      | 2.0      | CIP      | 45.0           | 7          | 0.69     | 0.011    | Open             |
| P-87  | 519      | J-54       | J-61      | 6.0      | PVC      | 145.0          | 54         | 0.62     | 0.000    | Open             |
| P-88  | 269      | J-62       | J-63      | 4.0      | CIP      | 45.0           | 5          | 0.14     | 0.000    | Open             |
| P-89  | 268      | J-61       | J-62      | 4.0      | Steel    | 80.0           | 52         | 1.34     | 0.006    | Open             |
| P-90  | 899      | J-92       | J-103     | 4.0      | CIP      | 45.0           | 1          | 0.03     | 0.000    | Open             |
| P-91  | 511      | J-62       | J-92      | 6.0      | PVC      | 145.0          | 38         | 0.43     | 0.000    | Open             |
| P-92  | 898      | J-93       | J-36      | 2.0      | CIP      | 45.0           | 8          | 0.82     | 0.015    | Open             |
| P-93  | 475      | J-92       | J-93      | 6.0      | PVC      | 145.0          | 20         | 0.23     | 0.000    | Open             |
| P-94  | 260      | J-40       | J-46      | 6.0      | PVC      | 145.0          | 36         | 0.41     | 0.000    | Open             |
| P-95  | 258      | J-45       | J-15      | 6.0      | CIP      | 45.0           | 6          | 0.07     | 0.000    | Open             |
| P-96  | 262      | J-46       | J-15      | 4.0      | CIP      | 45.0           | 15         | 0.38     | 0.002    | Open             |
| P-97  | 262      | J-53       | J-54      | 6.0      | CIP      | 45.0           | 21         | 0.24     | 0.000    | Open             |
| P-98  | 779      | J-15       | J-53      | 6.0      | CIP      | 45.0           | 13         | 0.15     | 0.000    | Open             |
| P-99  | 766      | J-61       | J-53      | 6.0      | PVC      | 145.0          | 21         | 0.23     | 0.000    | Open             |
| P-100 | 193      | J-6        | J-23      | 2.0      | PVC      | 145.0          | 3          | 0.27     | 0.000    | Open             |
| P-101 | 30       | J-5        | J-6       | 8.0      | PVC      | 145.0          | 19         | 0.12     | 0.000    | Open             |
| P-102 | 13       | J-4        | J-5       | 6.0      | PVC      | 145.0          | 20         | 0.23     | 0.000    | Open             |
| P-103 | 447      | J-84       | J-85      | 6.0      | PVC      | 145.0          | 12         | 0.14     | 0.000    | Open             |
| P-104 | 508      | J-85       | J-4       | 8.0      | PVC      | 145.0          | 22         | 0.14     | 0.000    | Open             |
| P-105 | 703      | J-96       | J-113     | 6.0      | CIP      | 45.0           | 48         | 0.55     | 0.002    | Open             |
| P-106 | 175      | J-113      | J-69      | 6.0      | CIP      | 45.0           | 40         | 0.46     | 0.001    | Open             |
| P-107 | 531      | J-69       | J-85      | 8.0      | PVC      | 145.0          | 55         | 0.35     | 0.000    | Open             |
| P-108 | 434      | J-72       | J-70      | 8.0      | PVC      | 145.0          | 282        | 1.80     | 0.001    | Open             |
| P-109 | 518      | J-70       | J-69      | 8.0      | PVC      | 145.0          | 41         | 0.26     | 0.000    | Open             |
| P-110 | 430      | J-79       | J-77      | 6.0      | PVC      | 145.0          | 12         | 0.14     | 0.000    | Open             |
| P-111 | 378      | J-77       | J-70      | 8.0      | PVC      | 145.0          | 106        | 0.68     | 0.000    | Open             |
| P-112 | 164      | J-15       | J-16      | 4.0      | CIP      | 45.0           | 4          | 0.10     | 0.000    | Open             |
| P-113 | 521      | J-39       | J-27      | 4.0      | Steel    | 80.0           | 6          | 0.16     | 0.000    | Open             |
| P-114 | 683      | J-6        | J-99      | 8.0      | PVC      | 145.0          | 11         | 0.07     | 0.000    | Open             |

Pipe Table - Time: 0.00 hours

| Label | Length   | Start Node | Stop Node | Diameter | Material         | Hazen-Williams | Flow       | Velocity | Headloss | Status (Initial) |
|-------|----------|------------|-----------|----------|------------------|----------------|------------|----------|----------|------------------|
|       | (Scaled) |            |           | (in)     |                  | С              | (Absolute) | (ft/s)   | Gradient |                  |
|       | (ft)     |            |           |          |                  |                | (gpm)      |          | (ft/ft)  |                  |
| P-115 | 265      | J-46       | J-12      | 6.0      | PVC              | 145.0          | 60         | 0.68     | 0.000    | Open             |
| P-116 | 133      | J-85       | J-115     | 6.0      | PVC              | 145.0          | 16         | 0.18     | 0.000    | Open             |
| P-117 | 644      | J-115      | J-4       | 6.0      | PVC              | 145.0          | 5          | 0.06     | 0.000    | Open             |
| P-118 | 146      | J-11       | J-12      | 1.0      | CU               | 145.0          | 3          | 1.10     | 0.006    | Open             |
| P-119 | 275      | J-69       | J-19      | 6.0      | CIP              | 45.0           | 17         | 0.20     | 0.000    | Open             |
| P-120 | 172      | J-19       | J-20      | 6.0      | PVC              | 145.0          | 5          | 0.06     | 0.000    | Open             |
| P-121 | 276      | J-70       | J-71      | 8.0      | PVC              | 145.0          | 125        | 0.80     | 0.000    | Open             |
| P-122 | 521      | J-71       | J-19      | 6.0      | PVC              | 145.0          | 15         | 0.17     | 0.000    | Open             |
| P-123 | 284      | J-77       | J-76      | 6.0      | PVC              | 145.0          | 83         | 0.94     | 0.001    | Open             |
| P-124 | 379      | J-76       | J-71      | 6.0      | PVC              | 145.0          | 71         | 0.81     | 0.000    | Open             |
| P-125 | 209      | J-27       | J-28      | 6.0      | PVC              | 145.0          | 4          | 0.05     | 0.000    | Open             |
| P-126 | 283      | J-28       | J-76      | 6.0      | PVC              | 145.0          | 142        | 1.61     | 0.002    | Open             |
| P-127 | 204      | J-12       | J-26      | 6.0      | PVC              | 145.0          | 67         | 0.76     | 0.000    | Open             |
| P-128 | 273      | J-28       | J-26      | 6.0      | PVC              | 145.0          | 78         | 0.89     | 0.001    | Open             |
| P-129 | 261      | J-26       | J-49      | 6.0      | PVC              | 145.0          | 16         | 0.19     | 0.000    | Open             |
| P-130 | 287      | J-49       | J-78      | 6.0      | PVC              | 145.0          | 8          | 0.09     | 0.000    | Open             |
| P-131 | 284      | J-71       | J-64      | 6.0      | PVC              | 145.0          | 28         | 0.32     | 0.000    | Open             |
| P-132 | 340      | J-26       | J-58      | 6.0      | PVC              | 145.0          | 10         | 0.12     | 0.000    | Open             |
| P-133 | 346      | J-28       | J-13      | 6.0      | PVC              | 145.0          | 53         | 0.60     | 0.000    | Open             |
| P-134 | 273      | J-58       | J-13      | 6.0      | PVC              | 145.0          | 45         | 0.51     | 0.000    | Open             |
| P-135 | 345      | J-49       | J-59      | 6.0      | PVC              | 145.0          | 3          | 0.03     | 0.000    | Open             |
| P-136 | 263      | J-58       | J-59      | 6.0      | PVC              | 145.0          | 21         | 0.24     | 0.000    | Open             |
| P-137 | 344      | J-78       | J-75      | 6.0      | PVC              | 145.0          | 3          | 0.03     | 0.000    | Open             |
| P-138 | 282      | J-59       | J-75      | 6.0      | PVC              | 145.0          | 8          | 0.09     | 0.000    | Open             |
| P-139 | 162      | J-13       | J-14      | 2.0      | PVC              | 145.0          | 3          | 0.27     | 0.000    | Open             |
| P-140 | 272      | J-64       | J-65      | 6.0      | PVC              | 145.0          | 8          | 0.09     | 0.000    | Open             |
| P-141 | 661      | J-64       | J-29      | 6.0      | PVC              | 145.0          | 12         | 0.14     | 0.000    | Open             |
| P-142 | 368      | J-29       | J-65      | 2.0      | Galvanized Steel | 120.0          | 1          | 0.10     | 0.000    | Open             |
| P-143 | 702      | J-19       | J-116     | 6.0      | CIP              | 45.0           | 13         | 0.15     | 0.000    | Open             |
| P-144 | 100      | J-116      | J-102     | 6.0      | CIP              | 45.0           | 3          | 0.03     | 0.000    | Open             |
| P-145 | 214      | J-29       | J-30      | 6.0      | PVC              | 145.0          | 5          | 0.06     | 0.000    | Open             |
| P-146 | 533      | J-58       | J-90      | 6.0      | PVC              | 145.0          | 7          | 0.08     | 0.000    | Open             |
| P-147 | 438      | J-75       | J-91      | 6.0      | PVC              | 145.0          | 2          | 0.02     | 0.000    | Open             |
| P-148 | 708      | J-59       | J-91      | 6.0      | PVC              | 145.0          | 5          | 0.06     | 0.000    | Open             |

| Label | Elevation | Zone          | Demand Collection                        | Demand | Hydraulic | Pressure |
|-------|-----------|---------------|------------------------------------------|--------|-----------|----------|
|       | (ft)      |               |                                          | (gpm)  | Grade     | (psi)    |
|       |           |               |                                          |        | (ft)      |          |
| J-1   | 5,090.55  | <none></none> | <collection: 1="" item=""></collection:> | 4      | 5,250.58  | 69       |
| J-2   | 5,074.99  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,250.78  | 76       |
| J-3   | 5,074.98  | <none></none> | <collection: 1="" item=""></collection:> | 4      | 5,250.78  | 76       |
| J-4   | 5,088.83  | <none></none> | <collection: 1="" item=""></collection:> | 7      | 5,252.36  | 71       |
| J-5   | 5,088.97  | <none></none> | <collection: 1="" item=""></collection:> | 1      | 5,252.36  | 71       |
| J-6   | 5,088.48  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,252.36  | 71       |
| J-7   | 5,118.08  | <none></none> | <collection: 1="" item=""></collection:> | 9      | 5,251.04  | 58       |
| J-8   | 5,120.11  | <none></none> | <collection: 1="" item=""></collection:> | 12     | 5,251.06  | 57       |
| J-9   | 5,091.56  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,250.30  | 69       |
| J-10  | 5,097.08  | <none></none> | <collection: 1="" item=""></collection:> | 7      | 5,250.17  | 66       |
| J-11  | 5,048.08  | <none></none> | <collection: 1="" item=""></collection:> | 3      | 5,250.53  | 88       |
| J-12  | 5,058.45  | <none></none> | <collection: 1="" item=""></collection:> | 4      | 5,251.48  | 84       |
| J-13  | 5,107.71  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,251.62  | 62       |
| J-14  | 5,091.23  | <none></none> | <collection: 1="" item=""></collection:> | 3      | 5,251.58  | 69       |
| J-15  | 5,039.74  | <none></none> | <collection: 1="" item=""></collection:> | 4      | 5,250.98  | 91       |
| J-16  | 5,041.86  | <none></none> | <collection: 1="" item=""></collection:> | 4      | 5,250.96  | 90       |
| J-17  | 5,088.75  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,253.29  | 71       |
| J-18  | 5,096.97  | <none></none> | <collection: 1="" item=""></collection:> | 17     | 5,253.45  | 68       |
| J-19  | 5,087.49  | <none></none> | <collection: 1="" item=""></collection:> | 13     | 5,252.33  | 71       |
| J-20  | 5,087.59  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,252.33  | 71       |
| J-21  | 5,064.77  | <none></none> | <collection: 1="" item=""></collection:> | 7      | 5,250.38  | 80       |
| J-22  | 5,061.85  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,250.59  | 82       |
| J-23  | 5,090.66  | <none></none> | <collection: 1="" item=""></collection:> | 3      | 5,252.32  | 70       |
| J-24  | 5,099.33  | <none></none> | <collection: 1="" item=""></collection:> | 7      | 5,250.35  | 65       |
| J-25  | 5,107.11  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,250.59  | 62       |
| J-26  | 5,067.27  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,251.56  | 80       |
| J-27  | 5,069.96  | <none></none> | <collection: 1="" item=""></collection:> | 11     | 5,251.71  | 79       |
| J-28  | 5,087.30  | <none></none> | <collection: 1="" item=""></collection:> | 7      | 5,251.71  | 71       |
| J-29  | 5,097.72  | <none></none> | <collection: 1="" item=""></collection:> | 8      | 5,252.31  | 67       |
| J-30  | 5,095.31  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,252.31  | 68       |
| J-31  | 5,050.18  | <none></none> | <collection: 1="" item=""></collection:> | 9      | 5,251.76  | 87       |
| J-32  | 5,061.81  | <none></none> | <collection: 1="" item=""></collection:> | 9      | 5,253.23  | 83       |
| J-33  | 5,058.61  | <none></none> | <collection: 1="" item=""></collection:> | 3      | 5,248.64  | 82       |
| J-34  | 5,049.85  | <none></none> | <collection: 1="" item=""></collection:> | 4      | 5,250.09  | 87       |
| J-35  | 5,010.67  | <none></none> | <collection: 1="" item=""></collection:> | 3      | 5,222.52  | 92       |
| J-36  | 5,009.18  | <none></none> | <collection: 1="" item=""></collection:> | 5      | 5,235.98  | 98       |
| J-37  | 5,106.14  | <none></none> | <collection: 1="" item=""></collection:> | 15     | 5,250.76  | 63       |

| Label | Elevation<br>(ft) | Zone          | Demand Collection                         | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|-------------------------------------------|-----------------|----------------------------|-------------------|
| J-38  | 5,263.66          | Tank Node     | <collection: 0="" items=""></collection:> | 0               | 5,276.54                   | 6                 |
| J-39  | 5,048.66          | <none></none> | <collection: 1="" item=""></collection:>  | 13              | 5,251.76                   | 88                |
| J-40  | 5,041.60          | <none></none> | <collection: 1="" item=""></collection:>  | 12              | 5,251.36                   | 91                |
| J-41  | 5,056.26          | <none></none> | <collection: 1="" item=""></collection:>  | 17              | 5,251.73                   | 85                |
| J-42  | 5,092.61          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,250.58                   | 68                |
| J-43  | 5,078.04          | <none></none> | <collection: 1="" item=""></collection:>  | 12              | 5,250.60                   | 75                |
| J-44  | 5,070.00          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,250.65                   | 78                |
| J-45  | 5,037.84          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,251.00                   | 92                |
| J-46  | 5,042.76          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,251.39                   | 90                |
| J-47  | 5,051.79          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,250.41                   | 86                |
| J-48  | 5,088.63          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,250.78                   | 70                |
| J-49  | 5,042.46          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,251.55                   | 90                |
| J-50  | 5,106.21          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,250.58                   | 62                |
| J-51  | 5,097.31          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,250.58                   | 66                |
| J-52  | 5,081.27          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,250.61                   | 73                |
| J-53  | 5,029.00          | <none></none> | <collection: 1="" item=""></collection:>  | 13              | 5,250.85                   | 96                |
| J-54  | 5,027.73          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,250.96                   | 97                |
| J-55  | 5,038.43          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,250.60                   | 92                |
| J-56  | 5,029.39          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,250.59                   | 96                |
| J-57  | 5,066.97          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,250.76                   | 80                |
| J-58  | 5,068.85          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,251.56                   | 79                |
| J-59  | 5,041.81          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,251.55                   | 91                |
| J-60  | 5,106.38          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,250.59                   | 62                |
| J-61  | 5,024.18          | <none></none> | <collection: 1="" item=""></collection:>  | 16              | 5,250.82                   | 98                |
| J-62  | 5,021.41          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,249.32                   | 99                |
| J-63  | 5,020.41          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,249.26                   | 99                |
| J-64  | 5,108.06          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,252.32                   | 62                |
| J-65  | 5,121.04          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,252.32                   | 57                |
| J-66  | 5,023.71          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,247.94                   | 97                |
| J-67  | 5,032.50          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,250.53                   | 94                |
| J-68  | 5,025.43          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,250.20                   | 97                |
| J-69  | 5,078.56          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,252.41                   | 75                |
| J-70  | 5,073.98          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,252.43                   | 77                |
| J-71  | 5,091.91          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,252.34                   | 69                |
| J-72  | 5,066.97          | <none></none> | <collection: 1="" item=""></collection:>  | 12              | 5,253.05                   | 81                |
| J-73  | 5,131.56          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,253.43                   | 53                |
| J-74  | 5,137.70          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,246.95                   | 47                |

| Label | Elevation<br>(ft) | Zone          | Demand Collection                         | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|-------------------------------------------|-----------------|----------------------------|-------------------|
| J-75  | 5,034.40          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,251.55                   | 94                |
| J-76  | 5,101.86          | <none></none> | <collection: 1="" item=""></collection:>  | 12              | 5,252.17                   | 65                |
| J-77  | 5,075.31          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,252.34                   | 77                |
| J-78  | 5,036.50          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,251.55                   | 93                |
| J-79  | 5,057.50          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,252.33                   | 84                |
| J-80  | 5,100.76          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,250.58                   | 65                |
| J-81  | 5,087.54          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,250.57                   | 71                |
| J-82  | 5,056.67          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,250.59                   | 84                |
| J-83  | 5,045.80          | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,250.59                   | 89                |
| J-84  | 5,081.01          | <none></none> | <collection: 1="" item=""></collection:>  | 12              | 5,252.36                   | 74                |
| J-85  | 5,082.50          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,252.37                   | 73                |
| J-86  | 5,119.55          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,250.63                   | 57                |
| J-87  | 5,111.43          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,250.57                   | 60                |
| J-88  | 5,063.58          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,250.59                   | 81                |
| J-89  | 5,030.14          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,250.54                   | 95                |
| J-90  | 5,056.93          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,251.56                   | 84                |
| J-91  | 5,027.47          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,251.55                   | 97                |
| J-92  | 5,015.59          | <none></none> | <collection: 1="" item=""></collection:>  | 16              | 5,249.25                   | 101               |
| J-93  | 5,012.00          | <none></none> | <collection: 1="" item=""></collection:>  | 12              | 5,249.23                   | 103               |
| J-94  | 5,031.81          | <none></none> | <collection: 1="" item=""></collection:>  | 12              | 5,250.54                   | 95                |
| J-95  | 5,071.86          | <none></none> | <collection: 1="" item=""></collection:>  | 13              | 5,250.68                   | 77                |
| J-96  | 5,110.08          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,254.01                   | 62                |
| J-97  | 5,018.60          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,250.54                   | 100               |
| J-98  | 5,042.61          | <none></none> | <collection: 1="" item=""></collection:>  | 21              | 5,251.23                   | 90                |
| J-99  | 5,069.96          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,252.36                   | 79                |
| J-100 | 5,018.92          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,250.52                   | 100               |
| J-101 | 5,008.54          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,250.52                   | 105               |
| J-102 | 5,119.06          | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,252.20                   | 58                |
| J-103 | 5,012.39          | <none></none> | <collection: 1="" item=""></collection:>  | 1               | 5,249.24                   | 102               |
| J-104 | 5,141.69          | <none></none> | <collection: 0="" items=""></collection:> | 0               | 5,261.75                   | 52                |
| J-105 | 5,110.65          | <none></none> | <collection: 1="" item=""></collection:>  | 9               | 5,257.01                   | 63                |
| J-106 | 5,093.82          | <none></none> | <collection: 1="" item=""></collection:>  | 3               | 5,250.58                   | 68                |
| J-107 | 5,266.76          | Tank Node     | <collection: 0="" items=""></collection:> | 0               | 5,276.73                   | 4                 |
| J-108 | 5,130.43          | <none></none> | <collection: 0="" items=""></collection:> | 0               | 5,265.93                   | 59                |
| J-110 | 5,119.47          | <none></none> | <collection: 1="" item=""></collection:>  | 7               | 5,250.62                   | 57                |
| J-112 | 5,132.34          | <none></none> | <collection: 1="" item=""></collection:>  | 11              | 5,252.73                   | 52                |
| J-113 | 5,080.08          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,252.65                   | 75                |

### **Junction Table - Time: 0.00 hours**

| Label | Elevation<br>(ft) | Zone          | Demand Collection                        | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|------------------------------------------|-----------------|----------------------------|-------------------|
| J-114 | 5,050.04          | <none></none> | <collection: 1="" item=""></collection:> | 1               | 5,250.57                   | 87                |
| J-115 | 5,082.63          | <none></none> | <collection: 1="" item=""></collection:> | 11              | 5,252.37                   | 73                |
| J-116 | 5,121.37          | <none></none> | <collection: 1="" item=""></collection:> | 11              | 5,252.20                   | 57                |
| J-117 | 5,067.58          | <none></none> | <collection: 1="" item=""></collection:> | 1               | 5,250.58                   | 79                |
| J-118 | 5,018.00          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,250.52                   | 101               |

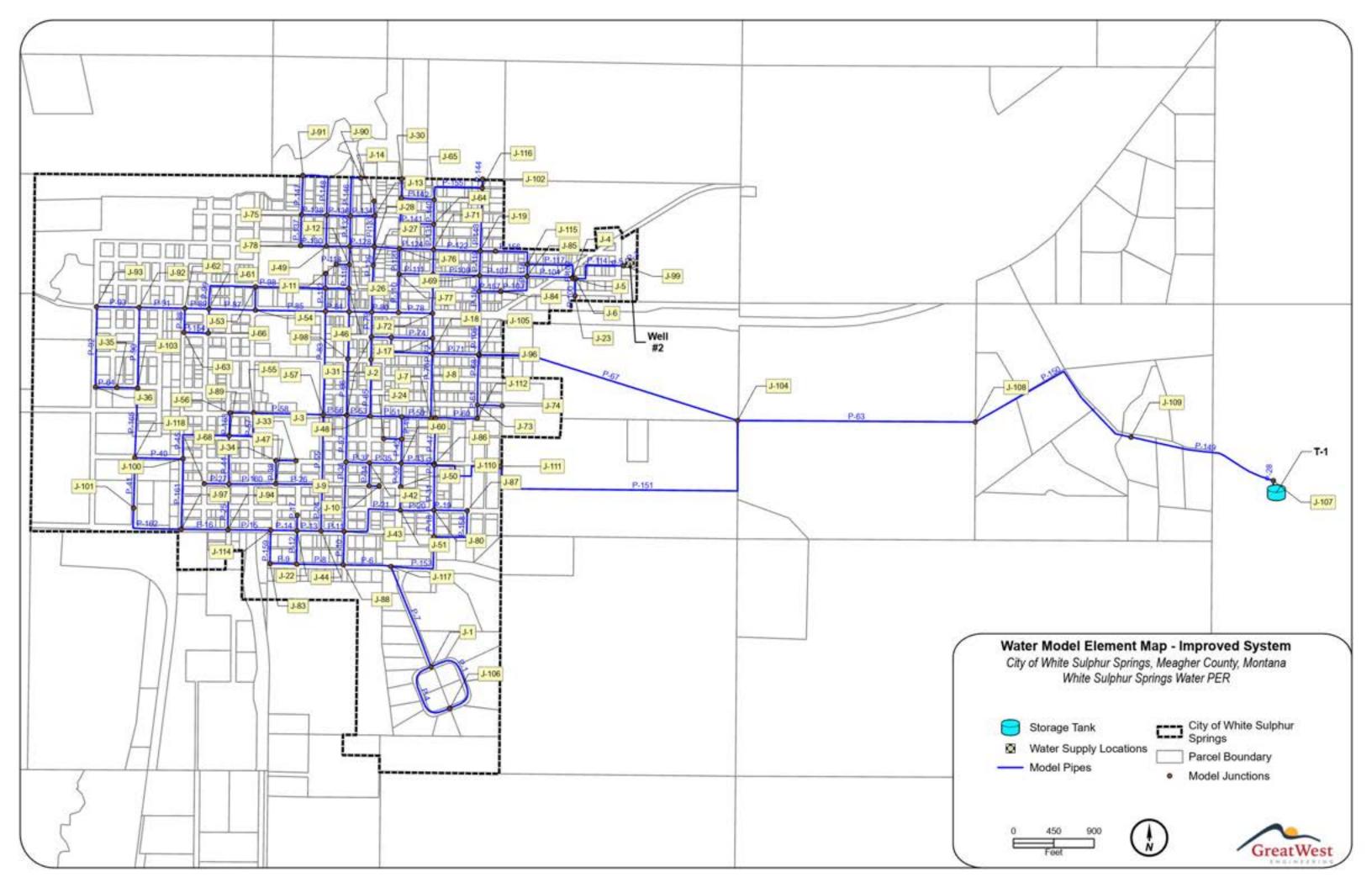
### Tank Table - Time: 0.00 hours

| Label | Elevation<br>(Base)<br>(ft) | Elevation<br>(Minimum)<br>(ft) | Elevation<br>(Initial)<br>(ft) | Elevation<br>(Maximum)<br>(ft) | Flow (Out net)<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Elevation<br>(ft) | Diameter<br>(ft) | Volume Full<br>(Calculated)<br>(MG) | Percent Full<br>(%) |
|-------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------|----------------------------|-------------------|------------------|-------------------------------------|---------------------|
| T-1   | 5,267.00                    | 5,267.00                       | 5,277.00                       | 5,282.00                       | 864                     | 5,277.00                   | 5,271.27          | 80.00            | 0.56                                | 66.7                |

| Label | Fire Flow<br>Iterations | Fire Flow<br>(Available)<br>(gpm) | Pressure<br>(Calculated<br>Residual)<br>(psi) | Pressure<br>(Calculated<br>Zone Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(Zone) | Pressure<br>(Calculated<br>System Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(System) |
|-------|-------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------|
| J-1   | 19                      | 895                               | 21                                            | 20                                                       | J-106                                        | 4                                                          | J-107                                          |
| J-2   | 3                       | 1,492                             | 20                                            | 21                                                       | J-3                                          | 4                                                          | J-107                                          |
| J-3   | 3                       | 1,494                             | 20                                            | 20                                                       | J-2                                          | 4                                                          | J-107                                          |
| J-4   | 22                      | 1,841                             | 24                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-5   | 22                      | 1,841                             | 23                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-6   | 22                      | 1,841                             | 23                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-7   | 3                       | 1,172                             | 20                                            | 23                                                       | J-8                                          | 4                                                          | J-107                                          |
| J-8   | 3                       | 1,170                             | 20                                            | 24                                                       | J-7                                          | 4                                                          | J-107                                          |
| J-9   | 18                      | 315                               | 23                                            | 20                                                       | J-10                                         | 4                                                          | J-107                                          |
| J-10  | 3                       | 198                               | 20                                            | 55                                                       | J-9                                          | 4                                                          | J-107                                          |
| J-11  | 13                      | 44                                | 22                                            | 59                                                       | J-104                                        | 4                                                          | J-107                                          |
| J-12  | 7                       | 1,801                             | 38                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-13  | 3                       | 1,666                             | 20                                            | 26                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-14  | 15                      | 227                               | 20                                            | 58                                                       | J-104                                        | 4                                                          | J-107                                          |
| J-15  | 20                      | 1,556                             | 21                                            | 20                                                       | J-16                                         | 4                                                          | J-107                                          |
| J-16  | 3                       | 484                               | 20                                            | 55                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-17  | 5                       | 1,852                             | 38                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-18  | 4                       | 1,855                             | 35                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-19  | 5                       | 1,513                             | 35                                            | 20                                                       | J-116                                        | 4                                                          | J-107                                          |
| J-20  | 4                       | 1,513                             | 25                                            | 20                                                       | J-116                                        | 4                                                          | J-107                                          |
| J-21  | 3                       | 239                               | 20                                            | 58                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-22  | 5                       | 1,653                             | 34                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-23  | 3                       | 211                               | 20                                            | 58                                                       | J-104                                        | 4                                                          | J-107                                          |
| J-24  | 3                       | 192                               | 20                                            | 58                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-25  | 3                       | 1,266                             | 20                                            | 23                                                       | J-24                                         | 4                                                          | J-107                                          |
| J-26  | 5                       | 1,793                             | 36                                            | 20                                                       | J-13                                         | 4                                                          | J-107                                          |
| J-27  | 37                      | 1,812                             | 23                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-28  | 5                       | 1,802                             | 28                                            | 20                                                       | J-13                                         | 4                                                          | J-107                                          |
| J-29  | 3                       | 1,240                             | 20                                            | 21                                                       | J-30                                         | 4                                                          | J-107                                          |
| J-30  | 3                       | 1,164                             | 20                                            | 26                                                       | J-29                                         | 4                                                          | J-107                                          |
| J-31  | 5                       | 1,798                             | 37                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-32  | 20                      | 1,850                             | 25                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-33  | 13                      | 32                                | 21                                            | 59                                                       | J-104                                        | 4                                                          | J-107                                          |
| J-34  | 17                      | 175                               | 24                                            | 20                                                       | J-33                                         | 4                                                          | J-107                                          |
| J-35  | 12                      | 9                                 | 21                                            | 59                                                       | J-104                                        | 4                                                          | J-107                                          |

| Label | Fire Flow<br>Iterations | Fire Flow<br>(Available)<br>(gpm) | Pressure<br>(Calculated<br>Residual)<br>(psi) | Pressure<br>(Calculated<br>Zone Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(Zone) | Pressure<br>(Calculated<br>System Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(System) |
|-------|-------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------|
| J-36  | 15                      | 31                                | 25                                            | 22                                                       | J-35                                         | 4                                                          | J-107                                          |
| J-37  | 3                       | 1,274                             | 20                                            | 28                                                       | J-7                                          | 4                                                          | J-107                                          |
| J-38  | (N/A)                   | (N/A)                             | (N/A)                                         | (N/A)                                                    | (N/A)                                        | (N/A)                                                      | (N/A)                                          |
| J-39  | 7                       | 1,794                             | 52                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-40  | 22                      | 1,774                             | 54                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-41  | 3                       | 1,771                             | 20                                            | 21                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-42  | 5                       | 1,249                             | 22                                            | 20                                                       | J-10                                         | 4                                                          | J-107                                          |
| J-43  | 5                       | 1,604                             | 33                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-44  | 5                       | 1,654                             | 37                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-45  | 5                       | 1,754                             | 53                                            | 20                                                       | J-86                                         | 4                                                          | J-107                                          |
| J-46  | 7                       | 1,789                             | 47                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-47  | 18                      | 447                               | 23                                            | 20                                                       | J-33                                         | 4                                                          | J-107                                          |
| J-48  | 3                       | 1,301                             | 20                                            | 33                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-49  | 5                       | 1,779                             | 40                                            | 20                                                       | J-13                                         | 4                                                          | J-107                                          |
| J-50  | 3                       | 1,327                             | 20                                            | 24                                                       | J-87                                         | 4                                                          | J-107                                          |
| J-51  | 5                       | 1,366                             | 25                                            | 20                                                       | J-87                                         | 4                                                          | J-107                                          |
| J-52  | 3                       | 1,178                             | 20                                            | 38                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-53  | 22                      | 1,755                             | 30                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-54  | 5                       | 1,755                             | 53                                            | 20                                                       | J-86                                         | 4                                                          | J-107                                          |
| J-55  | 3                       | 1,689                             | 20                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-56  | 3                       | 1,552                             | 20                                            | 27                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-57  | 5                       | 1,696                             | 40                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-58  | 5                       | 1,747                             | 34                                            | 20                                                       | J-13                                         | 4                                                          | J-107                                          |
| J-59  | 5                       | 1,771                             | 40                                            | 20                                                       | J-13                                         | 4                                                          | J-107                                          |
| J-60  | 3                       | 1,318                             | 20                                            | 21                                                       | J-25                                         | 4                                                          | J-107                                          |
| J-61  | 6                       | 1,755                             | 37                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-62  | 3                       | 663                               | 20                                            | 20                                                       | J-35                                         | 4                                                          | J-107                                          |
| J-63  | 3                       | 342                               | 20                                            | 57                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-64  | 3                       | 1,480                             | 26                                            | 20                                                       | J-65                                         | 4                                                          | J-107                                          |
| J-65  | 3                       | 1,290                             | 20                                            | 36                                                       | J-64                                         | 4                                                          | J-107                                          |
| J-66  | 14                      | 63                                | 21                                            | 58                                                       | J-104                                        | 4                                                          | J-107                                          |
| J-67  | 3                       | 1,557                             | 20                                            | 23                                                       | J-68                                         | 4                                                          | J-107                                          |
| J-68  | 3                       | 208                               | 20                                            | 58                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-69  | 23                      | 1,841                             | 38                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-70  | 23                      | 1,839                             | 43                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |

| Label | Fire Flow  | Fire Flow   | Pressure    | Pressure    | Junction w/ | Pressure     | Junction w/ |
|-------|------------|-------------|-------------|-------------|-------------|--------------|-------------|
|       | Iterations | (Available) | (Calculated | (Calculated | Minimum     | (Calculated  | Minimum     |
|       |            | (gpm)       | Residual)   | Zone Lower  | Pressure    | System Lower | Pressure    |
|       |            |             | (psi)       | Limit)      | (Zone)      | Limit)       | (System)    |
|       |            |             |             | (psi)       |             | (psi)        |             |
| J-71  | 5          | 1,837       | 33          | 20          | J-65        | 4            | J-107       |
| J-72  | 21         | 1,848       | 48          | 20          | J-74        | 4            | J-107       |
| J-73  | 5          | 828         | 24          | 20          | J-74        | 4            | J-107       |
| J-74  | 12         | 19          | 22          | 59          | J-104       | 4            | J-107       |
| J-75  | 5          | 1,774       | 39          | 20          | J-13        | 4            | J-107       |
| J-76  | 5          | 1,828       | 27          | 20          | J-74        | 4            | J-107       |
| J-77  | 5          | 1,834       | 41          | 20          | J-74        | 4            | J-107       |
| J-78  | 5          | 1,776       | 36          | 20          | J-13        | 4            | J-107       |
| J-79  | 5          | 1,820       | 50          | 20          | J-74        | 4            | J-107       |
| J-80  | 5          | 1,245       | 25          | 20          | J-87        | 4            | J-107       |
| J-81  | 3          | 805         | 20          | 47          | J-74        | 4            | J-107       |
| J-82  | 5          | 1,644       | 31          | 20          | J-110       | 4            | J-107       |
| J-83  | 3          | 1,599       | 20          | 22          | J-110       | 4            | J-107       |
| J-84  | 3          | 1,543       | 20          | 31          | J-74        | 4            | J-107       |
| J-85  | 6          | 1,841       | 30          | 20          | J-74        | 4            | J-107       |
| J-86  | 3          | 1,138       | 20          | 21          | J-110       | 4            | J-107       |
| J-87  | 3          | 674         | 20          | 50          | J-74        | 4            | J-107       |
| J-88  | 5          | 1,582       | 33          | 20          | J-106       | 4            | J-107       |
| J-89  | 3          | 1,593       | 20          | 25          | J-110       | 4            | J-107       |
| J-90  | 3          | 1,534       | 20          | 30          | J-74        | 4            | J-107       |
| J-91  | 5          | 1,772       | 34          | 20          | J-13        | 4            | J-107       |
| J-92  | 19         | 638         | 22          | 20          | J-35        | 4            | J-107       |
| J-93  | 5          | 617         | 24          | 20          | J-35        | 4            | J-107       |
| J-94  | 20         | 1,665       | 20          | 20          | J-110       | 4            | J-107       |
| J-95  | 5          | 1,670       | 37          | 20          | J-110       | 4            | J-107       |
| J-96  | 21         | 1,868       | 30          | 20          | J-74        | 4            | J-107       |
| J-97  | 3          | 1,429       | 20          | 31          | J-74        | 4            | J-107       |
| J-98  | 5          | 1,763       | 28          | 20          | J-74        | 4            | J-107       |
| J-99  | 22         | 1,841       | 23          | 20          | J-74        | 4            | J-107       |
| J-100 | 3          | 1,281       | 20          | 20          | J-118       | 4            | J-107       |
| J-101 | 3          | 1,052       | 20          | 32          | J-118       | 4            | J-107       |
| J-102 | 3          | 451         | 20          | 24          | J-116       | 4            | J-107       |
| J-103 | 3          | 207         | 20          | 58          | J-104       | 4            | J-107       |
| J-104 | 3          | 2,235       | 20          | 20          | J-74        | 4            | J-107       |
| J-105 | 19         | 1,943       | 33          | 20          | J-74        | 4            | J-107       |


| Label | Fire Flow<br>Iterations | Fire Flow<br>(Available)<br>(gpm) | Pressure<br>(Calculated<br>Residual)<br>(psi) | Pressure<br>(Calculated<br>Zone Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(Zone) | Pressure<br>(Calculated<br>System Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(System) |
|-------|-------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------|
| J-106 | 3                       | 854                               | 20                                            | 26                                                       | J-1                                          | 4                                                          | J-107                                          |
| J-107 | (N/A)                   | (N/A)                             | (N/A)                                         | (N/A)                                                    | (N/A)                                        | (N/A)                                                      | (N/A)                                          |
| J-108 | 21                      | 2,659                             | 25                                            | 20                                                       | J-104                                        | 3                                                          | J-107                                          |
| J-110 | 3                       | 1,123                             | 20                                            | 22                                                       | J-86                                         | 4                                                          | J-107                                          |
| J-112 | 3                       | 857                               | 20                                            | 24                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-113 | 2                       | 1,429                             | 20                                            | 35                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-114 | 5                       | 1,660                             | 27                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-115 | 22                      | 1,841                             | 24                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-116 | 3                       | 475                               | 20                                            | 21                                                       | J-102                                        | 4                                                          | J-107                                          |
| J-117 | 5                       | 1,239                             | 31                                            | 20                                                       | J-106                                        | 4                                                          | J-107                                          |
| J-118 | 3                       | 1,138                             | 20                                            | 24                                                       | J-101                                        | 4                                                          | J-107                                          |

| Label | Fire Flow  | Fire Flow   | Pressure    | Pressure    | Junction w/ | Pressure     | Junction w/ |
|-------|------------|-------------|-------------|-------------|-------------|--------------|-------------|
|       | Iterations | (Available) | (Calculated | (Calculated | Minimum     | (Calculated  | Minimum     |
|       |            | (gpm)       | Residual)   | Zone Lower  | Pressure    | System Lower | Pressure    |
|       |            |             | (psi)       | Limit)      | (Zone)      | Limit)       | (System)    |
|       |            |             |             | (psi)       |             | (psi)        |             |
| J-1   | 5          | 860         | 21          | 20          | J-106       | 4            | J-107       |
| J-2   | 3          | 1,418       | 20          | 21          | J-3         | 4            | J-107       |
| J-3   | 3          | 1,419       | 20          | 20          | J-2         | 4            | J-107       |
| J-4   | 15         | 1,677       | 27          | 20          | J-74        | 4            | J-107       |
| J-5   | 15         | 1,677       | 27          | 20          | J-74        | 4            | J-107       |
| J-6   | 15         | 1,677       | 27          | 20          | J-74        | 4            | J-107       |
| J-7   | 3          | 1,105       | 20          | 23          | J-8         | 4            | J-107       |
| J-8   | 3          | 1,102       | 20          | 24          | J-7         | 4            | J-107       |
| J-9   | 18         | 307         | 23          | 20          | J-10        | 4            | J-107       |
| J-10  | 3          | 193         | 20          | 54          | J-9         | 4            | J-107       |
| J-11  | 13         | 43          | 22          | 58          | J-74        | 4            | J-107       |
| J-12  | 6          | 1,638       | 41          | 20          | J-74        | 4            | J-107       |
| J-13  | 4          | 1,561       | 20          | 23          | J-74        | 4            | J-107       |
| J-14  | 3          | 224         | 20          | 56          | J-74        | 4            | J-107       |
| J-15  | 5          | 1,492       | 21          | 20          | J-16        | 4            | J-107       |
| J-16  | 3          | 475         | 20          | 52          | J-74        | 4            | J-107       |
| J-17  | 6          | 1,689       | 39          | 20          | J-74        | 4            | J-107       |
| J-18  | 6          | 1,692       | 36          | 20          | J-74        | 4            | J-107       |
| J-19  | 6          | 1,417       | 35          | 20          | J-116       | 4            | J-107       |
| J-20  | 5          | 1,417       | 26          | 20          | J-116       | 4            | J-107       |
| J-21  | 3          | 235         | 20          | 56          | J-74        | 4            | J-107       |
| J-22  | 6          | 1,526       | 36          | 20          | J-110       | 4            | J-107       |
| J-23  | 3          | 208         | 20          | 56          | J-74        | 4            | J-107       |
| J-24  | 3          | 188         | 20          | 56          | J-74        | 4            | J-107       |
| J-25  | 3          | 1,192       | 20          | 23          | J-24        | 4            | J-107       |
| J-26  | 8          | 1,646       | 37          | 20          | J-74        | 4            | J-107       |
| J-27  | 6          | 1,650       | 28          | 20          | J-74        | 4            | J-107       |
| J-28  | 8          | 1,650       | 30          | 20          | J-74        | 4            | J-107       |
| J-29  | 3          | 1,184       | 20          | 21          | J-30        | 4            | J-107       |
| J-30  | 3          | 1,114       | 20          | 26          | J-29        | 4            | J-107       |
| J-31  | 6          | 1,636       | 40          | 20          | J-74        | 4            | J-107       |
| J-32  | 6          | 1,686       | 30          | 20          | J-74        | 4            | J-107       |
| J-33  | 13         | 32          | 21          | 58          | J-74        | 4            | J-107       |
| J-34  | 17         | 172         | 25          | 20          | J-33        | 4            | J-107       |
| J-35  | 12         | 8           | 26          | 58          | J-74        | 4            | J-107       |

| Label | Fire Flow<br>Iterations | Fire Flow<br>(Available)<br>(gpm) | Pressure<br>(Calculated<br>Residual)<br>(psi) | Pressure<br>(Calculated<br>Zone Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(Zone) | Pressure<br>(Calculated<br>System Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(System) |
|-------|-------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------|
| J-36  | 15                      | 29                                | 26                                            | 22                                                       | J-35                                         | 4                                                          |                                                |
| J-37  | 3                       | 1,201                             | 20                                            | 27                                                       | J-7                                          | 4                                                          | J-107                                          |
| J-38  | (N/A)                   | (N/A)                             | (N/A)                                         | (N/A)                                                    | (N/A)                                        | (N/A)                                                      | (N/A)                                          |
| J-39  | 8                       | 1,633                             | 53                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-40  | 8                       | 1,615                             | 55                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-41  | 6                       | 1,635                             | 24                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-42  | 5                       | 1,182                             | 22                                            | 20                                                       | J-10                                         | 4                                                          | J-107                                          |
| J-43  | 6                       | 1,482                             | 34                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-44  | 6                       | 1,526                             | 38                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-45  | 9                       | 1,596                             | 55                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-46  | 8                       | 1,627                             | 50                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-47  | 18                      | 436                               | 24                                            | 20                                                       | J-33                                         | 4                                                          | J-107                                          |
| J-48  | 3                       | 1,237                             | 20                                            | 30                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-49  | 8                       | 1,646                             | 42                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-50  | 3                       | 1,248                             | 20                                            | 23                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-51  | 5                       | 1,279                             | 26                                            | 20                                                       | J-87                                         | 4                                                          | J-107                                          |
| J-52  | 3                       | 1,125                             | 20                                            | 34                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-53  | 8                       | 1,597                             | 35                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-54  | 9                       | 1,596                             | 55                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-55  | 6                       | 1,560                             | 24                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-56  | 3                       | 1,487                             | 20                                            | 23                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-57  | 6                       | 1,564                             | 40                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-58  | 6                       | 1,632                             | 34                                            | 20                                                       | J-13                                         | 4                                                          | J-107                                          |
| J-59  | 8                       | 1,647                             | 42                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-60  | 3                       | 1,239                             | 20                                            | 21                                                       | J-25                                         | 4                                                          | J-107                                          |
| J-61  | 8                       | 1,596                             | 41                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-62  | 5                       | 633                               | 22                                            | 20                                                       | J-35                                         | 4                                                          | J-107                                          |
| J-63  | 3                       | 335                               | 20                                            | 55                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-64  | 5                       | 1,389                             | 26                                            | 20                                                       | J-65                                         | 4                                                          | J-107                                          |
| J-65  | 3                       | 1,218                             | 20                                            | 35                                                       | J-64                                         | 4                                                          | J-107                                          |
| J-66  | 14                      | 62                                | 21                                            | 57                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-67  | 3                       | 1,490                             | 20                                            | 23                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-68  | 3                       | 205                               | 20                                            | 56                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-69  | 5                       | 1,676                             | 39                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-70  | 6                       | 1,675                             | 44                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |

| Label | Fire Flow  | Fire Flow   | Pressure    | Pressure    | Junction w/ | Pressure     | Junction w/ |
|-------|------------|-------------|-------------|-------------|-------------|--------------|-------------|
| 2000. | Iterations | (Available) | (Calculated | (Calculated | Minimum     | (Calculated  | Minimum     |
|       |            | `(gpm) ´    | Residual)   | Žone Lower  | Pressure    | System Lower | Pressure    |
|       |            |             | (psi)       | Limit)      | (Zone)      | Limit)       | (System)    |
|       |            |             |             | (psi)       |             | (psi)        |             |
| J-71  | 8          | 1,673       | 34          | 20          | J-74        | 4            | J-107       |
| J-72  | 6          | 1,685       | 48          | 20          | J-74        | 4            | J-107       |
| J-73  | 5          | 781         | 24          | 20          | J-74        | 4            | J-107       |
| J-74  | 12         | 18          | 22          | 58          | J-104       | 4            | J-107       |
| J-75  | 8          | 1,646       | 41          | 20          | J-74        | 4            | J-107       |
| J-76  | 6          | 1,664       | 28          | 20          | J-74        | 4            | J-107       |
| J-77  | 6          | 1,670       | 42          | 20          | J-74        | 4            | J-107       |
| J-78  | 8          | 1,646       | 39          | 20          | J-74        | 4            | J-107       |
| J-79  | 6          | 1,658       | 51          | 20          | J-74        | 4            | J-107       |
| J-80  | 5          | 1,171       | 25          | 20          | J-87        | 4            | J-107       |
| J-81  | 3          | 776         | 20          | 44          | J-74        | 4            | J-107       |
| J-82  | 6          | 1,517       | 33          | 20          | J-110       | 4            | J-107       |
| J-83  | 6          | 1,517       | 21          | 20          | J-110       | 4            | J-107       |
| J-84  | 12         | 1,473       | 20          | 28          | J-74        | 4            | J-107       |
| J-85  | 15         | 1,677       | 33          | 20          | J-74        | 4            | J-107       |
| J-86  | 3          | 1,071       | 20          | 20          | J-110       | 4            | J-107       |
| J-87  | 3          | 648         | 20          | 48          | J-74        | 4            | J-107       |
| J-88  | 6          | 1,485       | 33          | 20          | J-106       | 4            | J-107       |
| J-89  | 3          | 1,524       | 20          | 22          | J-110       | 4            | J-107       |
| J-90  | 3          | 1,469       | 20          | 27          | J-74        | 4            | J-107       |
| J-91  | 8          | 1,647       | 37          | 20          | J-74        | 4            | J-107       |
| J-92  | 5          | 608         | 25          | 20          | J-35        | 4            | J-107       |
| J-93  | 5          | 588         | 26          | 20          | J-35        | 4            | J-107       |
| J-94  | 6          | 1,537       | 25          | 20          | J-110       | 4            | J-107       |
| J-95  | 6          | 1,540       | 37          | 20          | J-110       | 4            | J-107       |
| J-96  | 6          | 1,705       | 31          | 20          | J-74        | 4            | J-107       |
| J-97  | 3          | 1,376       | 20          | 27          | J-74        | 4            | J-107       |
| J-98  | 6          | 1,604       | 33          | 20          | J-74        | 4            | J-107       |
| J-99  | 12         | 1,677       | 29          | 20          | J-74        | 4            | J-107       |
| J-100 | 3          | 1,236       | 20          | 20          | J-118       | 4            | J-107       |
| J-101 | 3          | 1,022       | 20          | 31          | J-118       | 4            | J-107       |
| J-102 | 3          | 438         | 20          | 24          | J-116       | 4            | J-107       |
| J-103 | 3          | 204         | 20          | 56          | J-74        | 4            | J-107       |
| J-104 | 6          | 2,079       | 20          | 20          | J-74        | 4            | J-107       |
| J-105 | 6          | 1,779       | 34          | 20          | J-74        | 4            | J-107       |

| Label | Fire Flow<br>Iterations | Fire Flow<br>(Available)<br>(gpm) | Pressure<br>(Calculated<br>Residual)<br>(psi) | Pressure<br>(Calculated<br>Zone Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(Zone) | Pressure<br>(Calculated<br>System Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(System) |
|-------|-------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------|
| J-106 | 3                       | 821                               | 20                                            | 26                                                       | J-1                                          | 4                                                          | J-107                                          |
| J-107 | (N/A)                   | (N/A)                             | (N/A)                                         | (N/A)                                                    | (N/A)                                        | (N/A)                                                      | (N/A)                                          |
| J-108 | 6                       | 2,497                             | 25                                            | 20                                                       | J-74                                         | 3                                                          | J-107                                          |
| J-110 | 3                       | 1,057                             | 20                                            | 22                                                       | J-86                                         | 4                                                          | J-107                                          |
| J-112 | 3                       | 817                               | 20                                            | 23                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-113 | 3                       | 1,369                             | 20                                            | 31                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-114 | 6                       | 1,531                             | 30                                            | 20                                                       | J-110                                        | 4                                                          | J-107                                          |
| J-115 | 15                      | 1,677                             | 28                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-116 | 3                       | 461                               | 20                                            | 21                                                       | J-102                                        | 4                                                          | J-107                                          |
| J-117 | 5                       | 1,176                             | 31                                            | 20                                                       | J-106                                        | 4                                                          | J-107                                          |
| J-118 | 3                       | 1,101                             | 20                                            | 24                                                       | J-101                                        | 4                                                          | J-107                                          |



| Label | Length<br>(Scaled) | Start Node | Stop Node | Diameter<br>(in) | Material | Hazen-Williams<br>C | Flow<br>(Absolute) | Velocity<br>(ft/s) | Headloss<br>Gradient | Status (Initial) |
|-------|--------------------|------------|-----------|------------------|----------|---------------------|--------------------|--------------------|----------------------|------------------|
|       | (ft)               |            |           | (111)            |          |                     | (gpm)              | (143)              | (ft/ft)              |                  |
| P-1   | 940                | J-1        | J-106     | 6.0              | PVC      | 145.0               | 1                  | 0.02               | 0.000                | Open             |
| P-4   | 855                | J-106      | J-1       | 6.0              | PVC      | 145.0               | 0                  | 0.00               | 0.000                | Open             |
| P-6   | 532                | J-88       | J-117     | 6.0              | PVC      | 145.0               | 25                 | 0.28               | 0.000                | Open             |
| P-7   | 1,204              | J-117      | J-1       | 6.0              | PVC      | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-8   | 518                | J-88       | J-82      | 6.0              | PVC      | 145.0               | 22                 | 0.25               | 0.000                | Open             |
| P-9   | 299                | J-82       | J-83      | 6.0              | PVC      | 145.0               | 11                 | 0.12               | 0.000                | Open             |
| P-10  | 372                | J-88       | J-43      | 6.0              | PVC      | 145.0               | 4                  | 0.04               | 0.000                | Open             |
| P-11  | 257                | J-43       | J-44      | 6.0              | PVC      | 145.0               | 31                 | 0.35               | 0.000                | Open             |
| P-12  | 374                | J-22       | J-82      | 6.0              | PVC      | 145.0               | 7                  | 0.08               | 0.000                | Open             |
| P-13  | 268                | J-44       | J-22      | 6.0              | PVC      | 145.0               | 12                 | 0.14               | 0.000                | Open             |
| P-14  | 294                | J-22       | J-114     | 6.0              | PVC      | 145.0               | 12                 | 0.14               | 0.000                | Open             |
| P-15  | 476                | J-114      | J-94      | 6.0              | PVC      | 145.0               | 21                 | 0.23               | 0.000                | Open             |
| P-16  | 521                | J-94       | J-97      | 6.0              | PVC      | 145.0               | 12                 | 0.13               | 0.000                | Open             |
| P-17  | 172                | J-21       | J-22      | 6.0              | PVC      | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-18  | 298                | J-80       | J-81      | 6.0              | PVC      | 145.0               | 22                 | 0.25               | 0.000                | Open             |
| P-19  | 371                | J-80       | J-87      | 6.0              | PVC      | 145.0               | 13                 | 0.14               | 0.000                | Open             |
| P-20  | 374                | J-51       | J-80      | 6.0              | PVC      | 145.0               | 29                 | 0.32               | 0.000                | Open             |
| P-21  | 870                | J-43       | J-51      | 6.0              | PVC      | 145.0               | 32                 | 0.36               | 0.000                | Open             |
| P-22  | 261                | J-50       | J-51      | 6.0              | PVC      | 145.0               | 9                  | 0.10               | 0.000                | Open             |
| P-23  | 114                | J-9        | J-10      | 6.0              | PVC      | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-24  | 519                | J-95       | J-44      | 10.0             | PVC      | 145.0               | 17                 | 0.07               | 0.000                | Open             |
| P-25  | 511                | J-94       | J-67      | 6.0              | PVC      | 145.0               | 2                  | 0.02               | 0.000                | Open             |
| P-26  | 517                | J-95       | J-47      | 6.0              | PVC      | 145.0               | 20                 | 0.23               | 0.000                | Open             |
| P-27  | 275                | J-67       | J-68      | 6.0              | PVC      | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-28  | 173                | T-1        | J-107     | 12.0             | PVC      | 145.0               | 512                | 1.45               | 0.001                | Open             |
| P-30  | 17                 | J-86       | J-110     | 6.0              | PVC      | 145.0               | 140                | 1.59               | 0.002                | Open             |
| P-31  | 499                | J-110      | J-80      | 6.0              | PVC      | 145.0               | 68                 | 0.77               | 0.000                | Open             |
| P-32  | 263                | J-50       | J-60      | 6.0              | PVC      | 145.0               | 12                 | 0.14               | 0.000                | Open             |
| P-33  | 368                | J-60       | J-86      | 6.0              | PVC      | 145.0               | 79                 | 0.90               | 0.001                | Open             |
| P-34  | 257                | J-42       | J-9       | 6.0              | PVC      | 145.0               | 7                  | 0.08               | 0.000                | Open             |
| P-35  | 355                | J-42       | J-60      | 6.0              | PVC      | 145.0               | 43                 | 0.48               | 0.000                | Open             |
| P-36  | 774                | J-52       | J-43      | 6.0              | PVC      | 145.0               | 10                 | 0.11               | 0.000                | Open             |
| P-37  | 261                | J-52       | J-42      | 6.0              | PVC      | 145.0               | 31                 | 0.36               | 0.000                | Open             |
| P-38  | 260                | J-34       | J-47      | 6.0              | PVC      | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-39  | 225                | J-33       | J-34      | 6.0              | PVC      | 145.0               | 2                  | 0.02               | 0.000                | Open             |
| P-40  | 538                | J-100      | J-118     | 6.0              | PVC      | 145.0               | 7                  | 0.07               | 0.000                | Open             |
| P-41  | 559                | J-118      | J-101     | 6.0              | PVC      | 145.0               | 3                  | 0.04               | 0.000                | Open             |

| Label | Length<br>(Scaled) | Start Node | Stop Node | Diameter<br>(in) | Material | Hazen-Williams<br>C | Flow<br>(Absolute) | Velocity<br>(ft/s) | Headloss<br>Gradient | Status (Initial) |
|-------|--------------------|------------|-----------|------------------|----------|---------------------|--------------------|--------------------|----------------------|------------------|
|       | (ft)               |            |           |                  |          |                     | (gpm)              |                    | (ft/ft)              |                  |
| P-42  | 270                | J-60       | J-25      | 6.0              | PVC      | 145.0               | 21                 | 0.24               | 0.000                | Open             |
| P-43  | 202                | J-24       | J-25      | 6.0              | PVC      | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-44  | 537                | J-89       | J-67      | 6.0              | PVC      | 145.0               | 5                  | 0.06               | 0.000                | Open             |
| P-45  | 785                | J-100      | J-89      | 6.0              | PVC      | 145.0               | 9                  | 0.10               | 0.000                | Open             |
| P-47  | 511                | J-8        | J-86      | 6.0              | PVC      | 145.0               | 58                 | 0.66               | 0.000                | Open             |
| P-48  | 50                 | J-7        | J-8       | 6.0              | PVC      | 145.0               | 63                 | 0.72               | 0.000                | Open             |
| P-49  | 246                | J-37       | J-25      | 6.0              | PVC      | 145.0               | 14                 | 0.15               | 0.000                | Open             |
| P-50  | 327                | J-37       | J-7       | 6.0              | PVC      | 145.0               | 36                 | 0.41               | 0.000                | Open             |
| P-51  | 352                | J-48       | J-37      | 6.0              | PVC      | 145.0               | 41                 | 0.47               | 0.000                | Open             |
| P-52  | 520                | J-3        | J-52      | 6.0              | PVC      | 145.0               | 15                 | 0.17               | 0.000                | Open             |
| P-53  | 260                | J-3        | J-48      | 6.0              | PVC      | 145.0               | 31                 | 0.36               | 0.000                | Open             |
| P-54  | 3                  | J-2        | J-3       | 6.0              | PVC      | 145.0               | 44                 | 0.50               | 0.000                | Open             |
| P-55  | 777                | J-57       | J-95      | 10.0             | PVC      | 145.0               | 11                 | 0.05               | 0.000                | Open             |
| P-56  | 263                | J-57       | J-2       | 6.0              | PVC      | 145.0               | 28                 | 0.32               | 0.000                | Open             |
| P-57  | 530                | J-89       | J-55      | 6.0              | PVC      | 145.0               | 6                  | 0.07               | 0.000                | Open             |
| P-58  | 779                | J-57       | J-55      | 6.0              | PVC      | 145.0               | 19                 | 0.22               | 0.000                | Open             |
| P-59  | 262                | J-55       | J-56      | 6.0              | PVC      | 145.0               | 8                  | 0.09               | 0.000                | Open             |
| P-60  | 471                | J-8        | J-112     | 6.0              | PVC      | 145.0               | 13                 | 0.14               | 0.000                | Open             |
| P-61  | 148                | J-112      | J-73      | 6.0              | PVC      | 145.0               | 19                 | 0.22               | 0.000                | Open             |
| P-62  | 278                | J-73       | J-74      | 6.0              | PVC      | 145.0               | 3                  | 0.04               | 0.000                | Open             |
| P-63  | 2,651              | J-108      | J-104     | 12.0             | PVC      | 145.0               | 512                | 1.45               | 0.001                | Open             |
| P-64  | 238                | J-35       | J-36      | 6.0              | PVC      | 145.0               | 5                  | 0.05               | 0.000                | Open             |
| P-65  | 631                | J-41       | J-48      | 6.0              | PVC      | 145.0               | 6                  | 0.07               | 0.000                | Open             |
| P-66  | 627                | J-98       | J-2       | 6.0              | PVC      | 145.0               | 13                 | 0.15               | 0.000                | Open             |
| P-67  | 2,996              | J-104      | J-105     | 12.0             | PVC      | 145.0               | 300                | 0.85               | 0.000                | Open             |
| P-68  | 555                | J-73       | J-105     | 6.0              | PVC      | 145.0               | 28                 | 0.32               | 0.000                | Open             |
| P-69  | 9                  | J-105      | J-96      | 6.0              | PVC      | 145.0               | 267                | 3.03               | 0.005                | Open             |
| P-70  | 717                | J-18       | J-7       | 6.0              | PVC      | 145.0               | 21                 | 0.24               | 0.000                | Open             |
| P-71  | 519                | J-18       | J-96      | 12.0             | PVC      | 145.0               | 217                | 0.61               | 0.000                | Open             |
| P-72  | 171                | J-17       | J-18      | 12.0             | PVC      | 145.0               | 204                | 0.58               | 0.000                | Open             |
| P-73  | 628                | J-32       | J-18      | 6.0              | PVC      | 145.0               | 24                 | 0.27               | 0.000                | Open             |
| P-74  | 461                | J-32       | J-17      | 6.0              | PVC      | 145.0               | 19                 | 0.22               | 0.000                | Open             |
| P-75  | 252                | J-31       | J-41      | 6.0              | PVC      | 145.0               | 4                  | 0.05               | 0.000                | Open             |
| P-76  | 221                | J-31       | J-32      | 6.0              | PVC      | 145.0               | 38                 | 0.43               | 0.000                | Open             |
| P-77  | 277                | J-72       | J-17      | 12.0             | PVC      | 145.0               | 181                | 0.51               | 0.000                | Open             |
| P-78  | 380                | J-72       | J-79      | 10.0             | PVC      | 145.0               | 109                | 0.44               | 0.000                | Open             |
| P-79  | 278                | J-39       | J-31      | 6.0              | PVC      | 145.0               | 28                 | 0.32               | 0.000                | Open             |

| Label | Length   | Start Node | Stop Node | Diameter | Material | Hazen-Williams | Flow       | Velocity | Headloss | Status (Initial) |
|-------|----------|------------|-----------|----------|----------|----------------|------------|----------|----------|------------------|
|       | (Scaled) |            |           | (in)     |          | С              | (Absolute) | (ft/s)   | Gradient | ( 14.)           |
|       | (ft)     |            |           |          |          |                | (gpm)      |          | (ft/ft)  |                  |
| P-80  | 298      | J-79       | J-39      | 10.0     | PVC      | 145.0          | 87         | 0.36     | 0.000    | Open             |
| P-81  | 527      | J-40       | J-98      | 6.0      | PVC      | 145.0          | 0          | 0.00     | 0.000    | Open             |
| P-82  | 252      | J-39       | J-40      | 10.0     | PVC      | 145.0          | 89         | 0.36     | 0.000    | Open             |
| P-83  | 1,153    | J-45       | J-57      | 10.0     | PVC      | 145.0          | 8          | 0.03     | 0.000    | Open             |
| P-84  | 264      | J-40       | J-45      | 10.0     | PVC      | 145.0          | 62         | 0.25     | 0.000    | Open             |
| P-85  | 781      | J-45       | J-54      | 10.0     | PVC      | 145.0          | 36         | 0.15     | 0.000    | Open             |
| P-86  | 273      | J-61       | J-66      | 6.0      | PVC      | 145.0          | 12         | 0.13     | 0.000    | Open             |
| P-87  | 519      | J-54       | J-61      | 6.0      | PVC      | 145.0          | 21         | 0.24     | 0.000    | Open             |
| P-88  | 269      | J-62       | J-63      | 6.0      | PVC      | 145.0          | 4          | 0.05     | 0.000    | Open             |
| P-89  | 268      | J-61       | J-62      | 6.0      | PVC      | 145.0          | 15         | 0.17     | 0.000    | Open             |
| P-90  | 899      | J-92       | J-103     | 6.0      | PVC      | 145.0          | 1          | 0.01     | 0.000    | Open             |
| P-91  | 511      | J-62       | J-92      | 6.0      | PVC      | 145.0          | 14         | 0.16     | 0.000    | Open             |
| P-92  | 898      | J-93       | J-36      | 6.0      | PVC      | 145.0          | 2          | 0.02     | 0.000    | Open             |
| P-93  | 475      | J-92       | J-93      | 6.0      | PVC      | 145.0          | 6          | 0.06     | 0.000    | Open             |
| P-94  | 260      | J-40       | J-46      | 6.0      | PVC      | 145.0          | 20         | 0.23     | 0.000    | Open             |
| P-95  | 258      | J-45       | J-15      | 6.0      | PVC      | 145.0          | 12         | 0.13     | 0.000    | Open             |
| P-96  | 262      | J-46       | J-15      | 6.0      | PVC      | 145.0          | 3          | 0.04     | 0.000    | Open             |
| P-97  | 262      | J-53       | J-54      | 6.0      | PVC      | 145.0          | 13         | 0.15     | 0.000    | Open             |
| P-98  | 779      | J-15       | J-53      | 6.0      | PVC      | 145.0          | 10         | 0.11     | 0.000    | Open             |
| P-99  | 766      | J-61       | J-53      | 6.0      | PVC      | 145.0          | 15         | 0.17     | 0.000    | Open             |
| P-100 | 193      | J-6        | J-23      | 6.0      | PVC      | 145.0          | 2          | 0.02     | 0.000    | Open             |
| P-101 | 30       | J-5        | J-6       | 8.0      | PVC      | 145.0          | 11         | 0.07     | 0.000    | Open             |
| P-102 | 13       | J-4        | J-5       | 6.0      | PVC      | 145.0          | 12         | 0.14     | 0.000    | Open             |
| P-103 | 447      | J-84       | J-85      | 6.0      | PVC      | 145.0          | 11         | 0.12     | 0.000    | Open             |
| P-104 | 508      | J-85       | J-4       | 8.0      | PVC      | 145.0          | 13         | 0.09     | 0.000    | Open             |
| P-105 | 703      | J-96       | J-113     | 6.0      | PVC      | 145.0          | 46         | 0.52     | 0.000    | Open             |
| P-106 | 175      | J-113      | J-69      | 6.0      | PVC      | 145.0          | 23         | 0.26     | 0.000    | Open             |
| P-107 | 531      | J-69       | J-85      | 8.0      | PVC      | 145.0          | 17         | 0.11     | 0.000    | Open             |
| P-108 | 434      | J-72       | J-70      | 8.0      | PVC      | 145.0          | 66         | 0.42     | 0.000    | Open             |
| P-109 | 518      | J-70       | J-69      | 8.0      | PVC      | 145.0          | 14         | 0.09     | 0.000    | Open             |
| P-110 | 430      | J-79       | J-77      | 6.0      | PVC      | 145.0          | 16         | 0.18     | 0.000    | Open             |
| P-111 | 378      | J-77       | J-70      | 8.0      | PVC      | 145.0          | 11         | 0.07     | 0.000    | Open             |
| P-112 | 164      | J-15       | J-16      | 6.0      | PVC      | 145.0          | 2          | 0.03     | 0.000    | Open             |
| P-113 | 521      | J-39       | J-27      | 6.0      | PVC      | 145.0          | 18         | 0.21     | 0.000    | Open             |
| P-114 | 683      | J-6        | J-99      | 8.0      | PVC      | 145.0          | 6          | 0.04     | 0.000    | Open             |
| P-115 | 265      | J-46       | J-12      | 6.0      | PVC      | 145.0          | 11         | 0.13     | 0.000    | Open             |
| P-116 | 133      | J-85       | J-115     | 6.0      | PVC      | 145.0          | 11         | 0.13     | 0.000    | Open             |

| Label | Length   | Start Node | Stop Node | Diameter | Material | Hazen-Williams | Flow       | Velocity | Headloss | Status (Initial) |
|-------|----------|------------|-----------|----------|----------|----------------|------------|----------|----------|------------------|
|       | (Scaled) |            |           | (in)     |          | С              | (Absolute) | (ft/s)   | Gradient |                  |
| D 117 | (ft)     | 1 115      | 1.4       |          | DVC      | 4.45.0         | (gpm)      | 0.00     | (ft/ft)  | 0                |
| P-117 | 644      | J-115      | J-4       | 6.0      | PVC      | 145.0          | 3          | 0.03     | 0.000    | Open             |
| P-118 | 146      | J-11       | J-12      | 6.0      | PVC      | 145.0          | 2          | 0.02     | 0.000    | Open             |
| P-119 | 275      | J-69       | J-19      | 6.0      | PVC      | 145.0          | 15         | 0.17     | 0.000    | Open             |
| P-120 | 172      | J-19       | J-20      | 6.0      | PVC      | 145.0          | 1          | 0.01     | 0.000    | Open             |
| P-121 | 276      | J-70       | J-71      | 8.0      | PVC      | 145.0          | 35         | 0.23     | 0.000    | Open             |
| P-122 | 521      | J-71       | J-19      | 6.0      | PVC      | 145.0          | 4          | 0.04     | 0.000    | Open             |
| P-123 | 284      | J-77       | J-76      | 6.0      | PVC      | 145.0          | 20         | 0.22     | 0.000    | Open             |
| P-124 | 379      | J-76       | J-71      | 6.0      | PVC      | 145.0          | 10         | 0.12     | 0.000    | Open             |
| P-125 | 209      | J-27       | J-28      | 6.0      | PVC      | 145.0          | 12         | 0.14     | 0.000    | Open             |
| P-126 | 283      | J-28       | J-76      | 6.0      | PVC      | 145.0          | 23         | 0.26     | 0.000    | Open             |
| P-127 | 204      | J-12       | J-26      | 6.0      | PVC      | 145.0          | 7          | 0.08     | 0.000    | Open             |
| P-128 | 273      | J-28       | J-26      | 6.0      | PVC      | 145.0          | 17         | 0.19     | 0.000    | Open             |
| P-129 | 261      | J-26       | J-49      | 6.0      | PVC      | 145.0          | 13         | 0.14     | 0.000    | Open             |
| P-130 | 287      | J-49       | J-78      | 6.0      | PVC      | 145.0          | 6          | 0.06     | 0.000    | Open             |
| P-131 | 284      | J-71       | J-64      | 6.0      | PVC      | 145.0          | 15         | 0.17     | 0.000    | Open             |
| P-132 | 340      | J-26       | J-58      | 6.0      | PVC      | 145.0          | 8          | 0.09     | 0.000    | Open             |
| P-133 | 346      | J-28       | J-13      | 6.0      | PVC      | 145.0          | 14         | 0.16     | 0.000    | Open             |
| P-134 | 273      | J-58       | J-13      | 6.0      | PVC      | 145.0          | 10         | 0.11     | 0.000    | Open             |
| P-135 | 345      | J-49       | J-59      | 6.0      | PVC      | 145.0          | 4          | 0.04     | 0.000    | Open             |
| P-136 | 263      | J-58       | J-59      | 6.0      | PVC      | 145.0          | 10         | 0.11     | 0.000    | Open             |
| P-137 | 344      | J-78       | J-75      | 6.0      | PVC      | 145.0          | 2          | 0.03     | 0.000    | Open             |
| P-138 | 282      | J-59       | J-75      | 6.0      | PVC      | 145.0          | 4          | 0.05     | 0.000    | Open             |
| P-139 | 162      | J-13       | J-14      | 6.0      | PVC      | 145.0          | 2          | 0.02     | 0.000    | Open             |
| P-140 | 272      | J-64       | J-65      | 6.0      | PVC      | 145.0          | 6          | 0.07     | 0.000    | Open             |
| P-141 | 661      | J-64       | J-29      | 6.0      | PVC      | 145.0          | 5          | 0.05     | 0.000    | Open             |
| P-142 | 368      | J-29       | J-65      | 6.0      | PVC      | 145.0          | 3          | 0.04     | 0.000    | Open             |
| P-143 | 702      | J-19       | J-116     | 6.0      | PVC      | 145.0          | 9          | 0.11     | 0.000    | Open             |
| P-144 | 100      | J-116      | J-102     | 6.0      | PVC      | 145.0          | 2          | 0.02     | 0.000    | Open             |
| P-145 | 214      | J-29       | J-30      | 6.0      | PVC      | 145.0          | 3          | 0.04     | 0.000    | Open             |
| P-146 | 533      | J-58       | J-90      | 6.0      | PVC      | 145.0          | 4          | 0.05     | 0.000    | Open             |
| P-147 | 438      | J-75       | J-91      | 6.0      | PVC      | 145.0          | 1          | 0.01     | 0.000    | Open             |
| P-148 | 708      | J-59       | J-91      | 6.0      | PVC      | 145.0          | 3          | 0.03     | 0.000    | Open             |
| P-149 | 1,683    | J-107      | J-109     | 12.0     | PVC      | 145.0          | 512        | 1.45     | 0.001    | Open             |
| P-150 | 2,220    | J-109      | J-108     | 12.0     | PVC      | 145.0          | 512        | 1.45     | 0.001    | Open             |
| P-151 | 3,683    | J-104      | J-111     | 12.0     | PVC      | 145.0          | 212        | 0.60     | 0.000    | Open             |
| P-152 | 966      | J-111      | J-110     | 12.0     | PVC      | 145.0          | 212        | 0.60     | 0.000    | Open             |
| P-153 |          | J-117      | J-81      |          | PVC      | 145.0          | 29         | 0.33     | 0.000    | Open             |
| L-133 | 027      | J-TT/      | 1-01      | 0.0      | FVC      | 143.0          | 29         | 0.33     | 0.000    | Open             |

Pipe Table - Time: 0.00 hours

| Label | Length<br>(Scaled)<br>(ft) | Start Node | Stop Node | Diameter<br>(in) | Material | Hazen-Williams<br>C | Flow<br>(Absolute)<br>(gpm) | Velocity<br>(ft/s) | Headloss<br>Gradient<br>(ft/ft) | Status (Initial) |
|-------|----------------------------|------------|-----------|------------------|----------|---------------------|-----------------------------|--------------------|---------------------------------|------------------|
| P-154 | 270                        | J-63       | J-66      | 6.0              | PVC      | 145.0               | 8                           | 0.09               | 0.000                           | Open             |
| P-155 | 670                        | J-65       | J-116     | 6.0              | PVC      | 145.0               | 1                           | 0.02               | 0.000                           | Open             |
| P-156 | 493                        | J-20       | J-115     | 6.0              | PVC      | 145.0               | 2                           | 0.03               | 0.000                           | Open             |
| P-157 | 243                        | J-84       | J-113     | 6.0              | PVC      | 145.0               | 18                          | 0.20               | 0.000                           | Open             |
| P-158 | 661                        | J-81       | J-87      | 6.0              | PVC      | 145.0               | 10                          | 0.12               | 0.000                           | Open             |
| P-159 | 373                        | J-83       | J-114     | 6.0              | PVC      | 145.0               | 9                           | 0.10               | 0.000                           | Open             |
| P-160 | 522                        | J-67       | J-47      | 6.0              | PVC      | 145.0               | 11                          | 0.13               | 0.000                           | Open             |
| P-161 | 785                        | J-100      | J-97      | 6.0              | PVC      | 145.0               | 3                           | 0.04               | 0.000                           | Open             |
| P-162 | 763                        | J-101      | J-97      | 6.0              | PVC      | 145.0               | 6                           | 0.07               | 0.000                           | Open             |
| P-163 | 256                        | J-56       | J-89      | 6.0              | PVC      | 145.0               | 3                           | 0.04               | 0.000                           | Open             |
| P-164 | 233                        | J-35       | J-103     | 6.0              | PVC      | 145.0               | 6                           | 0.07               | 0.000                           | Open             |
| P-165 | 779                        | J-103      | J-118     | 6.0              | PVC      | 145.0               | 8                           | 0.09               | 0.000                           | Open             |

| Label | Elevation<br>(ft) | Zone          | Demand Collection                        | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|------------------------------------------|-----------------|----------------------------|-------------------|
| J-1   | 5,090.55          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.13                   | 79                |
| J-2   | 5,074.99          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.09                   | 85                |
| J-3   | 5,074.98          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.10                   | 85                |
| J-4   | 5,088.83          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.09                   | 79                |
| J-5   | 5,088.97          | <none></none> | <collection: 1="" item=""></collection:> | 1               | 5,272.09                   | 79                |
| J-6   | 5,088.48          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.09                   | 79                |
| J-7   | 5,118.08          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.22                   | 67                |
| J-8   | 5,120.11          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,272.24                   | 66                |
| J-9   | 5,091.56          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.13                   | 78                |
| J-10  | 5,097.08          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.13                   | 76                |
| J-11  | 5,048.08          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.07                   | 97                |
| J-12  | 5,058.45          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.07                   | 92                |
| J-13  | 5,107.71          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.07                   | 71                |
| J-14  | 5,091.23          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.07                   | 78                |
| J-15  | 5,039.74          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.07                   | 101               |
| J-16  | 5,041.86          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.07                   | 100               |
| J-17  | 5,088.75          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.17                   | 79                |
| J-18  | 5,096.97          | <none></none> | <collection: 1="" item=""></collection:> | 10              | 5,272.19                   | 76                |
| J-19  | 5,087.49          | <none></none> | <collection: 1="" item=""></collection:> | 8               | 5,272.09                   | 80                |

# **2045 Peak Hour w/ Improvements and Reduced Leakage** Junction Table - Time: 0.00 hours

| Label        | Elevation<br>(ft)    | Zone          | Demand Collection                        | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|--------------|----------------------|---------------|------------------------------------------|-----------------|----------------------------|-------------------|
| J-20         | 5,087.59             | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.09                   | 80                |
| J-21         | 5,064.77             | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.07                   | 90                |
| J-22         | 5,061.85             | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.07                   | 91                |
| J-23         | 5,090.66             | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.09                   | 78                |
| J-24         | 5,099.33             | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.18                   | 75                |
| J-25         | 5,107.11             | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.18                   | 71                |
| J-26         | 5,067.27             | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.07                   | 89                |
| J-27         | 5,069.96             | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.08                   | 87                |
| J-28         | 5,087.30             | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.07                   | 80                |
| J-29         | 5,097.72             | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,272.08                   | 75                |
| J-30         | 5,095.31             | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.08                   | 76                |
| J-31         | 5,050.18             | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.12                   | 96                |
| J-32         | 5,061.81             | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.15                   | 91                |
| J-33         | 5,058.61             | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.05                   | 92                |
| J-34         | 5,049.85             | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.05                   | 96                |
| J-35         | 5,010.67             | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.02                   | 113               |
| J-36         | 5,009.18             | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.02                   | 114               |
| J-37         | 5,106.14             | <none></none> | <collection: 1="" item=""></collection:> | 9               | 5,272.18                   | 72                |
| J-39         | 5,048.66             | <none></none> | <collection: 1="" item=""></collection:> | 8               | 5,272.10                   | 97                |
| J-40         | 5,041.60             | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,272.08                   | 100               |
| J-41         | 5,056.26             | <none></none> | <collection: 1="" item=""></collection:> | 10              | 5,272.12                   | 93                |
| J-42         | 5,092.61             | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.12                   | 78                |
| J-43         | 5,078.04             | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,272.10                   | 84                |
| J-44         | 5,070.00             | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.10                   | 87                |
| J-45         | 5,037.84             | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.07                   | 101               |
| J-46         | 5,042.76             | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.07                   | 99                |
| J-47         | -                    |               |                                          | 5               | 5,272.07                   | 95                |
| J-47<br>J-48 | 5,051.79<br>5,088.63 | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.12                   | 79<br>79          |
|              | -                    |               |                                          | 3               | -                          | 99                |
| J-49         | 5,042.46             | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.06                   | 72                |
| J-50         | 5,106.21             | <none></none> | <collection: 1="" item=""></collection:> |                 | 5,272.19                   |                   |
| J-51         | 5,097.31             | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.19                   | 76                |
| J-52         | 5,081.27             | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.11                   | 83                |
| J-53         | 5,029.00             | <none></none> | <collection: 1="" item=""></collection:> | 8               | 5,272.06                   | 105               |
| J-54         | 5,027.73             | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.07                   | 106               |
| J-55         | 5,038.43             | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,272.04                   | 101               |
| J-56         | 5,029.39             | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,272.04                   | 105               |
| J-57         | 5,066.97             | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,272.07                   | 89                |

# **2045 Peak Hour w/ Improvements and Reduced Leakage** Junction Table - Time: 0.00 hours

| Label | Elevation<br>(ft) | Zone          | Demand Collection                        | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|------------------------------------------|-----------------|----------------------------|-------------------|
| J-58  | 5,068.85          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.06                   | 88                |
| J-59  | 5,041.81          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.06                   | 100               |
| J-60  | 5,106.38          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.20                   | 72                |
| J-61  | 5,024.18          | <none></none> | <collection: 1="" item=""></collection:> | 10              | 5,272.04                   | 107               |
| J-62  | 5,021.41          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.03                   | 108               |
| J-63  | 5,020.41          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.03                   | 109               |
| J-64  | 5,108.06          | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,272.09                   | 71                |
| J-65  | 5,121.04          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.08                   | 65                |
| J-66  | 5,023.71          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.04                   | 107               |
| J-67  | 5,032.50          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.04                   | 104               |
| J-68  | 5,025.43          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.04                   | 107               |
| J-69  | 5,078.56          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.10                   | 84                |
| J-70  | 5,073.98          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.10                   | 86                |
| J-71  | 5,091.91          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.09                   | 78                |
| J-72  | 5,066.97          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,272.14                   | 89                |
| J-73  | 5,131.56          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.26                   | 61                |
| J-74  | 5,137.70          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.25                   | 58                |
| J-75  | 5,034.40          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.06                   | 103               |
| J-76  | 5,101.86          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,272.09                   | 74                |
| J-77  | 5,075.31          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.10                   | 85                |
| J-78  | 5,036.50          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.06                   | 102               |
| J-79  | 5,057.50          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.11                   | 93                |
| J-80  | 5,100.76          | <none></none> | <collection: 1="" item=""></collection:> | 5               | 5,272.22                   | 74                |
| J-81  | 5,087.54          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.21                   | 80                |
| J-82  | 5,056.67          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.07                   | 93                |
| J-83  | 5,045.80          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.07                   | 98                |
| J-84  | 5,081.01          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,272.10                   | 83                |
| J-85  | 5,082.50          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.10                   | 82                |
| J-86  | 5,119.55          | <none></none> | <collection: 1="" item=""></collection:> | 3               | 5,272.40                   | 66                |
| J-87  | 5,111.43          | <none></none> | <collection: 1="" item=""></collection:> | 2               | 5,272.21                   | 70                |
| J-88  | 5,063.58          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.10                   | 90                |
| J-89  | 5,030.14          | <none></none> | <collection: 1="" item=""></collection:> | 6               | 5,272.04                   | 105               |
| J-90  | 5,056.93          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.06                   | 93                |
| J-91  | 5,027.47          | <none></none> | <collection: 1="" item=""></collection:> | 4               | 5,272.06                   | 106               |
| J-92  | 5,015.59          | <none></none> | <collection: 1="" item=""></collection:> | 10              | 5,272.02                   | 111               |
| J-93  | 5,012.00          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,272.02                   | 112               |
| J-94  | 5,031.81          | <none></none> | <collection: 1="" item=""></collection:> | 7               | 5,272.04                   | 104               |

# **2045 Peak Hour w/ Improvements and Reduced Leakage** Junction Table - Time: 0.00 hours

| Label | Elevation<br>(ft) | Zone          | Demand Collection                         | Demand<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|---------------|-------------------------------------------|-----------------|----------------------------|-------------------|
| J-95  | 5,071.86          | <none></none> | <collection: 1="" item=""></collection:>  | 8               | 5,272.07                   | 87                |
| J-96  | 5,110.08          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,272.25                   | 70                |
| J-97  | 5,018.60          | <none></none> | <collection: 1="" item=""></collection:>  | 2               | 5,272.03                   | 110               |
| J-98  | 5,042.61          | <none></none> | <collection: 1="" item=""></collection:>  | 13              | 5,272.08                   | 99                |
| J-99  | 5,069.96          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,272.09                   | 87                |
| J-100 | 5,018.92          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,272.03                   | 110               |
| J-101 | 5,008.54          | <none></none> | <collection: 1="" item=""></collection:>  | 2               | 5,272.03                   | 114               |
| J-102 | 5,119.06          | <none></none> | <collection: 1="" item=""></collection:>  | 2               | 5,272.09                   | 66                |
| J-103 | 5,012.39          | <none></none> | <collection: 1="" item=""></collection:>  | 1               | 5,272.02                   | 112               |
| J-104 | 5,141.69          | <none></none> | <collection: 0="" items=""></collection:> | 0               | 5,272.97                   | 57                |
| J-105 | 5,110.65          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,272.30                   | 70                |
| J-106 | 5,093.82          | <none></none> | <collection: 1="" item=""></collection:>  | 2               | 5,272.13                   | 77                |
| J-107 | 5,266.76          | Tank Node     | <collection: 0="" items=""></collection:> | 0               | 5,276.90                   | 4                 |
| J-108 | 5,130.43          | <none></none> | <collection: 0="" items=""></collection:> | 0               | 5,274.56                   | 62                |
| J-109 | 5,186.44          | <none></none> | <collection: 0="" items=""></collection:> | 0               | 5,275.89                   | 39                |
| J-110 | 5,119.47          | <none></none> | <collection: 1="" item=""></collection:>  | 4               | 5,272.43                   | 66                |
| J-111 | 5,136.22          | <none></none> | <collection: 0="" items=""></collection:> | 0               | 5,272.54                   | 59                |
| J-112 | 5,132.34          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,272.25                   | 61                |
| J-113 | 5,080.08          | <none></none> | <collection: 1="" item=""></collection:>  | 5               | 5,272.11                   | 83                |
| J-114 | 5,050.04          | <none></none> | <collection: 1="" item=""></collection:>  | 1               | 5,272.06                   | 96                |
| J-115 | 5,082.63          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,272.09                   | 82                |
| J-116 | 5,121.37          | <none></none> | <collection: 1="" item=""></collection:>  | 6               | 5,272.09                   | 65                |
| J-117 | 5,067.58          | <none></none> | <collection: 1="" item=""></collection:>  | 1               | 5,272.13                   | 88                |
| J-118 | 5,018.00          | <none></none> | <collection: 1="" item=""></collection:>  | 2               | 5,272.03                   | 110               |

#### **Tank Table - Time: 0.00 hours**

| Label | Elevation<br>(Base)<br>(ft) | Elevation<br>(Minimum)<br>(ft) | Elevation<br>(Initial)<br>(ft) | Elevation<br>(Maximum)<br>(ft) | Flow (Out net)<br>(gpm) | Hydraulic<br>Grade<br>(ft) | Elevation<br>(ft) | Diameter<br>(ft) | Volume Full<br>(Calculated)<br>(MG) | Percent Full<br>(%) |
|-------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------|----------------------------|-------------------|------------------|-------------------------------------|---------------------|
| T-1   | 5,267.00                    | 5,267.00                       | 5,277.00                       | 5,282.00                       | 512                     | 5,277.00                   | 5,271.27          | 80.00            | 0.56                                | 66.7                |

# **2045 Fire Flow w/ Improvements and Reduced Leakage** Fire Flow Report - Time: 0.00 hours

| Label | Fire Flow  | Fire Flow   | Pressure    | Pressure    | Junction w/ | Pressure     | Junction w/ |
|-------|------------|-------------|-------------|-------------|-------------|--------------|-------------|
|       | Iterations | (Available) | (Calculated | (Calculated | Minimum     | (Calculated  | Minimum     |
|       |            | (gpm)       | Residual)   | Zone Lower  | Pressure    | System Lower | Pressure    |
|       |            |             | (psi)       | Limit)      | (Zone)      | Limit)       | (System)    |
|       |            |             |             | (psi)       |             | (psi)        |             |
| J-1   | 4          | 1,166       | 21          | 20          | J-106       | 4            | J-107       |
| J-2   | 6          | 2,682       | 38          | 20          | J-74        | 4            | J-107       |
| J-3   | 6          | 2,682       | 38          | 20          | J-74        | 4            | J-107       |
| J-4   | 6          | 2,670       | 22          | 20          | J-74        | 4            | J-107       |
| J-5   | 6          | 2,660       | 21          | 20          | J-23        | 4            | J-107       |
| J-6   | 6          | 2,642       | 21          | 20          | J-23        | 4            | J-107       |
| J-7   | 6          | 2,579       | 23          | 20          | J-74        | 4            | J-107       |
| J-8   | 6          | 2,549       | 23          | 20          | J-74        | 4            | J-107       |
| J-9   | 5          | 1,958       | 22          | 20          | J-10        | 4            | J-107       |
| J-10  | 3          | 1,793       | 20          | 31          | J-9         | 4            | J-107       |
| J-11  | 4          | 2,572       | 20          | 23          | J-74        | 4            | J-107       |
| J-12  | 6          | 2,674       | 33          | 20          | J-74        | 4            | J-107       |
| J-13  | 4          | 2,295       | 20          | 27          | J-14        | 4            | J-107       |
| J-14  | 3          | 2,074       | 20          | 29          | J-13        | 4            | J-107       |
| J-15  | 6          | 2,677       | 49          | 20          | J-74        | 4            | J-107       |
| J-16  | 6          | 2,677       | 22          | 20          | J-74        | 4            | J-107       |
| J-17  | 6          | 2,670       | 39          | 20          | J-74        | 4            | J-107       |
| J-18  | 6          | 2,669       | 36          | 20          | J-74        | 4            | J-107       |
| J-19  | 6          | 2,588       | 32          | 20          | J-116       | 4            | J-107       |
| J-20  | 6          | 2,633       | 21          | 20          | J-116       | 4            | J-107       |
| J-21  | 3          | 2,399       | 20          | 28          | J-74        | 4            | J-107       |
| J-22  | 6          | 2,687       | 32          | 20          | J-74        | 4            | J-107       |
| J-23  | 4          | 2,152       | 20          | 33          | J-109       | 4            | J-107       |
| J-24  | 3          | 2,095       | 20          | 33          | J-109       | 4            | J-107       |
| J-25  | 4          | 2,577       | 20          | 23          | J-74        | 4            | J-107       |
| J-26  | 6          | 2,615       | 34          | 20          | J-13        | 4            | J-107       |
| J-27  | 6          | 2,674       | 28          | 20          | J-74        | 4            | J-107       |
| J-28  | 6          | 2,654       | 28          | 20          | J-13        | 4            | J-107       |
| J-29  | 4          | 2,063       | 20          | 21          | J-30        | 4            | J-107       |
| J-30  | 3          | 1,762       | 20          | 34          | J-65        | 4            | J-107       |
| J-31  | 6          | 2,673       | 47          | 20          | J-74        | 4            | J-107       |
| J-32  | 6          | 2,671       | 42          | 20          | J-74        | 4            | J-107       |
| J-33  | 3          | 1,809       | 20          | 35          | J-109       | 4            | J-107       |
| J-34  | 5          | 2,089       | 24          | 20          | J-33        | 4            | J-107       |
| J-35  | 3          | 2,396       | 20          | 24          | J-36        | 4            | J-107       |

# **2045 Fire Flow w/ Improvements and Reduced Leakage** Fire Flow Report - Time: 0.00 hours

| Label | Fire Flow  | Fire Flow   | Pressure    | Pressure    | Junction w/ | Pressure     | Junction w/ |
|-------|------------|-------------|-------------|-------------|-------------|--------------|-------------|
|       | Iterations | (Available) | (Calculated | (Calculated | Minimum     | (Calculated  | Minimum     |
|       |            | (gpm)       | Residual)   | Zone Lower  | Pressure    | System Lower | Pressure    |
|       |            |             | (psi)       | Limit)      | (Zone)      | Limit)       | (System)    |
|       |            |             |             | (psi)       |             | (psi)        |             |
| J-36  | 3          | 2,301       | 20          | 30          | J-74        | 4            | J-107       |
| J-37  | 6          | 2,657       | 23          | 20          | J-74        | 4            | J-107       |
| J-39  | 4          | 2,674       | 55          | 20          | J-74        | 4            | J-107       |
| J-40  | 4          | 2,676       | 57          | 20          | J-74        | 4            | J-107       |
| J-41  | 6          | 2,673       | 32          | 20          | J-74        | 4            | J-107       |
| J-42  | 6          | 2,573       | 22          | 20          | J-10        | 4            | J-107       |
| J-43  | 6          | 2,691       | 33          | 20          | J-74        | 4            | J-107       |
| J-44  | 6          | 2,686       | 38          | 20          | J-74        | 4            | J-107       |
| J-45  | 4          | 2,678       | 58          | 20          | J-74        | 4            | J-107       |
| J-46  | 6          | 2,676       | 49          | 20          | J-74        | 4            | J-107       |
| J-47  | 6          | 2,643       | 23          | 20          | J-33        | 4            | J-107       |
| J-48  | 6          | 2,676       | 29          | 20          | J-74        | 4            | J-107       |
| J-49  | 6          | 2,578       | 32          | 20          | J-13        | 4            | J-107       |
| J-50  | 4          | 2,530       | 20          | 25          | J-74        | 4            | J-107       |
| J-51  | 4          | 2,685       | 20          | 20          | J-74        | 4            | J-107       |
| J-52  | 6          | 2,689       | 27          | 20          | J-74        | 4            | J-107       |
| J-53  | 6          | 2,678       | 47          | 20          | J-74        | 4            | J-107       |
| J-54  | 4          | 2,678       | 56          | 20          | J-74        | 4            | J-107       |
| J-55  | 6          | 2,682       | 29          | 20          | J-74        | 4            | J-107       |
| J-56  | 6          | 2,682       | 26          | 20          | J-74        | 4            | J-107       |
| J-57  | 6          | 2,681       | 43          | 20          | J-74        | 4            | J-107       |
| J-58  | 6          | 2,495       | 31          | 20          | J-13        | 4            | J-107       |
| J-59  | 6          | 2,557       | 33          | 20          | J-13        | 4            | J-107       |
| J-60  | 6          | 2,691       | 24          | 20          | J-74        | 4            | J-107       |
| J-61  | 6          | 2,679       | 41          | 20          | J-74        | 4            | J-107       |
| J-62  | 6          | 2,679       | 34          | 20          | J-74        | 4            | J-107       |
| J-63  | 5          | 2,679       | 25          | 20          | J-74        | 4            | J-107       |
| J-64  | 6          | 2,182       | 24          | 20          | J-65        | 4            | J-107       |
| J-65  | 4          | 2,055       | 20          | 29          | J-116       | 4            | J-107       |
| J-66  | 6          | 2,679       | 25          | 20          | J-74        | 4            | J-107       |
| J-67  | 6          | 2,683       | 37          | 20          | J-74        | 4            | J-107       |
| J-68  | 3          | 2,350       | 20          | 29          | J-74        | 4            | J-107       |
| J-69  | 8          | 2,670       | 37          | 20          | J-74        | 4            | J-107       |
| J-70  | 6          | 2,671       | 43          | 20          | J-74        | 4            | J-107       |
| J-71  | 6          | 2,660       | 32          | 20          | J-65        | 4            | J-107       |

# 2045 Fire Flow w/ Improvements and Reduced Leakage

| Label | Fire Flow  | Fire Flow   | Pressure    | Pressure    | Junction w/ | Pressure     | Junction w/ |
|-------|------------|-------------|-------------|-------------|-------------|--------------|-------------|
|       | Iterations | (Available) | (Calculated | (Calculated | Minimum     | (Calculated  | Minimum     |
|       |            | (gpm)       | Residual)   | Zone Lower  | Pressure    | System Lower | Pressure    |
|       |            |             | (psi)       | Limit)      | (Zone)      | Limit)       | (System)    |
|       |            |             |             | (psi)       |             | (psi)        |             |
| J-72  | 5          | 2,671       | 48          | 20          | J-74        | 4            | J-107       |
| J-73  | 6          | 2,030       | 23          | 20          | J-74        | 4            | J-107       |
| J-74  | 3          | 1,547       | 20          | 36          | J-109       | 4            | J-107       |
| J-75  | 6          | 2,564       | 27          | 20          | J-13        | 4            | J-107       |
| J-76  | 6          | 2,672       | 24          | 20          | J-74        | 4            | J-107       |
| J-77  | 6          | 2,672       | 39          | 20          | J-74        | 4            | J-107       |
| J-78  | 6          | 2,570       | 22          | 20          | J-13        | 4            | J-107       |
| J-79  | 4          | 2,673       | 51          | 20          | J-74        | 4            | J-107       |
| J-80  | 6          | 2,536       | 24          | 20          | J-87        | 4            | J-107       |
| J-81  | 6          | 2,484       | 24          | 20          | J-87        | 4            | J-107       |
| J-82  | 6          | 2,689       | 30          | 20          | J-74        | 4            | J-107       |
| J-83  | 6          | 2,688       | 25          | 20          | J-74        | 4            | J-107       |
| J-84  | 6          | 2,670       | 21          | 20          | J-74        | 4            | J-107       |
| J-85  | 8          | 2,670       | 32          | 20          | J-74        | 4            | J-107       |
| J-86  | 6          | 2,679       | 24          | 20          | J-111       | 4            | J-107       |
| J-87  | 3          | 2,128       | 20          | 33          | J-109       | 4            | J-107       |
| J-88  | 6          | 2,692       | 30          | 20          | J-74        | 4            | J-107       |
| J-89  | 6          | 2,682       | 36          | 20          | J-74        | 4            | J-107       |
| J-90  | 3          | 1,828       | 20          | 35          | J-109       | 4            | J-107       |
| J-91  | 3          | 2,480       | 20          | 23          | J-13        | 4            | J-107       |
| J-92  | 3          | 2,613       | 20          | 22          | J-74        | 4            | J-107       |
| J-93  | 3          | 2,293       | 20          | 31          | J-74        | 4            | J-107       |
| J-94  | 6          | 2,683       | 38          | 20          | J-74        | 4            | J-107       |
| J-95  | 6          | 2,684       | 39          | 20          | J-74        | 4            | J-107       |
| J-96  | 6          | 2,668       | 31          | 20          | J-74        | 4            | J-107       |
| J-97  | 6          | 2,682       | 30          | 20          | J-74        | 4            | J-107       |
| J-98  | 6          | 2,678       | 31          | 20          | J-74        | 4            | J-107       |
| J-99  | 4          | 2,490       | 20          | 25          | J-74        | 4            | J-107       |
| J-100 | 6          | 2,682       | 30          | 20          | J-74        | 4            | J-107       |
| J-101 | 3          | 2,566       | 20          | 23          | J-74        | 4            | J-107       |
| J-102 | 3          | 1,796       | 20          | 27          | J-116       | 4            | J-107       |
| J-103 | 3          | 2,573       | 20          | 23          | J-35        | 4            | J-107       |
| J-104 | 4          | 2,841       | 20          | 22          | J-74        | 3            | J-107       |
| J-105 | 6          | 2,668       | 31          | 20          | J-74        | 4            | J-107       |
| J-106 | 3          | 1,084       | 20          | 29          | J-1         | 4            | J-107       |

### 2045 Fire Flow w/ Improvements and Reduced Leakage

| Label | Fire Flow<br>Iterations | Fire Flow<br>(Available)<br>(gpm) | Pressure<br>(Calculated<br>Residual)<br>(psi) | Pressure<br>(Calculated<br>Zone Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(Zone) | Pressure<br>(Calculated<br>System Lower<br>Limit)<br>(psi) | Junction w/<br>Minimum<br>Pressure<br>(System) |
|-------|-------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------|
| J-107 | (N/A)                   | (N/A)                             | (N/A)                                         | (N/A)                                                    | (N/A)                                        | (N/A)                                                      | (N/A)                                          |
| J-108 | 2                       | 3,500                             | 29                                            | 23                                                       | J-109                                        | 3                                                          | J-107                                          |
| J-109 | 2                       | 3,500                             | 23                                            | 43                                                       | J-104                                        | 3                                                          | J-107                                          |
| J-110 | 6                       | 2,666                             | 25                                            | 20                                                       | J-111                                        | 4                                                          | J-107                                          |
| J-111 | 4                       | 2,629                             | 20                                            | 24                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-112 | 4                       | 2,091                             | 20                                            | 21                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-113 | 6                       | 2,669                             | 32                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-114 | 6                       | 2,686                             | 33                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-115 | 6                       | 2,670                             | 27                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |
| J-116 | 4                       | 1,945                             | 20                                            | 21                                                       | J-102                                        | 4                                                          | J-107                                          |
| J-117 | 6                       | 2,238                             | 31                                            | 20                                                       | J-106                                        | 4                                                          | J-107                                          |
| J-118 | 5                       | 2,681                             | 25                                            | 20                                                       | J-74                                         | 4                                                          | J-107                                          |

# **Appendix U**

**Financial Information** 

12/08/22 11:07:30

# CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 19

Page: 1 of 3 Report ID: B110

5210 Water Fund

| Account                                      | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|----------------------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 330000 INTERGOVERNMENTAL REVENUES            |                           |              |                   |                           |               |
| 331010 CDBG/Home                             | 1,504.64                  | 1,504.64     | 0.00              | -1,504.64                 | ** %          |
| Account Group Total:                         | 1,504.64                  | 1,504.64     | 0.00              | -1,504.64                 | ** %          |
| 340000 Charges for Services                  |                           |              |                   |                           |               |
| 343021 Metered Water Sales                   | 0.00                      | 180,853.47   | 195,000.00        | 14,146.53                 | 93 %          |
| 343026 Water Installation Charges            | 0.00                      | 4,500.00     | 1,000.00          | -3,500.00                 | 450 %         |
| 343027 Miscellaneous (meter, or turn on/off) | 0.00                      | 11,194.64    | 8,000.00          | -3,194.64                 | 140 %         |
| 343046 Miscellaneous Revenues                | 0.00                      | -31.44       | 0.00              | 31.44                     | ** %          |
| Account Group Total:                         | 0.00                      | 196,516.67   | 204,000.00        | 7,483.33                  | 96 %          |
| 370000 Investment and Royalty Earnings       |                           |              |                   |                           |               |
| 371010 Investment Earnings                   | 0.00                      | 3,327.70     | 50.00             | -3,277.70                 | *** %         |
| Account Group Total:                         | 0.00                      | 3,327.70     | 50.00             | -3,277.70                 | *** %         |
| Fund Total:                                  | 1,504.64                  | 201,349.01   | 204,050.00        | 2,700.99                  | 99 %          |

12/08/22 11:07:30

# CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 19

Page: 2 of 3 Report ID: B110

5220 Water Line Replacement

| Account                                   | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|-------------------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 340000 Charges for Services               |                           |              |                   |                           |               |
| 343022 Unmetered Water Sales - Water Line | 0.00                      | 34,874.66    | 34,000.00         | -874.66                   | 103 %         |
| Account Group Total:                      | 0.00                      | 34,874.66    | 34,000.00         | -874.66                   | 103 %         |
| 370000 Investment and Royalty Earnings    |                           |              |                   |                           |               |
| 371010 Investment Earnings                | 0.00                      | 4,675.25     | 0.00              | -4,675.25                 | ** %          |
| Account Group Total:                      | 0.00                      | 4,675.25     | 0.00              | -4,675.25                 | ** %          |
| Fund Total:                               | 0.00                      | 39,549.91    | 34,000.00         | -5,549.91                 | 116 %         |

12/08/22 11:07:30

# CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 19

Page: 3 of 3 Report ID: B110

5223 Water Tank Project

| Account                           | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|-----------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 330000 INTERGOVERNMENTAL REVENUES |                           |              |                   |                           |               |
| 335051 Water Tank Debt            | 0.00                      | 0.00         | 146,000.00        | 146,000.00                | 0 %           |
| Account Group Total:              | 0.00                      | 0.00         | 146,000.00        | 146,000.00                | 0 %           |
| 360000 Miscellaneous Revenue      |                           |              |                   |                           |               |
| 363021 Bond Principal Assessments | 0.00                      | 171,534.94   | 0.00              | -171,534.94               | ** %          |
| Account Group Total:              | 0.00                      | 171,534.94   | 0.00              | -171,534.94               | ** %          |
| Fund Total:                       | 0.00                      | 171,534.94   | 146,000.00        | -25,534.94                | 117 %         |
| Grand Total:                      | 1,504.64                  | 412,433.86   | 384,050.00        | -28,383.86                | 107 %         |

### CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 20

Page: 1 of 4 Report ID: B110

5210 Water Fund

| Account                                                                                                                                                                                                                   | Received<br>Current Month                    | Received YTD                                                                | Estimated Revenue                      | Revenue<br>To Be Received                                                        | %<br>Received                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|
| 330000 INTERGOVERNMENTAL REVENUES 336020 On-behalf state revenue Account Group Total:                                                                                                                                     | 890.77<br><b>890.7</b> 7                     | 890.77<br>890 <b>.</b> 77                                                   | 0.00                                   | -890.77<br><b>-890.7</b> 7                                                       | ** %<br>** %                                |
| 340000 Charges for Services 343021 Metered Water Sales 343022 Unmetered Water Sales - Water Line 343025 Water Permits 343026 Water Installation Charges 343027 Miscellaneous (meter, or turn on/off) Account Group Total: | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 163, 836. 81<br>162. 00<br>80. 00<br>2, 215. 50<br>9, 342. 27<br>175,636.58 | 9, 000. 00<br>3, 000. 00<br>8, 000. 00 | 15, 163. 19<br>3, 838. 00<br>8, 920. 00<br>784. 50<br>-1, 342. 27<br>27, 363. 42 | 92 %<br>4 %<br>1 %<br>74 %<br>117 %<br>87 % |
| 370000 Investment and Royalty Earnings<br>371010 Investment Earnings<br>Account Group Total:                                                                                                                              | 0.00<br>0.00                                 | 2,542.25<br><b>2,542.25</b>                                                 | ,                                      | 357.75<br><b>357.75</b>                                                          | 88 %<br>88 %                                |
| Fund Total:                                                                                                                                                                                                               | 890.77                                       | 179,069.60                                                                  | 205,900.00                             | 26,830.40                                                                        | 87 %                                        |

### CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 20

Page: 2 of 4 Report ID: B110

5220 Water Line Replacement

| Account                                                                  | Received<br>Current Month | Received YTD                 | Estimated Revenue | Revenue<br>To Be Received | %<br>Received       |
|--------------------------------------------------------------------------|---------------------------|------------------------------|-------------------|---------------------------|---------------------|
| 340000 Charges for Services<br>343022 Unmetered Water Sales - Water Line | 0. 00                     | 34, 831, 45                  | 34, 000, 00       | -831. 45                  | 102 %               |
| Account Group Total:                                                     | 0.00                      | 34,831.45                    | - 1               | -831.45                   | 102 %               |
| 370000 Investment and Royal ty Earnings                                  | 0.00                      | 2 72/ 10                     | 2 000 00          | 1 072 02                  | 70.0/               |
| 371010 Investment Earnings Account Group Total:                          | 0.00<br>0.00              | 2,726.18<br><b>2,726.</b> 18 | -,                | 1,073.82<br>1,073.82      | 72 %<br><b>72</b> % |
| Fund Total:                                                              | 0.00                      | 37,557.63                    | 37,800.00         | 242.37                    | 99 %                |

### CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 20

Page: 3 of 4 Report ID: B110

5221 Water Trans. Main

| Account                                            | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|----------------------------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 330000 INTERGOVERNMENTAL REVENUES                  |                           |              |                   |                           |               |
| 331026 SRF Loan "B" - Water Line Main Transmission | - 0.00                    | 0.00         | 100, 000. 00      | 100, 000. 00              | 0 %           |
| 331027 SRF Loan "A" Forgiveness-Water Main Line    | 0. 00                     | 0.00         | 100, 000. 00      | 100, 000. 00              | 0 %           |
| 334120 TSEP                                        | 0. 00                     | 0.00         | 200, 000. 00      | 200, 000. 00              | 0 %           |
| Account Group Total:                               | 0.00                      | 0.00         | 400,000.00        | 400,000.00                | 0 %           |
| 380000 Other Financing Sources                     |                           |              |                   |                           |               |
| 383000 Interfund Operating Transfer                | 0.00                      | 0.00         | 100, 000. 00      | 100, 000. 00              | 0 %           |
| Account Group Total:                               | 0.00                      | 0.00         | 100,000.00        | 100,000.00                | 0 %           |
| Fund Total:                                        | 0.00                      | 0.00         | 500,000.00        | 500,000.00                | 0 %           |

### CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 20

Page: 4 of 4 Report ID: B110

5223 Water Tank Project

| Account                           | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|-----------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 360000 Mi scel I aneous Revenue   |                           |              |                   |                           |               |
| 363021 Bond Principal Assessments | 0.00                      | 170, 621. 76 | 168, 000. 00      | -2, 621. 76               | 102 %         |
| Account Group Total:              | 0.00                      | 170,621.76   | 168,000.00        | -2,621.76                 | 102 %         |
| Fund Total:                       | 0.00                      | 170,621.76   | 168,000.00        | -2,621.76                 | 102 %         |
| Grand Total:                      | 890.77                    | 387,248.99   | 911,700.00        | 524,451.01                | 42 %          |

12/08/22 11: 13: 21

### CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 21

Page: 1 of 4 Report ID: B110

5210 Water Fund

| Account                                      | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|----------------------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 330000 INTERGOVERNMENTAL REVENUES            |                           |              |                   |                           |               |
| 336020 On-behalf state revenue               | 2, 483. 00                | 2, 483. 00   | 0.00              | -2, 483. 00               | ** %          |
| Account Group Total:                         | 2,483.00                  | 2,483.00     | 0.00              | -2,483.00                 | ** %          |
| 340000 Charges for Services                  |                           |              |                   |                           |               |
| 343021 Metered Water Sales                   | 0.00                      | 186, 952. 06 | 160, 000. 00      | -26, 952. 06              | 117 %         |
| 343022 Unmetered Water Sales - Water Line    | 0.00                      | 887. 79      | 100.00            | -787. 79                  | 888 %         |
| 343025 Water Permits                         | 0.00                      | 0.00         | 60.00             | 60.00                     | 0 %           |
| 343026 Water Installation Charges            | 0.00                      | 5, 461. 64   | 2, 500. 00        | -2, 961. 64               | 218 %         |
| 343027 Miscellaneous (meter, or turn on/off) | 0. 00                     | 3, 833. 65   | 8, 000. 00        | 4, 166. 35                | 48 %          |
| Account Group Total:                         | 0.00                      | 197,135.14   | 170,660.00        | -26,475.14                | 116 %         |
| 370000 Investment and Royalty Earnings       |                           |              |                   |                           |               |
| 371010 Investment Earnings                   | 0.00                      | 1, 243, 03   | 1, 150, 00        | -93. 03                   | 108 %         |
| Account Group Total:                         | 0.00                      | 1,243.03     | 1,150.00          | -93.03                    | 108 %         |
| Fund Total:                                  | 2,483.00                  | 200,861.17   | 171,810.00        | -29,051.17                | 117 %         |

12/08/22 11: 13: 21

### CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 21

Page: 2 of 4 Report ID: B110

5220 Water Line Replacement

| Account                                   | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|-------------------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 340000 Charges for Services               |                           |              |                   |                           |               |
| 343022 Unmetered Water Sales - Water Line | 0.00                      | 35, 250. 21  | 34, 000. 00       | -1, 250. 21               | 104 %         |
| Account Group Total:                      | 0.00                      | 35,250.21    | 34,000.00         | -1,250.21                 | 104 %         |
| 370000 Investment and Royalty Earnings    |                           |              |                   |                           |               |
| 371010 Investment Earnings                | 0.00                      | 87. 88       | 1, 000. 00        | 912. 12                   | 9 %           |
| Account Group Total:                      | 0.00                      | 87.88        | 1,000.00          | 912.12                    | 9 %           |
| Fund Total:                               | 0.00                      | 35,338.09    | 35,000.00         | -338.09                   | 101 %         |

12/08/22 11: 13: 21

### CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 21

Page: 3 of 4 Report ID: B110

5221 Water Trans. Main

| Account                                            | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|----------------------------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 330000 INTERGOVERNMENTAL REVENUES                  |                           |              |                   |                           |               |
| 331026 SRF Loan "B" - Water Line Main Transmission | - 0.00                    | 0.00         | 100, 000. 00      | 100, 000. 00              | O %           |
| 331027 SRF Loan "A" Forgiveness-Water Main Line    | 0. 00                     | 0.00         | 100, 000. 00      | 100, 000. 00              | O %           |
| 334120 TSEP                                        | 0. 00                     | 0.00         | 200, 000. 00      | 200, 000. 00              | O %           |
| Account Group Total:                               | 0.00                      | 0.00         | 400,000.00        | 400,000.00                | 0 %           |
| 380000 Other Financing Sources                     |                           |              |                   |                           |               |
| 383000 Interfund Operating Transfer                | 0.00                      | 0.00         | 100, 000. 00      | 100, 000. 00              | 0 %           |
| Account Group Total:                               | 0.00                      | 0.00         | 100,000.00        | 100,000.00                | 0 %           |
| Fund Total:                                        | 0.00                      | 0.00         | 500,000.00        | 500,000.00                | 0 %           |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 13 / 21

Page: 4 of 4 Report ID: B110

5223 Water Tank Project

| Account                           | Received<br>Current Month | Received YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Received |
|-----------------------------------|---------------------------|--------------|-------------------|---------------------------|---------------|
| 360000 Mi scel I aneous Revenue   |                           |              |                   |                           |               |
| 363021 Bond Principal Assessments | 0.00                      | 171, 066. 39 | 168, 000. 00      | -3, 066. 39               | 102 %         |
| Account Group Total:              | 0.00                      | 171,066.39   | 168,000.00        | -3,066.39                 | 102 %         |
| Fund Total:                       | 0.00                      | 171,066.39   | 168,000.00        | -3,066.39                 | 102 %         |
| Grand Total:                      | 2,483.00                  | 407,265.65   | 874,810.00        | 467,544.35                | 47 %          |

## CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 6 / 22

Page: 1 of 4 Report ID: B110

5210 Water Fund

| Account                                      | Received<br>Current Month | Recei ved YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Recei ved |
|----------------------------------------------|---------------------------|---------------|-------------------|---------------------------|----------------|
| 340000 Charges for Services                  |                           |               |                   |                           |                |
| 343021 Metered Water Sales                   | 16, 154. 24               | 209, 708. 66  | 165, 000. 00      | -44, 708. 66              | 127 %          |
| 343022 Unmetered Water Sales - Water Line    | 21.06                     | 280. 72       | 100.00            | -180. 72                  | 281 %          |
| 343025 Water Permits                         | 0.00                      | 0.00          | 60.00             | 60.00                     | 0 %            |
| 343026 Water Installation Charges            | 48. 42                    | 3, 581. 01    | 3, 500. 00        | -81. 01                   | 102 %          |
| 343027 Miscellaneous (meter, or turn on/off) | 1, 850. 10                | 9, 342. 40    | 8, 000. 00        | -1, 342. 40               | 117 %          |
| Account Group Total:                         | 18, 073. 82               | 222, 912. 79  | 176, 660. 00      | -46, 252. 79              | 126 %          |
| 370000 Investment and Royalty Earnings       |                           |               |                   |                           |                |
| 371010 Investment Earnings                   | 179. 63                   | 1, 391. 44    | 1, 150. 00        | -241. 44                  | 121 %          |
| Account Group Total:                         | 179. 63                   | 1, 391. 44    | 1, 150. 00        | -241. 44                  | 121 %          |
| Fund Total:                                  | 18, 253. 45               | 224, 304. 23  | 177, 810. 00      | -46, 494. 23              | 126 %          |

## CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 6 / 22

Page: 2 of 4 Report ID: B110

5220 Water Line Replacement

| Account                                   | Received<br>Current Month | Recei ved YTD | Estimated Revenue | Revenue To Be Recei ved | %<br>Recei ved |
|-------------------------------------------|---------------------------|---------------|-------------------|-------------------------|----------------|
| ACCOUNT                                   |                           |               |                   |                         | Recei veu      |
| 340000 Charges for Services               |                           |               |                   |                         |                |
| 343022 Unmetered Water Sales - Water Line | 3, 000. 19                | 35, 883. 14   | 34, 000. 00       | -1, 883. 14             | 106 %          |
| Account Group Total:                      | 3, 000. 19                | 35, 883. 14   | 34, 000. 00       | -1, 883. 14             | 106 %          |
| 370000 Investment and Royalty Earnings    |                           |               |                   |                         |                |
| 371010 Investment Earnings                | 146. 39                   | 266. 18       | 50.00             | -216. 18                | 532 %          |
| Account Group Total:                      | 146. 39                   | 266. 18       | 50.00             | -216. 18                | 532 %          |
| 380000 Other Financing Sources            |                           |               |                   |                         |                |
| 381000 Proceeds of General Long-Term Debt | 0.00                      | 0.00          | 100, 000. 00      | 100, 000. 00            | 0 %            |
| Account Group Total:                      | 0.00                      | 0. 00         | 100, 000. 00      | 100, 000. 00            | Ο %            |
| Fund Total:                               | 3, 146. 58                | 36, 149. 32   | 134, 050. 00      | 97, 900. 68             | 27 %           |

## CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 6 / 22

Page: 3 of 4 Report ID: B110

5221 Water Trans. Main

| Account                                            | Received<br>Current Month | Recei ved YTD | Estimated Revenue | Revenue<br>To Be Received | %<br>Recei ved |
|----------------------------------------------------|---------------------------|---------------|-------------------|---------------------------|----------------|
| 330000 INTERGOVERNMENTAL REVENUES                  |                           |               |                   |                           |                |
| 331031 SRF Loan "B" - Water Line Main Transmission | - 0.00                    | 45, 097. 00   | 254, 000. 00      | 208, 903. 00              | 18 %           |
| 331032 SRF Loan "A" Forgiveness-Water Main Line    | 0.00                      | 43, 446. 00   | 254, 000. 00      | 210, 554. 00              | 17 %           |
| 334120 TSEP                                        | 33, 006. 53               | 33, 006. 53   | 200, 000. 00      | 166, 993. 47              | 17 %           |
| Account Group Total:                               | 33, 006. 53               | 121, 549. 53  | 708, 000. 00      | 586, 450. 47              | 17 %           |
| 380000 Other Financing Sources                     |                           |               |                   |                           |                |
| 383000 Interfund Operating Transfer                | 0.00                      | 0.00          | 100, 000. 00      | 100, 000. 00              | 0 %            |
| Account Group Total:                               | 0.00                      | 0.00          | 100, 000. 00      | 100, 000. 00              | Ο %            |
| Fund Total:                                        | 33, 006. 53               | 121, 549. 53  | 808, 000. 00      | 686, 450. 47              | 15 %           |

## CITY OF WHITE SULPHUR SPRINGS Statement of Revenue Budget vs Actuals For the Accounting Period: 6 / 22

Page: 4 of 4 Report ID: B110

5223 Water Tank Project

| Account                           | Received<br>Current Month | Recei ved YTD | Estimated Revenue | Revenue<br>To Be Recei ved | %<br>Recei ved |
|-----------------------------------|---------------------------|---------------|-------------------|----------------------------|----------------|
| 360000 Mi scel I aneous Revenue   |                           |               |                   |                            |                |
| 363021 Bond Principal Assessments | 14, 321. 38               | 171, 821. 52  | 168, 000. 00      | -3, 821. 52                | 102 %          |
| Account Group Total:              | 14, 321. 38               | 171, 821. 52  | 168, 000. 00      | -3, 821. 52                | 102 %          |
| Fund Total:                       | 14, 321. 38               | 171, 821. 52  | 168, 000. 00      | -3, 821. 52                | 102 %          |
| Grand Total:                      | 68, 727. 94               | 553, 824. 60  | 1, 287, 860. 00   | 734, 035. 40               | 43 %           |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 19

Page: 1 of 3 Report ID: B100

5210 Water Fund

| Account       | Object                              | Committed<br>Current Month | Committed<br>YTD         | Original<br>Appropriation | Current<br>Appropriation | Available % Appropriation Commit |
|---------------|-------------------------------------|----------------------------|--------------------------|---------------------------|--------------------------|----------------------------------|
| 430000 Public | : Works                             |                            |                          |                           |                          |                                  |
| 430500 Water  | Utilities                           |                            |                          |                           |                          |                                  |
| 110 Sal a     | ıri es-Cl erk~Treasurer             | 0.00                       | 15, 251. 05              | 19, 000. 00               | 19, 000. 00              | 3, 748. 95 80 %                  |
| 111 Sal a     | ries-Public Works Director          | 0.00                       | 22, 928. 83              | 21, 000. 00               | 21, 000. 00              | -1, 928. 83 109 %                |
| 112 Sal a     | ıri es-Extra Help                   | 0.00                       | 30, 889. 76              | 36, 000. 00               | 36, 000. 00              | 5, 110. 24 86 %                  |
| 140 Empl      | oyer Contributions                  | 0.00                       | 8, 419. 88               | 12, 000. 00               | 12, 000. 00              | 3, 580. 12 70 %                  |
| 190 payr      | roll expense                        | 18, 120. 46                | 18, 120. 46              | 0.00                      | 0. 00                    | -18, 120. 46 %                   |
| 210 Offi      | ce Supplies & Materials             | 0.00                       | 5, 272. 29               | 6, 000. 00                | 6, 000. 00               | 727.71 88 %                      |
| 221 Chem      | ni cal s                            | 0.00                       | 0.00                     | 2, 500. 00                | 2, 500. 00               | 2, 500. 00 %                     |
| 230 Repa      | nir & Maintenance Supplies          | 0.00                       | 53, 602. 90              | 45, 000. 00               | 45, 000. 00              | -8, 602. 90 119 %                |
| 231 Gas,      | diesel, oil, tires                  | 0.00                       | 0.00                     | 5, 000. 00                | 5, 000. 00               | 5, 000. 00 %                     |
| 238 Repa      | ir Parts for Water or               | 0.00                       | 26, 940. 72              | 60, 000. 00               | 60, 000. 00              | 33, 059. 28 45 %                 |
|               | nunication & Transportation         | 0.00                       | 4, 044. 38               | 12, 000. 00               | 12, 000. 00              | 7, 955. 62 34 %                  |
| 330 Publ      | icity, Subscriptions &              | 0.00                       | 977. 73                  | 1, 000. 00                | 1, 000. 00               | 22. 27 98 %                      |
| 335 Memb      | perships and Registration           | 0.00                       | 1, 562. 50               | 3, 000. 00                | 3, 000. 00               | 1, 437. 50 52 %                  |
| 341 Powe      | er .                                | 0.00                       | 53, 940. 90              | 60, 000. 00               | 60, 000. 00              | 6, 059. 10 90 %                  |
| 345 Tele      | phone                               | 0.00                       | 0.00                     | 1, 000. 00                | 1, 000. 00               | 1, 000. 00 %                     |
| 350 Prof      | essi onal Servi ces                 | 0.00                       | 0.00                     | 22, 000. 00               | 22, 000. 00              | 22,000.00 %                      |
| 351 Cons      | sumer Fee                           | 0.00                       | 1, 200. 00               | 2, 000. 00                | 2, 000. 00               | 800.00 60 %                      |
| 352 Ease      | ement and Decreed Water             | 0.00                       | 245. 00                  | 500.00                    | 500. 00                  | 255.00 49 %                      |
| 354 Engi      | neeri ng                            | 0.00                       | 34, 293. 49              | 60, 000. 00               | 60, 000. 00              | 25, 706. 51 57 %                 |
| 356 Wate      | er Testing                          | 0.00                       | 1, 802. 78               | 5, 000. 00                | 5, 000. 00               | 3, 197. 22 36 %                  |
| 360 Repa      | ir & Maintenance Services           | 0.00                       | 14, 720. 42              | 40, 000. 00               | 40, 000. 00              | 25, 279. 58 37 %                 |
| 370 Trav      |                                     | 0.00                       | 1, 221. 53               | 4, 000. 00                | 4, 000. 00               | 2, 778. 47 31 %                  |
| 390 Othe      | er Purchased Services               | 0.00                       | 63. 00                   | 0.00                      | 0. 00                    | -63. 00 %                        |
| 450 Sand      | l - Gravel                          | 0.00                       | 154. 35                  | 0.00                      | 0. 00                    | -154.35 %                        |
| 620 Inte      | erest                               | 0.00                       | 0.00                     | 60.00                     | 60. 00                   | 60.00 %                          |
| 830 Depr      | ec-Closed to Retained               | 91, 920. 40                | 91, 920. 40              | 0.00                      | 0. 00                    | -91, 920. 40 %                   |
| 940 Mach      | ninery & Equipment                  | -11, 800. 00               | 0.00                     | 40, 000. 00               | 40, 000. 00              | 40, 000. 00 %                    |
|               | Account Total:                      | 98,240.86                  | 387,572.37               | 457,060.00                | 457,060.00               | 69,487.63 85 %                   |
|               | Account Group Total:<br>Fund Total: | 98,240.86<br>98,240.86     | 387,572.37<br>387,572.37 | 457,060.00<br>457,060.00  | 457,060.00<br>457,060.00 | 69,487.63 85 % 69,487.63 85 %    |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 19

Page: 2 of 3 Report ID: B100

5220 Water Line Replacement

| Account Object                    | Committed<br>Current Month | Committed<br>YTD | Original<br>Appropriation | Current<br>Appropriation | Available<br>Appropriation | %<br>Commit |
|-----------------------------------|----------------------------|------------------|---------------------------|--------------------------|----------------------------|-------------|
| 430000 Public Works               |                            |                  |                           |                          |                            |             |
| 430505 Waterline Replacement Fund |                            |                  |                           |                          |                            |             |
| 238 Repair Parts for Water or     | 0.00                       | 0. 00            | 120, 000. 00              | 120, 000. 00             | 120, 000. 00               | %           |
| 354 Engi neeri na                 | 0.00                       | 0.00             | 80, 000, 00               | 80, 000, 00              | 80, 000, 00                | %           |
| 390 Other Purchased Services      | 0.00                       | 0.00             | 29, 318. 00               | 29, 318. 00              | 29, 318. 00                | %           |
| Account Tota                      | 0.00                       | 0.00             | 229,318.00                | 229,318.00               | 229,318.00                 | %           |
| Account Group Tota                | 0.00                       | 0.00             | 229,318.00                | 229,318.00               | 229,318.00                 | %           |
| Fund Tota                         | 1: 0.00                    | 0.00             | 229,318.00                | 229,318.00               | 229,318.00                 | %           |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 19

Page: 3 of 3 Report ID: B100

5223 Water Tank Project

| Account Object                                                                               |                  | Committed<br>Current Month               | Committed<br>YTD                            | Original<br>Appropriation                              | Current<br>Appropriation                               | Available %<br>Appropriation Commit                                |
|----------------------------------------------------------------------------------------------|------------------|------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| 490000 Debt Service 490000 Debt Service 610 Principal 620 Interest 630 Paying Agent Fees (Ba |                  | -67,000.00<br>0.00<br>0.00<br>-67,000.00 | 0.00<br>23,610.00<br>10,975.00<br>34,585.00 | 341, 624.00<br>112, 588.00<br>72, 584.00<br>526,796.00 | 341, 624.00<br>112, 588.00<br>72, 584.00<br>526,796.00 | 341,624.00 %<br>88,978.00 21 %<br>61,609.00 15 %<br>492,211.00 7 % |
| Account Group<br>Fund                                                                        | Total:<br>Total: | -67,000.00<br>-67,000.00                 | 34,585.00<br>34,585.00                      | 526,796.00<br>526,796.00                               | 526,796.00<br>526,796.00                               | 492,211.00 7 %<br>492,211.00 7 %                                   |
| Grand '                                                                                      | Total:           | 31,240.86                                | 0. 00<br>422, 157. 37                       | 1, 213, 174. 00                                        | 1, 213, 174. 00                                        | 791, 016. 63 35 %                                                  |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 20

Page: 1 of 4 Report ID: B100

5210 Water Fund

| Account Object         |                  | Committed<br>Current Month | Committed<br>YTD | Original<br>Appropriation | Current<br>Appropriation | Available<br>Appropriation | %<br>Commit |
|------------------------|------------------|----------------------------|------------------|---------------------------|--------------------------|----------------------------|-------------|
| 430000 Public Works    |                  |                            |                  |                           |                          |                            |             |
| 430000 Public Works    |                  |                            |                  |                           |                          |                            |             |
| 195 Pension expense    | <b>!</b>         | -4, 045. 00                | -4, 045. 00      | 0.00                      | 0. 00                    | 4, 045. 00                 |             |
| Ac                     | count Total:     | -4,045.00                  | -4,045.00        | 0.00                      | 0.00                     | 4,045.00                   | %           |
| 430500 Water Utilities |                  |                            |                  |                           |                          |                            |             |
| 110 Sal ari es-Cl erk~ | Treasurer        | -30, 973. 71               | -14, 725. 05     | 19, 000. 00               | 19, 000. 00              | 33, 725. 05                | -78 %       |
| 111 Salaries-Public    | : Works Director | 0.00                       | 18, 659. 30      | 23, 000. 00               | 23, 000. 00              | 4, 340. 70                 | 81 %        |
| 112 Salaries-Extra     | Hel p            | 0. 00                      | 45, 190. 15      | 37, 500. 00               | 37, 500. 00              | -7, 690. 15                | 121 %       |
| 140 Employer Contri    |                  | 0.00                       | 9, 351. 05       | 12,000.00                 | 12, 000. 00              | 2, 648. 95                 | 78 %        |
| 210 Office Supplies    |                  | 0.00                       | 6, 007. 16       | 6, 500. 00                | 6, 500. 00               | 492. 84                    | 92 %        |
| 221 Chemicals          |                  | 0.00                       | 0.00             | 2, 500. 00                | 2, 500. 00               | 2, 500. 00                 | %           |
| 230 Repair & Mainte    | nance Supplies   | 0.00                       | 1, 710. 38       | 47, 500. 00               | 47, 500. 00              | 45, 789. 62                | 4 %         |
| 231 Gas, diesel, oi    | I, tires         | 0. 00                      | 0. 00            | 5, 000. 00                | 5, 000. 00               | 5, 000. 00                 | %           |
| 238 Repair Parts fo    | r Water or       | 0. 00                      | 21, 575. 81      | 62, 000. 00               | 62, 000. 00              | 40, 424. 19                | 35 %        |
| 310 Communication &    | Transportation   | 0. 00                      | 3, 769. 64       | 10, 000. 00               | 10, 000. 00              | 6, 230. 36                 | 38 %        |
| 330 Publicity, Subs    | criptions &      | 0. 00                      | 247. 50          | 1, 000. 00                | 1, 000. 00               | 752. 50                    | 25 %        |
| 335 Memberships and    | Registration     | 0. 00                      | 1, 235. 94       | 3, 000. 00                | 3, 000. 00               | 1, 764. 06                 | 41 %        |
| 341 Power              |                  | 0. 00                      | 46, 068. 90      | 60, 000. 00               | 60, 000. 00              | 13, 931. 10                | 77 %        |
| 350 Professional Se    | rvi ces          | 0.00                       | 0. 00            | 22, 000. 00               | 22, 000. 00              | 22, 000. 00                | %           |
| 351 Consumer Fee       |                  | 0.00                       | 1, 200. 00       | 2, 000. 00                | 2, 000. 00               | 800.00                     | 60 %        |
| 352 Easement and De    | creed Water      | 0.00                       | 245. 00          | 500.00                    | 500. 00                  | 255. 00                    | 49 %        |
| 354 Engineering        |                  | -4, 081. 90                | 548. 86          | 60, 000. 00               | 60, 000. 00              | 59, 451. 14                | 1 %         |
| 356 Water Testing      |                  | 0.00                       | 3, 297. 21       | 5, 000. 00                | 5, 000. 00               | 1, 702. 79                 | 66 %        |
| 360 Repair & Mainte    | nance Services   | 0.00                       | 8, 193. 41       | 40, 000. 00               | 40, 000. 00              | 31, 806. 59                | 20 %        |
| 370 Travel             |                  | 0.00                       | 2, 207. 51       | 4, 000. 00                | 4, 000. 00               | 1, 792. 49                 | 55 %        |
| 380 Training Servic    |                  | 0.00                       | 500. 00          | 2, 000. 00                | 2, 000. 00               | 1, 500. 00                 |             |
| 390 Other Purchased    |                  | 0.00                       | 161. 00          | 0.00                      | 0. 00                    | -161. 00                   | %           |
| 830 Deprec-Closed t    | o Retai ned      | 92, 275. 88                | 92, 275. 88      | 0.00                      | 0. 00                    | -92, 275. 88               | %           |
| 940 Machinery & Ed     | uipment          | -2, 225. 00                | 0.00             | 40, 000. 00               | 40, 000. 00              | 40, 000. 00                | %           |
| Ac                     | count Total:     | 54,995.27                  | 247,719.65       | 464,500.00                | 464,500.00               | 216,780.35                 | 53 %        |
| Account                | Group Total:     | 50,950.27                  | 243,674.65       | 464,500.00                | 464,500.00               | 220,825.35                 | 52 %        |
|                        | Fund Total:      | 50,950.27                  | 243,674.65       | 464,500.00                | 464,500.00               | 220,825.35                 | 52 %        |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 20

Page: 2 of 4 Report ID: B100

5220 Water Line Replacement

| Account Object                                      |                  | Committed<br>Current Month | Committed<br>YTD | Original<br>Appropriation | Current<br>Appropriation | Available<br>Appropriation | %<br>Commit |
|-----------------------------------------------------|------------------|----------------------------|------------------|---------------------------|--------------------------|----------------------------|-------------|
| 430000 Public Works<br>430500 Water Utilit          | i es             |                            |                  |                           |                          |                            |             |
| 354 Engineering                                     |                  | 0.00                       | 24, 860. 08      | 0.00                      | 0.00                     | -24, 860. 08               | %           |
| .,                                                  | Account Total:   | 0.00                       | 24,860.08        | 0.00                      | 0.00                     | -24,860.08                 | %           |
| Acco<br>520000 Other Financi<br>521000 Interfund Op |                  | 0.00                       | 24,860.08        | 0.00                      | 0.00                     | -24,860.08                 | %           |
| 390 Other Purch                                     |                  | 0.00                       | 0.00             | 100, 000, 00              | 100, 000, 00             | 100, 000, 00               | %           |
| 370 Other Turch                                     | Account Total:   | 0.00                       | 0.00             | 100,000.00                | 100,000.00               | 100,000.00                 | 70<br>%     |
|                                                     | Account Total.   | 0.00                       | 0.00             | 100,000.00                | 100,000.00               | 100,000.00                 | •6          |
| Acco                                                | unt Group Total: | 0.00                       | 0.00             | 100,000.00                | 100,000.00               | 100,000.00                 | %           |
|                                                     | Fund Total:      | 0.00                       | 24,860.08        | 100,000.00                | 100,000.00               | 75,139.92                  | 25 %        |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 20

Page: 3 of 4 Report ID: B100

5221 Water Trans. Main

| Account      | Object                                  | Committed<br>Current Month | Committed<br>YTD | Original<br>Appropriation | Current<br>Appropriation | Available % Appropriation Commit |
|--------------|-----------------------------------------|----------------------------|------------------|---------------------------|--------------------------|----------------------------------|
| 430000 Publi | ic Works<br>er Transmission Main Projec | + 10 10                    |                  |                           |                          |                                  |
|              | ai neeri na                             | -24, 860, 08               | -24, 860, 08     | 400, 000, 00              | 400, 000, 00             | 424, 860, 08 -6 %                |
| 00. 2        | Account Total:                          | -24,860.08                 | -24,860.08       | 400,000.00                | 400,000.00               | 424,860.08 -6 %                  |
|              | Account Group Total:                    | -24,860.08                 | -24,860.08       | 400,000.00                | 400,000.00               | 424,860.08 -6 %                  |
|              | Fund Total:                             | -24,860.08                 | -24,860.08       | 400,000.00                | 400,000.00               | 424,860.08 -6 %                  |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 20

Page: 4 of 4 Report ID: B100

5223 Water Tank Project

| Account Object                                                                                               | Committed     | Committed              | Original        | Current         | Available %                   |
|--------------------------------------------------------------------------------------------------------------|---------------|------------------------|-----------------|-----------------|-------------------------------|
|                                                                                                              | Current Month | YTD                    | Appropriation   | Appropriation   | Appropriation Commit          |
| 490000 Debt Service 490000 Debt Service 610 Principal 620 Interest 630 Paying Agent Fees (Bank Account Total | -70,000.00    | 0.00                   | 66,000.00       | 66,000.00       | 66,000.00 %                   |
|                                                                                                              | 0.00          | 22,250.00              | 24,000.00       | 24,000.00       | 1,750.00 93 %                 |
|                                                                                                              | 0.00          | 10,335.00              | 12,000.00       | 12,000.00       | 1,665.00 86 %                 |
|                                                                                                              | -70,000.00    | 32,585.00              | 102,000.00      | 102,000.00      | 69,415.00 32 %                |
| Account Group Total<br>Fund Total                                                                            | -             | 32,585.00<br>32,585.00 | 102,000.00      | 102,000.00      | 69,415.00 32 % 69,415.00 32 % |
| Grand Total                                                                                                  | : -43,909.81  | 0. 00<br>276, 259. 65  | 1, 066, 500. 00 | 1, 066, 500. 00 | 790, 240. 35 26 %             |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 21

Page: 1 of 4 Report ID: B100

5210 Water Fund

| Account      | Object                       | Committed<br>Current Month | Committed<br>YTD | Original<br>Appropriation | Current<br>Appropriation | Available % Appropriation Commit |
|--------------|------------------------------|----------------------------|------------------|---------------------------|--------------------------|----------------------------------|
| 430000 Publi | c Works                      |                            |                  |                           |                          |                                  |
| 430500 Wate  | er Utilities                 |                            |                  |                           |                          |                                  |
| 110 Sal      | ari es-Cl erk~Treasurer      | 10, 342. 20                | 28, 030. 03      | 19, 000. 00               | 19, 000. 00              | -9, 030. 03 148 %                |
| 111 Sal      | aries-Public Works Director  | 0.00                       | 19, 116. 52      | 23, 000. 00               | 23, 000. 00              | 3, 883. 48 83 %                  |
| 112 Sal      | ari es-Extra Help            | 0. 00                      | 62, 108. 74      | 53, 000. 00               | 53, 000. 00              | -9, 108. 74 117 %                |
| 140 Emp      | oloyer Contributions         | 0. 00                      | 10, 773. 24      | 12, 000. 00               | 12, 000. 00              | 1, 226. 76 90 %                  |
| 210 Off      | fice Supplies & Materials    | 0. 00                      | 6, 547. 64       | 6, 500. 00                | 6, 500. 00               | -47.64 101 %                     |
| 221 Che      | emi cal s                    | 0. 00                      | 0.00             | 1, 000. 00                | 1, 000. 00               | 1, 000. 00 %                     |
| 230 Rep      | pair & Maintenance Supplies  | 0. 00                      | 12, 342. 11      | 40, 000. 00               | 40, 000. 00              | 27, 657. 89 31 %                 |
| 231 Gas      | s, diesel, oil, tires        | 0.00                       | 562. 64          | 5, 000. 00                | 5, 000. 00               | 4, 437. 36 11 %                  |
| 238 Rep      | pair Parts for Water or      | 0.00                       | 64, 730. 75      | 40, 000. 00               | 40, 000. 00              | -24, 730. 75 162 %               |
|              | mmunication & Transportation | 0.00                       | 2, 896. 80       | 5, 000. 00                | 5, 000. 00               | 2, 103. 20 58 %                  |
| 320 Pri      | nting, Duplicating, Typing   | 0.00                       | , 75. 00         | 0.00                      | 0.00                     | -75.00 %                         |
|              | olicity, Subscriptions &     | 0.00                       | 314. 50          | 1, 000. 00                | 1, 000. 00               | 685.50 31 %                      |
| 335 Mem      | nberships and Registration   | 0.00                       | 650. 00          | 2,000.00                  | 2, 000. 00               | 1, 350. 00 33 %                  |
| 341 Pow      |                              | 0.00                       | 42, 266. 57      | 55, 000. 00               | 55, 000. 00              | 12, 733. 43 77 %                 |
| 351 Cor      | nsumer Fee                   | 0.00                       | 1, 200. 00       | 1, 200. 00                | 1, 200. 00               | 0.00 100 %                       |
| 352 Eas      | sement and Decreed Water     | 0.00                       | 245. 00          | 500.00                    | 500.00                   | 255.00 49 %                      |
| 354 Enc      | gi neeri ng                  | 0.00                       | 500.00           | 40,000.00                 | 40, 000. 00              | 39, 500. 00 1 %                  |
| 356 Wat      | ter Testing                  | 0.00                       | 1, 074. 00       | 5, 000. 00                | 5, 000. 00               | 3, 926. 00 21 %                  |
| 360 Rep      | pair & Maintenance Services  | 0.00                       | 19, 440. 57      | 30, 000. 00               | 30, 000. 00              | 10, 559. 43 65 %                 |
| 370 Tra      |                              | 0. 00                      | 659. 29          | 3, 000. 00                | 3, 000. 00               | 2, 340. 71 22 %                  |
| 380 Tra      | aining Services              | 0. 00                      | 0.00             | 1, 000. 00                | 1, 000. 00               | 1, 000. 00 %                     |
| 390 Oth      | ner Pürchased Services       | 0. 00                      | 284. 00          | 200.00                    | 200.00                   | -84.00 142 %                     |
| 410 Cor      |                              | 0. 00                      | 791. 00          | 0.00                      | 0. 00                    | -791.00 %                        |
| 450 Sar      | nd - Gravel                  | 0. 00                      | 75. 04           | 5, 000. 00                | 5, 000. 00               | 4, 924. 96 2 %                   |
| 830 Dep      | prec-Closed to Retained      | 93, 673. 35                | 93, 673. 35      | 93,000.00                 | 93, 000. 00              | -673. 35 101 %                   |
| 940 Mac      | chinery & Equipment          | -18, 088. 32               | 0.00             | 40, 000. 00               | 40, 000. 00              | 40, 000. 00 %                    |
|              | Account Total:               | 85,927.23                  | 368,356.79       | 481,400.00                | 481,400.00               | 113,043.21 77 %                  |
|              | Account Group Total:         | 85,927.23                  | 368,356.79       | 481,400.00                | 481,400.00               | 113,043.21 77 %                  |
|              | Fund Total:                  | 85,927.23                  | 368,356.79       | 481,400.00                | 481,400.00               | 113,043.21 77 %                  |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 21

Page: 2 of 4 Report ID: B100

5220 Water Line Replacement

| Account | Object                | Committed<br>Current Mont |      | Original<br>Appropriation | Current<br>Appropriation | Available<br>Appropriation | %<br>Commit |
|---------|-----------------------|---------------------------|------|---------------------------|--------------------------|----------------------------|-------------|
|         | Financing Uses        | : Out                     |      |                           |                          |                            |             |
|         | er Purchased Services | 0.0                       | 0.00 | 100, 000, 00              | 100, 000, 00             | 100, 000, 00               | %           |
|         | Account Total:        | 0.0                       | 0.00 | 100,000.00                | 100,000.00               | 100,000.00                 | %           |
|         | Account Group Total:  | 0.0                       | 0.00 | 100,000.00                | 100,000.00               | 100,000.00                 | %           |
|         | Fund Total:           | 0.0                       | 0.00 | 100,000.00                | 100,000.00               | 100,000.00                 | %           |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 21

Page: 3 of 4 Report ID: B100

5221 Water Trans. Main

| Account      | Object                                 | Committed<br>Current Month | Committed<br>YTD | Original<br>Appropriation | Current<br>Appropriation | Available<br>Appropriation ( | %<br>Commit |
|--------------|----------------------------------------|----------------------------|------------------|---------------------------|--------------------------|------------------------------|-------------|
| 430000 Publi | c Works<br>er Transmission Main Projec | t 19-10                    |                  |                           |                          |                              |             |
|              | gi neeri ng                            | 0.00                       | 864.83           | 400, 000. 00              | 400, 000. 00             | 399, 135. 17                 | %           |
| •            | Account Total:                         | 0.00                       | 864.83           | 400,000.00                | 400,000.00               | 399,135.17                   | %           |
|              | Account Group Total:                   | 0.00                       | 864.83           | 400,000.00                | 400,000.00               | 399,135.17                   | %           |
|              | Fund Total:                            | 0.00                       | 864.83           | 400,000.00                | 400,000.00               | 399,135.17                   | %           |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 13 / 21

Page: 4 of 4 Report ID: B100

5223 Water Tank Project

| Account Object                                                                                                | Committed     | Committed             | Original        | Current         | Available %          |
|---------------------------------------------------------------------------------------------------------------|---------------|-----------------------|-----------------|-----------------|----------------------|
|                                                                                                               | Current Month | YTD                   | Appropriation   | Appropriation   | Appropriation Commit |
| 490000 Debt Service 490000 Debt Service 610 Principal 620 Interest 630 Paying Agent Fees (Bank Account Total: | -73,000.00    | 0.00                  | 73,000.00       | 73,000.00       | 73,000.00 %          |
|                                                                                                               | 0.00          | 20,840.00             | 20,840.00       | 20,840.00       | 0.00 100 %           |
|                                                                                                               | 0.00          | 9,670.00              | 9,670.00        | 9,670.00        | 0.00 100 %           |
|                                                                                                               | -73,000.00    | 30,510.00             | 103,510.00      | 103,510.00      | 73,000.00 29 %       |
| Account Group Total:                                                                                          |               | 30,510.00             | 103,510.00      | 103,510.00      | 73,000.00 29 %       |
| Fund Total:                                                                                                   |               | 30,510.00             | 103,510.00      | 103,510.00      | 73,000.00 29 %       |
| Grand Total:                                                                                                  | 12,927.23     | 0. 00<br>399, 731. 62 | 1, 084, 910. 00 | 1, 084, 910. 00 | 685, 178. 38 37 %    |

## CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 6 / 22

Page: 1 of 4 Report ID: B100

5210 Water Fund

| Account Object       |                    | Committed<br>Current Month | Committed<br>YTD | Ori gi nal<br>Appropri ati on | Current<br>Appropri ati on | Available<br>Appropriation | %<br>Commit |
|----------------------|--------------------|----------------------------|------------------|-------------------------------|----------------------------|----------------------------|-------------|
|                      |                    |                            |                  |                               |                            |                            |             |
| 430000 Public Works  |                    |                            |                  |                               |                            |                            |             |
| 430500 Water Utiliti |                    |                            |                  |                               |                            |                            |             |
| 110 Salaries-Cle     |                    | 738. 11                    | 8, 557. 01       | 10, 000. 00                   | 10, 000. 00                | 1, 442. 99                 |             |
|                      | lic Works Director | 651. 90                    | 10, 760. 45      | 12, 000. 00                   | 12, 000. 00                | 1, 239. 55                 |             |
| 112 Sal ari es-Ext   | •                  | 2, 096. 89                 | 33, 328. 02      | 32, 000. 00                   | 32, 000. 00                | -1, 328. 02                | 104 %       |
| 140 Employer Con     | tri buti ons       | 303. 35                    | 8, 010. 78       | 11, 000. 00                   | 11, 000. 00                | 2, 989. 22                 |             |
| 210 Office Suppl     | ies & Materials    | 811. 46                    | 5, 720. 99       | 6, 500. 00                    | 6, 500. 00                 | 779. 01                    |             |
| 221 Chemicals        |                    | 0. 00                      | 0.00             | 1, 000. 00                    | 1, 000. 00                 | 1, 000. 00                 | %           |
| 230 Repair & Mai     | ntenance Supplies  | 2, 596. 08                 | 17, 899. 59      | 40, 000. 00                   | 40, 000. 00                | 22, 100. 41                | 45 %        |
| 231 Gas, diesel,     | oil, tires         | 0.00                       | 604.70           | 5, 000. 00                    | 5, 000. 00                 | 4, 395. 30                 | 12 %        |
| 238 Repair Parts     | for Water or       | 0.00                       | 26, 575. 56      | 40, 000. 00                   | 40, 000. 00                | 13, 424. 44                | 66 %        |
| 310 Communicatio     | n & Transportation | 597. 02                    | 3, 354. 95       | 5, 000. 00                    | 5, 000. 00                 | 1, 645. 05                 | 67 %        |
| 330 Publicity, S     | ubscriptions &     | 88. 75                     | 196. 75          | 1, 000. 00                    | 1, 000. 00                 | 803. 25                    | 20 %        |
| 335 Memberships      | and Registration   | 0. 00                      | 664. 99          | 2, 000. 00                    | 2,000.00                   | 1, 335. 01                 | 33 %        |
| 341 Power            |                    | 3, 612. 56                 | 44, 613. 52      | 55, 000. 00                   | 55, 000. 00                | 10, 386. 48                | 81 %        |
| 351 Consumer Fee     |                    | 0. 00                      | 1, 200. 00       | 1, 200. 00                    | 1, 200. 00                 | 0.00                       | 100 %       |
| 352 Easement and     | Decreed Water      | 0.00                       | 245.00           | 500.00                        | 500.00                     | 255.00                     | 49 %        |
| 354 Engi neeri ng    |                    | 1, 375. 00                 | 6, 181. 80       | 20, 000. 00                   | 20, 000. 00                | 13, 818. 20                | 31 %        |
| 356 Water Testin     | g                  | 171. 00                    | 1, 080. 49       | 5, 000. 00                    | 5, 000. 00                 | 3, 919. 51                 | 22 %        |
| 360 Repair & Mai     | ntenance Services  | 228. 06                    | 28, 210. 21      | 30, 000. 00                   | 30, 000. 00                | 1, 789. 79                 | 94 %        |
| 370 Travel           |                    | 0.00                       | 1, 664. 36       | 3, 000. 00                    | 3, 000. 00                 | 1, 335. 64                 | 55 %        |
| 380 Training Ser     | vi ces             | 0.00                       | 60.00            | 1, 000. 00                    | 1, 000. 00                 | 940.00                     | 6 %         |
| 390 Other Purcha     | sed Services       | 0.00                       | 99.00            | 200.00                        | 200.00                     | 101.00                     | 50 %        |
| 450 Sand - Grave     | I                  | 0.00                       | 0.00             | 5, 000. 00                    | 5, 000. 00                 | 5, 000. 00                 | %           |
| 830 Deprec-Close     | d to Retained      | 0.00                       | 0.00             | 94, 000. 00                   | 94, 000. 00                | 94, 000. 00                | %           |
| 940 Machinery &      | Equi pment         | 0.00                       | 16, 577. 10      | 40, 000. 00                   | 40, 000. 00                | 23, 422. 90                | 41 %        |
|                      | Account Total:     | 13, 270. 18                | 215, 605. 27     | 420, 400. 00                  | 420, 400. 00               | 204, 794. 73               | 51 %        |
| 430526 Water System  | PER Update         |                            |                  |                               |                            |                            |             |
| 354 Engi neeri ng    |                    | 0.00                       | 6, 093. 33       | 0.00                          | 0.00                       | -6, 093. 33                | %           |
| -                    | Account Total:     | 0. 00                      | 6, 093. 33       | 0. 00                         | 0. 00                      | -6, 093. 33                | %           |
| Accou                | nt Group Total:    | 13, 270. 18                | 221, 698. 60     | 420, 400. 00                  | 420, 400. 00               | 198, 701. 40               | 53 %        |
|                      | Fund Total:        | 13, 270. 18                | 221, 698. 60     | 420, 400. 00                  | 420, 400. 00               | 198, 701. 40               | 53 %        |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 6 / 22

Page: 2 of 4

Report ID: B100

5220 Water Line Replacement

| Account      | Obj ect                    | Committed<br>Current Month | Committed<br>YTD | Ori gi nal<br>Appropri ati on | Current<br>Appropriation | Available % Appropriation Comm |
|--------------|----------------------------|----------------------------|------------------|-------------------------------|--------------------------|--------------------------------|
| 520000 Other | r Financing Uses           |                            |                  |                               |                          |                                |
| 521000 Inte  | erfund Operating Transfers | 0ut                        |                  |                               |                          |                                |
| 390 Oth      | ner Purchased Services     | 0. 00                      | 0.00             | 100, 000. 00                  | 100, 000. 00             | 100, 000. 00                   |
|              | Account Total:             | 0.00                       | 0.00             | 100, 000. 00                  | 100, 000. 00             | 100, 000. 00                   |
|              | Account Group Total:       | 0.00                       | 0.00             | 100, 000. 00                  | 100, 000. 00             | 100, 000. 00                   |
|              | Fund Total:                | 0.00                       | 0.00             | 100, 000. 00                  | 100, 000. 00             | 100, 000. 00                   |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 6 / 22

Page: 3 of 4

Report ID: B100

5221 Water Trans. Main

| Account 0      | bj ect                    | Committed<br>Current Month | Committed<br>YTD | Ori gi nal<br>Appropri ati on | Current<br>Appropri ati on | Available<br>Appropriation | %<br>Commit |
|----------------|---------------------------|----------------------------|------------------|-------------------------------|----------------------------|----------------------------|-------------|
| 430000 Public  | <br>Works                 |                            |                  |                               |                            |                            |             |
| 430551 Water   | Transmission Main Project | 19-10                      |                  |                               |                            |                            |             |
| 354 Engine     | eeri ng                   | 12, 213. 20                | 110, 228. 23     | 708, 000. 00                  | 708, 000. 00               | 597, 771. 77               | 16 %        |
| 360 Repai      | r & Maintenance Services  | 0.00                       | 120.00           | 0.00                          | 0.00                       | -120.00                    | %           |
|                | Account Total:            | 12, 213. 20                | 110, 348. 23     | 708, 000. 00                  | 708, 000. 00               | 597, 651. 77               | 16 %        |
|                | Account Group Total:      | 12, 213. 20                | 110, 348. 23     | 708, 000. 00                  | 708, 000. 00               | 597, 651. 77               | 16 %        |
| 490000 Debt Se | rvi ce                    |                            |                  |                               |                            |                            |             |
| 490000 Debt S  | ervi ce                   |                            |                  |                               |                            |                            |             |
| 610 Princ      | i pal                     | 5,000.00                   | 5, 000. 00       | 0.00                          | 0.00                       | -5, 000. 00                | %           |
| 620 Inter      | est                       | 227. 99                    | 227. 99          | 0.00                          | 0.00                       | -227. 99                   | %           |
| 630 Payi n     | g Agent Fees (Bank        | 57.00                      | 57.00            | 0.00                          | 0.00                       | -57.00                     | %           |
|                | Account Total:            | 5, 284. 99                 | 5, 284. 99       | 0.00                          | 0.00                       | -5, 284. 99                | %           |
|                | Account Group Total:      | 5, 284. 99                 | 5, 284. 99       | 0.00                          | 0. 00                      | -5, 284. 99                | %           |
|                | Fund Total:               | 17, 498. 19                | 115, 633. 22     | 708, 000. 00                  | 708, 000. 00               | 592, 366. 78               | 16 %        |

#### CITY OF WHITE SULPHUR SPRINGS Statement of Expenditure - Budget vs. Actual Report For the Accounting Period: 6 / 22

Page: 4 of 4

Report ID: B100

5223 Water Tank Project

| Account     | Obj ect               | Committed<br>Current Month | Committed<br>YTD | Ori gi nal<br>Appropri ati on | Current<br>Appropri ati on | Available % Appropriation Commit |
|-------------|-----------------------|----------------------------|------------------|-------------------------------|----------------------------|----------------------------------|
| 490000 Debt | Servi ce              |                            |                  |                               |                            |                                  |
| 490000 Debt | t Service             |                            |                  |                               |                            |                                  |
| 610 Pri     | nci pal               | 37, 000. 00                | 75, 000. 00      | 75, 000. 00                   | 75, 000. 00                | 0.00 100 %                       |
| 620 Int     | terest                | 9, 490. 00                 | 19, 360. 00      | 19, 360. 00                   | 19, 360. 00                | 0.00 100 %                       |
| 630 Pay     | ying Agent Fees (Bank | 4, 400. 00                 | 8, 977. 50       | 8, 978. 00                    | 8, 978. 00                 | 0.50 100 %                       |
|             | Account Total:        | 50, 890. 00                | 103, 337. 50     | 103, 338. 00                  | 103, 338. 00               | 0.50 100 %                       |
|             | Account Group Total:  | 50, 890. 00                | 103, 337. 50     | 103, 338. 00                  | 103, 338. 00               | 0.50 100 %                       |
|             | Fund Total:           | 50, 890. 00                | 103, 337. 50     | 103, 338. 00                  | 103, 338. 00               | 0.50 100 %                       |
|             |                       |                            |                  |                               |                            |                                  |
|             | Grand Total:          | 81, 658. 37                |                  |                               |                            |                                  |
|             |                       |                            | 0.00             |                               |                            |                                  |
|             |                       |                            | 440, 669. 32     | 1, 331, 738. 00               | 1, 331, 738. 00            | 891, 068. 68 33 %                |

WRF-13270 364720 9999FB9D7

# STATE OF MONTANA GENERAL OBLIGATION BONDS DRINKING WATER (REVOLVING FUND PROGRAM)

BORROWER: White Sulphur Springs PROJECT NAME: Waterline Replacements

LOAN COMMITMENT: \$1,573,000 FINAL AMOUNT: \$1,267,375 INTEREST RATE: 3.00% FINAL LOAN PAYMENT: 7/1/2032 TOTAL # PAYMENTS: 40 PROJECT NUMBER: WRF-13270 DATE OFFUNDING: 09/13/12

| PAYMENT<br>DUE | ADM EXPENSE<br>SURCHARGE | LOAN LOSS<br>SURCHARGE | INTEREST<br>PAYMENT  | PRINCIPAL<br>PAYMENT      | O/S LOAN<br>BALANCE | TOTAL AMOUNT<br>OF PAYMENT  |
|----------------|--------------------------|------------------------|----------------------|---------------------------|---------------------|-----------------------------|
| 01/01/13       | 1,394.46                 | 464.82                 | 3,718.55             | 29,000.00                 | 1,087,311.00        | \$34,577.83                 |
| 07/01/13       | 4,380.15                 | 1,460.05               | 11,680.41            | 29,000.00                 | 1,161,275.00        | \$46,520.62                 |
| 01/01/14       | 4,392.37                 | 1,464.12               | 11,712.97            | 30,000.00                 | 1,177,532.00        | \$47,569.46                 |
| 07/01/14       | 4,417.74                 | 1,472.58               | 11,780.64            | 30,000.00                 | 1,149,375.00        | \$47,670.97                 |
| 01/01/15       | 4,310.16                 | 1,436.72               | 11,493.75            | 24,375.00                 | 1,125,000.00        | \$41,615.63                 |
| 07/01/15       | 4,218.75                 | 1,406.25               | 11,250.00            | 25,000.00                 | 1,100,000.00        | \$41,875.00                 |
| 01/01/16       | 4,125.00                 | 1,375.00               | 11,000.00            | 25,000.00                 | 1,075,000.00        | \$41,500.00                 |
| 07/01/16       | 4,031.25                 | 1,343.75               | 10,750.00            | 25,000.00                 | 1,050,000.00        | \$41,125.00                 |
| 01/01/17       | 3,937.50                 | 1,312.50               | 10,500.00            | 26,000.00                 | 1,024,000.00        | \$41,750.00                 |
| 07/01/17       | 3,840.00                 | 1,280.00               | 10,240.00            | 26,000.00                 | 998,000.00          | \$41,360.00                 |
| 01/01/18       | 3,742.50                 | 1,247.50               | 9,980.00             | 27,000.00                 | 971,000.00          | \$41,970.00                 |
| 07/01/18       | 3,641.25                 | 1,213.75               | 9,710.00             | 27,000.00                 | 944,000.00          | \$41,565.00                 |
| 01/01/19       | 3,540.00                 | 1,180.00               | 9,440.00             | 27,000.00                 | 917,000.00          | \$41,160.00                 |
| 07/01/19       | 3,438.75                 | 1,146.25               | 9,170.00             | 28,000.00                 | 889,000.00          | \$41,755.00                 |
| 01/01/20       | 3,333.75                 | 1,111.25               | 8,890.00             | 28,000.00                 | 861,000.00          | \$41,335.00                 |
| 07/01/20       | 3,228.75                 | 1,076.25               | 8,610.00             | 29,000.00                 | 832,000.00          | \$41,915.00                 |
| 01/01/21       | 3,120.00                 | 1,040.00               | 8,320.00             | 29,000.00                 | 803,000.00          | \$41,480.00                 |
| 07/01/21       | 3,011.25                 | 1,003.75               | 8,030.00             | 30,000.00                 | 773,000.00          | \$42,045.00                 |
| 01/01/22       | 2,898.75                 | 966.25                 | 7,730.00             | 30,000.00                 | 743,000.00          | \$41,595.00                 |
| 07/01/22       | 2,786.25                 | 928.75                 | 7,430.00             | 30,000.00                 | 713,000.00          | \$41,145.00                 |
| 01/01/23       | 2,673.75                 | 891.25                 | 7,130.00             | 31,000.00                 | 682,000.00          | \$41,695.00                 |
| 07/01/23       | 2,557.50                 | 852.50                 | 6,820.00             | 31,000.00                 | 651,000.00          | \$41,230.00                 |
| 01/01/24       | 2,441.25                 | 813.75                 | 6,510.00             | 32,000.00                 | 619,000.00          | \$41,765.00                 |
| 07/01/24       | 2,321.25                 | 773.75                 | 6,190.00             | 32,000.00                 | 587,000.00          | \$41,285.00                 |
| 01/01/25       | 2,201.25                 | 733.75                 | 5,870.00             | 33,000.00                 | 554,000.00          | \$41,805.00                 |
| 07/01/25       | 2,077.50                 | 692.50                 | 5,540.00             | 33,000.00                 | 521,000.00          | \$41,310.00                 |
| 01/01/26       | 1,953.75                 | 651.25                 | 5,210.00             | 34,000.00                 | 487,000.00          | \$41,815.00                 |
| 07/01/26       | 1,826.25                 | 608.75                 | 4,870.00             | 34,000.00                 | 453,000.00          | \$41,305.00                 |
| 01/01/27       | 1,698.75                 | 566.25                 | 4,530.00             | 35,000.00                 | 418,000.00          | \$41,795.00                 |
| 07/01/27       | 1,567.50                 | 522.50                 | 4,180.00             | 35,000.00                 | 383,000.00          | \$41,270.00                 |
| 01/01/28       | 1,436.25                 | 478.75                 | 3,830.00             | 36,000.00                 | 347,000.00          | \$41,745.00                 |
| 07/01/28       | 1,301.25                 | 433.75                 | 3,470.00             | 36,000.00                 | 311,000.00          | \$41,205.00                 |
| 01/01/29       | 1,166.25                 | 388.75                 | 3,110.00             | 37,000.00                 | 274,000.00          | \$41,665.00                 |
| 07/01/29       | 1,027.50                 | 342.50                 | 2,740.00             | 37,000.00                 | 237,000.00          | \$41,110.00                 |
| 01/01/30       | 888.75                   | 296.25                 | 2,370.00             | 38,000.00                 | 199,000.00          | \$41,555.00                 |
| 07/01/30       | 746.25                   | 248.75                 | 1,990.00             | 39,000.00                 | 160,000.00          | \$41,985.00                 |
| 01/01/31       | 600.00                   | 200.00                 | 1,600.00             | 39,000.00                 | 121,000.00          | \$41,400.00                 |
| 07/01/31       | 453.75                   | 151.25                 | 1,210.00             | 40,000.00                 | 81,000.00           | \$41,815.00                 |
| 01/01/32       | 303.75                   | 101.25                 | 810.00               | 40,000.00                 | 41,000.00           | \$41,215.00                 |
| 07/01/32       | 153.75<br>101,184.87     | 51.25<br>33,728.29     | 410.00<br>269,826.33 | 41,000.00<br>1,267,375.00 | 0.00                | \$41,615.00<br>1,672,114.49 |

#### STATE OF MONTANA **GENERAL OBLIGATION BONDS DRINKING WATER** (REVOLVING FUND PROGRAM)

BORROWER: City of White Sulphur Springs

PROJECT NAME: Sand Filter Building LOAN COMMITMENT: \$105,264.00

INTEREST RATE: 3.00%

FINAL LOAN PAYMENT: 7/1/2033 TOTAL # OF LOAN PAYMENTS: WRF-14303 PROJECT NUMBER:

> DATE OF LOAN FUNDING: 10/16/2013

40

| PAYMENT<br>DUE | ADM EXPENSE<br>SURCHARGE |          | INTEREST<br>PAYMENT | PRINCIPAL<br>PAYMENT | DRAW<br>DOWNS | O/S LOAN<br>BALANCE | TOTAL<br>PAYMENT |
|----------------|--------------------------|----------|---------------------|----------------------|---------------|---------------------|------------------|
| 07/01/14       | 386.25                   | 128.75   | 1,030.00            | 2,000.00             |               | 101,000.00          | \$3,545.00       |
| 01/01/15       | 378.75                   | 126.25   | 1,010.00            | 2,000.00             |               | 99,000.00           | \$3,515.00       |
| 07/01/15       | 371.25                   | 123.75   | 990.00              | 2,000.00             |               | 97,000.00           | \$3,485.00       |
| 01/01/16       | 363.75                   | 121.25   | 970.00              | 2,000.00             |               | 95,000.00           | \$3,455.00       |
| 07/01/16       | 356.25                   | 118.75   | 950.00              | 2,000.00             |               | 93,000.00           | \$3,425.00       |
| 01/01/17       | 348.75                   | 116.25   | 930.00              | 2,000.00             |               | 91,000.00           | \$3,395.00       |
| 07/01/17       | 341.25                   | 113.75   | 910.00              | 2,000.00             |               | 89,000.00           | \$3,365.00       |
| 01/01/18       | 333.75                   | 111.25   | 890.00              | 2,000.00             |               | 87,000.00           | \$3,335.00       |
| 07/01/18       | 326.25                   | 108.75   | 870.00              | 2,000.00             |               | 85,000.00           | \$3,305.00       |
| 01/01/19       | 318.75                   | 106.25   | 850.00              | 2,000.00             |               | 83,000.00           | \$3,275.00       |
| 07/01/19       | 311.25                   | 103.75   | 830.00              | 2,000.00             |               | 81,000.00           | \$3,245.00       |
| 01/01/20       | 303.75                   | 101.25   | 810.00              | 3,000.00             |               | 78,000.00           | \$4,215.00       |
| 07/01/20       | 292.50                   | 97.50    | 780.00              | 2,000.00             |               | 76,000.00           | \$3,170.00       |
| 01/01/21       | 285.00                   | 95.00    | 760.00              | 3,000.00             |               | 73,000.00           | \$4,140.00       |
| 07/01/21       | 273.75                   | 91.25    | 730.00              | 2,000.00             |               | 71,000.00           | \$3,095.00       |
| 01/01/22       | 266.25                   | 88.75    | 710.00              | 3,000.00             |               | 68,000.00           | \$4,065.00       |
| 07/01/22       | 255.00                   | 85.00    | 680.00              | 2,000.00             |               | 66,000.00           | \$3,020.00       |
| 01/01/23       | 247.50                   | 82.50    | 660.00              | 3,000.00             |               | 63,000.00           | \$3,990.00       |
| 07/01/23       | 236.25                   | 78.75    | 630.00              | 2,000.00             |               | 61,000.00           | \$2,945.00       |
| 01/01/24       | 228.75                   | 76.25    | 610.00              | 3,000.00             |               | 58,000.00           | \$3,915.00       |
| 07/01/24       | 217.50                   | 72.50    | 580.00              | 2,000.00             |               | 56,000.00           | \$2,870.00       |
| 01/01/25       | 210.00                   | 70.00    | 560.00              | 3,000.00             |               | 53,000.00           | \$3,840.00       |
| 07/01/25       | 198.75                   | 66.25    | 530.00              | 3,000.00             |               | 50,000.00           | \$3,795.00       |
| 01/01/26       | 187.50                   | 62.50    | 500.00              | 3,000.00             |               | 47,000.00           | \$3,750.00       |
| 07/01/26       | 176.25                   | 58.75    | 470.00              | 3,000.00             |               | 44,000.00           | \$3,705.00       |
| 01/01/27       | 165.00                   | 55.00    | 440.00              | 3,000.00             |               | 41,000.00           | \$3,660.00       |
| 07/01/27       | 153.75                   | 51.25    | 410.00              | 3,000.00             |               | 38,000.00           | \$3,615.00       |
| 01/01/28       | 142.50                   | 47.50    | 380.00              | 3,000.00             |               | 35,000.00           | \$3,570.00       |
| 07/01/28       | 131.25                   | 43.75    | 350.00              | 3,000.00             |               | 32,000.00           | \$3,525.00       |
| 01/01/29       |                          | 40.00    | 320.00              | 3,000.00             |               | 29,000.00           | \$3,480.00       |
| 07/01/29       |                          | 36.25    | 290.00              | 3,000.00             |               | 26,000.00           | \$3,435.00       |
| 01/01/30       | 97.50                    | 32.50    | 260.00              | 3,000.00             |               | 23,000.00           | \$3,390.00       |
| 07/01/30       |                          | 28.75    | 230.00              | 3,000.00             |               | 20,000.00           | \$3,345.00       |
| 01/01/31       | 75.00                    | 25.00    | 200.00              | 3,000.00             |               | 17,000.00           | \$3,300.00       |
| 07/01/31       | 63.75                    | 21.25    | 170.00              | 3,000.00             |               | 14,000.00           | \$3,255.00       |
| 01/01/32       | 52.50                    | 17.50    | 140.00              | 3,000.00             |               | 11,000.00           | \$3,210.00       |
| 07/01/32       | 41.25                    | 13.75    | 110.00              | 3,000.00             |               | 8,000.00            | \$3,165.00       |
| 01/01/33       | 30.00                    | 10.00    | 80.00               | 4,000.00             |               | 4,000.00            | \$4,120.00       |
| 07/01/33       |                          | 5.00     | 40.00               | 4,000.00             |               | 0.00                | \$4,060.00       |
|                | 8,661.98                 | 2,887.33 | 23,098.60           | 105,264.00           |               | :                   | 139,911.90       |

# STATE OF MONTANA GENERAL OBLIGATION BONDS DRINKING WATER (REVOLVING FUND PROGRAM)

BORROWER: White Sulphur Springs FINAL LOAN PAYMENT: 1/1/2035
PROJECT NAME: Water Main TOTAL # OF LOAN PAYMENTS: 40

LOAN COMMITMENT: \$233,500.00 PROJECT NUMBER: WRF-15334
INTEREST RATE: 2.50% DATE OF LOAN FUNDING: 12/11/2014

| PAYMENT<br>DUE | ADM EXPENSE<br>SURCHARGE | LOAN LOSS<br>SURCHARGE | INTEREST<br>PAYMENT | PRINCIPAL<br>PAYMENT | O/S LOAN<br>BALANCE | TOTAL<br>PAYMENT |
|----------------|--------------------------|------------------------|---------------------|----------------------|---------------------|------------------|
|                |                          |                        |                     | Starting Balance:    | 18,726.00           |                  |
| 07/01/15       | 65.40                    | 65.40                  | 523.24              | 4,500.00             | 174,834.00          | \$5,154.05       |
| 01/01/16       | 241.67                   | 241.67                 | 1,933.38            | 5,000.00             | 190,164.00          | \$7,416.72       |
| 07/01/16       | 237.71                   | 237.71                 | 1,901.64            | 5,000.00             | 185,164.00          | \$7,377.06       |
| 01/01/17       | 231.46                   | 231.46                 | 1,851.64            | 5,164.00             | 180,000.00          | \$7,478.55       |
| 07/01/17       | 225.00                   | 225.00                 | 1,800.00            | 4,000.00             | 176,000.00          | \$6,250.00       |
| 01/01/18       | 220.00                   | 220.00                 | 1,760.00            | 4,000.00             | 172,000.00          | \$6,200.00       |
| 07/01/18       | 215.00                   | 215.00                 | 1,720.00            | 4,000.00             | 168,000.00          | \$6,150.00       |
| 01/01/19       | 210.00                   | 210.00                 | 1,680.00            | 4,000.00             | 164,000.00          | \$6,100.00       |
| 07/01/19       | 205.00                   | 205.00                 | 1,640.00            | 4,000.00             | 160,000.00          | \$6,050.00       |
| 01/01/20       | 200.00                   | 200.00                 | 1,600.00            | 4,000.00             | 156,000.00          | \$6,000.00       |
| 07/01/20       | 195.00                   | 195.00                 | 1,560.00            | 4,000.00             | 152,000.00          | \$5,950.00       |
| 01/01/21       | 190.00                   | 190.00                 | 1,520.00            | 4,000.00             | 148,000.00          | \$5,900.00       |
| 07/01/21       | 185.00                   | 185.00                 | 1,480.00            | 5,000.00             | 143,000.00          | \$6,850.00       |
| 01/01/22       | 178.75                   | 178.75                 | 1,430.00            | 5,000.00             | 138,000.00          | \$6,787.50       |
| 07/01/22       | 172.50                   | 172.50                 | 1,380.00            | 5,000.00             | 133,000.00          | \$6,725.00       |
| 01/01/23       | 166.25                   | 166.25                 | 1,330.00            | 5,000.00             | 128,000.00          | \$6,662.50       |
| 07/01/23       | 160.00                   | 160.00                 | 1,280.00            | 5,000.00             | 123,000.00          | \$6,600.00       |
| 01/01/24       | 153.75                   | 153.75                 | 1,230.00            | 5,000.00             | 118,000.00          | \$6,537.50       |
| 07/01/24       | 147.50                   | 147.50                 | 1,180.00            | 5,000.00             | 113,000.00          | \$6,475.00       |
| 01/01/25       | 141.25                   | 141.25                 | 1,130.00            | 5,000.00             | 108,000.00          | \$6,412.50       |
| 07/01/25       | 135.00                   | 135.00                 | 1,080.00            | 5,000.00             | 103,000.00          | \$6,350.00       |
| 01/01/26       | 128.75                   | 128.75                 | 1,030.00            | 5,000.00             | 98,000.00           | \$6,287.50       |
| 07/01/26       | 122.50                   | 122.50                 | 980.00              | 5,000.00             | 93,000.00           | \$6,225.00       |
| 01/01/27       | 116.25                   | 116.25                 | 930.00              | 5,000.00             | 88,000.00           | \$6,162.50       |
| 07/01/27       | 110.00                   | 110.00                 | 880.00              | 5,000.00             | 83,000.00           | \$6,100.00       |
| 01/01/28       | 103.75                   | 103.75                 | 830.00              | 5,000.00             | 78,000.00           | \$6,037.50       |
| 07/01/28       | 97.50                    | 97.50                  | 780.00              | 5,000.00             | 73,000.00           | \$5,975.00       |
| 01/01/29       | 91.25                    | 91.25                  | 730.00              | 5,000.00             | 68,000.00           | \$5,912.50       |
| 07/01/29       | 85.00                    | 85.00                  | 680.00              | 5,000.00             | 63,000.00           | \$5,850.00       |
| 01/01/30       | 78.75                    | 78.75                  | 630.00              | 5,000.00             | 58,000.00           | \$5,787.50       |
| 07/01/30       | 72.50                    | 72.50                  | 580.00              | 5,000.00             | 53,000.00           | \$5,725.00       |
| 01/01/31       | 66.25                    | 66.25                  | 530.00              | 5,000.00             | 48,000.00           | \$5,662.50       |
| 07/01/31       | 60.00                    | 60.00                  | 480.00              | 6,000.00             | 42,000.00           | \$6,600.00       |
| 01/01/32       | 52.50                    | 52.50                  | 420.00              | 6,000.00             | 36,000.00           | \$6,525.00       |
| 07/01/32       | 45.00                    | 45.00                  | 360.00              | 6,000.00             | 30,000.00           | \$6,450.00       |
| 01/01/33       | 37.50                    | 37.50                  | 300.00              | 6,000.00             | 24,000.00           | \$6,375.00       |
| 07/01/33       | 30.00                    | 30.00                  | 240.00              | 6,000.00             | 18,000.00           | \$6,300.00       |
| 01/01/34       | 22.50                    | 22.50                  | 180.00              | 6,000.00             | 12,000.00           | \$6,225.00       |
| 07/01/34       | 15.00                    | 15.00                  | 120.00              | 6,000.00             | 6,000.00            | \$6,150.00       |
| 01/01/35       | 7.50                     | 7.50                   | 60.00               | 6,000.00             | 0.00                | \$6,075.00       |
| ;              | 5,218.74                 | 5,218.74               | 41,749.90           | 199,664.00           | ;                   | 251,851.38       |

# STATE OF MONTANA GENERAL OBLIGATION BONDS DRINKING WATER (REVOLVING FUND PROGRAM)

BORROWER: White Sulphur PROJECT NAME: Water Line Replacement LOAN COMMITMENT: \$267,000.00 FINAL LOAN PAYMENT: 1/1/2042
TOTAL # OF LOAN PAYMENTS: 40
PROJECT NUMBER: WRF-22506
DATE OF LOAN FUNDING: 3/30/2022

LOAN AMOUNT: \$251,607.00 INTEREST RATE: 2.50%

| PAYMENT  | INTEREST | # DAYS | ADM EXPENSE | LOAN LOSS | INTEREST  | PRINCIPAL        | O/S LOAN   | TOTAL      |
|----------|----------|--------|-------------|-----------|-----------|------------------|------------|------------|
| DUE      | RATE     | DUE    | SURCHARGE   | SURCHARGE | PAYMENT   | PAYMENT          | BALANCE    | PAYMENT    |
|          |          |        |             |           |           | ginning Balance: | 45,097.00  |            |
| 07/01/22 | 2.500%   | 91     | 28.50       | 28.50     | 227.99    | 5,000.00         | 40,097.00  | \$5,284.99 |
| 01/01/23 | 2.500%   | 180    | 125.91      | 125.91    | 1,007.31  | 5,000.00         | 144,238.00 | \$6,259.14 |
| 07/01/23 | 2.500%   | 180    | 299.30      | 299.30    | 2,394.43  | 5,607.00         | 236,000.00 | \$8,600.04 |
| 01/01/24 | 2.500%   | 180    | 295.00      | 295.00    | 2,360.00  | 5,000.00         | 231,000.00 | \$7,950.00 |
| 07/01/24 | 2.500%   | 180    | 288.75      | 288.75    | 2,310.00  | 5,000.00         | 226,000.00 | \$7,887.50 |
| 01/01/25 | 2.500%   | 180    | 282.50      | 282.50    | 2,260.00  | 5,000.00         | 221,000.00 | \$7,825.00 |
| 07/01/25 | 2.500%   | 180    | 276.25      | 276.25    | 2,210.00  | 5,000.00         | 216,000.00 | \$7,762.50 |
| 01/01/26 | 2.500%   | 180    | 270.00      | 270.00    | 2,160.00  | 5,000.00         | 211,000.00 | \$7,700.00 |
| 07/01/26 | 2.500%   | 180    | 263.75      | 263.75    | 2,110.00  | 6,000.00         | 205,000.00 | \$8,637.50 |
| 01/01/27 | 2.500%   | 180    | 256.25      | 256.25    | 2,050.00  | 6,000.00         | 199,000.00 | \$8,562.50 |
| 07/01/27 | 2.500%   | 180    | 248.75      | 248.75    | 1,990.00  | 6,000.00         | 193,000.00 | \$8,487.50 |
| 01/01/28 | 2.500%   | 180    | 241.25      | 241.25    | 1,930.00  | 6,000.00         | 187,000.00 | \$8,412.50 |
| 07/01/28 | 2.500%   | 180    | 233.75      | 233.75    | 1,870.00  | 6,000.00         | 181,000.00 | \$8,337.50 |
| 01/01/29 | 2.500%   | 180    | 226.25      | 226.25    | 1,810.00  | 6,000.00         | 175,000.00 | \$8,262.50 |
| 07/01/29 | 2.500%   | 180    | 218.75      | 218.75    | 1,750.00  | 6,000.00         | 169,000.00 | \$8,187.50 |
| 01/01/30 | 2.500%   | 180    | 211.25      | 211.25    | 1,690.00  | 6,000.00         | 163,000.00 | \$8,112.50 |
| 07/01/30 | 2.500%   | 180    | 203.75      | 203.75    | 1,630.00  | 6,000.00         | 157,000.00 | \$8,037.50 |
| 01/01/31 | 2.500%   | 180    | 196.25      | 196.25    | 1,570.00  | 6,000.00         | 151,000.00 | \$7,962.50 |
| 07/01/31 | 2.500%   | 180    | 188.75      | 188.75    | 1,510.00  | 6,000.00         | 145,000.00 | \$7,887.50 |
| 01/01/32 | 2.500%   | 180    | 181.25      | 181.25    | 1,450.00  | 6,000.00         | 139,000.00 | \$7,812.50 |
| 07/01/32 | 2.500%   | 180    | 173.75      | 173.75    | 1,390.00  | 6,000.00         | 133,000.00 | \$7,737.50 |
| 01/01/33 | 2.500%   | 180    | 166.25      | 166.25    | 1,330.00  | 7,000.00         | 126,000.00 | \$8,662.50 |
| 07/01/33 | 2.500%   | 180    | 157.50      | 157.50    | 1,260.00  | 7,000.00         | 119,000.00 | \$8,575.00 |
| 01/01/34 | 2.500%   | 180    | 148.75      | 148.75    | 1,190.00  | 7,000.00         | 112,000.00 | \$8,487.50 |
| 07/01/34 | 2.500%   | 180    | 140.00      | 140.00    | 1,120.00  | 7,000.00         | 105,000.00 | \$8,400.00 |
| 01/01/35 | 2.500%   | 180    | 131.25      | 131.25    | 1,050.00  | 7,000.00         | 98,000.00  | \$8,312.50 |
| 07/01/35 | 2.500%   | 180    | 122.50      | 122.50    | 980.00    | 7,000.00         | 91,000.00  | \$8,225.00 |
| 01/01/36 | 2.500%   | 180    | 113.75      | 113.75    | 910.00    | 7,000.00         | 84,000.00  | \$8,137.50 |
| 07/01/36 | 2.500%   | 180    | 105.00      | 105.00    | 840.00    | 7,000.00         | 77,000.00  | \$8,050.00 |
| 01/01/37 | 2.500%   | 180    | 96.25       | 96.25     | 770.00    | 7,000.00         | 70,000.00  | \$7,962.50 |
| 07/01/37 | 2.500%   | 180    | 87.50       | 87.50     | 700.00    | 7,000.00         | 63,000.00  | \$7,875.00 |
| 01/01/38 | 2.500%   | 180    | 78.75       | 78.75     | 630.00    | 7,000.00         | 56,000.00  | \$7,787.50 |
| 07/01/38 | 2.500%   | 180    | 70.00       | 70.00     | 560.00    | 7,000.00         | 49,000.00  | \$7,700.00 |
| 01/01/39 | 2.500%   | 180    | 61.25       | 61.25     | 490.00    | 7,000.00         | 42,000.00  | \$7,612.50 |
| 07/01/39 | 2.500%   | 180    | 52.50       | 52.50     | 420.00    | 7,000.00         | 35,000.00  | \$7,525.00 |
| 01/01/40 | 2.500%   | 180    | 43.75       | 43.75     | 350.00    | 7,000.00         | 28,000.00  | \$7,437.50 |
| 07/01/40 | 2.500%   | 180    | 35.00       | 35.00     | 280.00    | 7,000.00         | 21,000.00  | \$7,350.00 |
| 01/01/41 | 2.500%   | 180    | 26.25       | 26.25     | 210.00    | 7,000.00         | 14,000.00  | \$7,262.50 |
| 07/01/41 | 2.500%   | 180    | 17.50       | 17.50     | 140.00    | 7,000.00         | 7,000.00   | \$7,175.00 |
| 01/01/42 | 2.500%   | 180    | 8.75        | 8.75      | 70.00     | 7,000.00         | 0.00       | \$7,087.50 |
|          |          |        | 6,372.47    | 6,372.47  | 50,979.73 | 251,607.00       |            | 315,331.66 |

#### DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION



GREG GIANFORTE, GOVERNOR

1539 ELEVENTH AVENUE

### STATE OF MONTANA

DIRECTOR'S OFFICE: (406) 444-2074 FAX: (406) 444-2684

PO BOX 201601 HELENA, MONTANA 59620-1601

### MEMORANDUM

To:

Richard Nelson, Mayor

City of White Sulphur Springs

From:

Anna Miller

Department of Natural Resources and Conservation

Subject:

White Sulphur Springs WRF Loan \$534,000

Date:

March 7, 2022

I have reviewed the FY 2021 actuals for the City's water system. The water fees will be pledged to the debt of the water system. There are three loans outstanding. The City is looking at borrowing additional funds for a total of \$534,000 of which there will be a B Loan of \$267,000 at 2.5% for a term of 20 years and an A Loan of \$267,000 which will be forgiven once all program requirements are met.

#### Coverage Calculation

The average highest years debt service is \$121,133 in FY 2026. Coverage is \$121,133 x 110% = \$133,246.

#### Calculation using FY21 Actual Revenue and Expenses

Water System Actual Revenue FY21 \$387,018
Water System Actual Expenses FY21 \$\frac{\$224,344}{}\$
Total Net Revenues \$162,674

 Net Revenues
 \$ 215,121

 Coverage Needed
 <\$ 133,246>

 Coverage is made by
 \$ 81,875

The coverage for the loan is in place. I have attached the FY21 actuals for White Sulphur Springs.

I have made adjustments for the installation of meters in FY21 that should be capitalized. There is a copy of the estimated payment schedule. I will adjust the payment schedules once we have a closing date.

Please call if you have questions. My number is 406-444-6689.

cc: Rob Ashton – DEQ w/
Cid Sivils – DNRC w/
Bob Murdo – JM&G w/
Nathan Bilyeu – JM&G w/
Michelle Stidham – White Sulphur Springs w/
Terry Threlkeld – Innovative Eng w/
White Sulphur Springs A Loan WRF \$267,000 file w/
White Sulphur Springs B Loan WRF \$267,000 file w/

### White Sulphur Springs Drinking Water Loans

|       | WRF-13270<br>3.00%<br>\$1,267,375 | WRF-14303<br>3%<br>\$105,264 | WRF-15334<br>2.5%<br>\$199,664 | WRF-22502<br>2.5% \$267,000 | WRF<br>Total |
|-------|-----------------------------------|------------------------------|--------------------------------|-----------------------------|--------------|
| 2023  | 82,840                            | 7,010                        | 13,388                         | 14,962                      | 118,200      |
| 2024  | 82,995                            | 6,860                        | 13,138                         | 17,363                      | 120,355      |
| 2025  | 83,090                            | 6,710                        | 12,888                         | 16,088                      | 118,775      |
| 2026  | 83,125                            | 7,545                        | 12,638                         | 17,825                      | 121,133      |
| 2027  | 83,100                            | 7,365                        | 12,388                         | 17,525                      | 120,378      |
| 2028  | 83,015                            | 7,185                        | 12,138                         | 17,225                      | 119,563      |
| 2029  | 82,870                            | 7,005                        | 11,888                         | 16,925                      | 118,688      |
| 2030  | 82,665                            | 6,825                        | 11,638                         | 17,625                      | 118,753      |
| 2031  | 83,385                            | 6,645                        | 11,388                         | 16,300                      | 117,718      |
| 2032  | 83,030                            | 6,465                        | 13,125                         | 17,000                      | 119,620      |
| 2033  | 41,615                            | 7,285                        | 12,825                         | 17,663                      | 79,388       |
| 2034  |                                   | 4,060                        | 12,525                         | 17,313                      | 33,898       |
| 2035  |                                   |                              | 12,225                         | 16,963                      | 29,188       |
| 2036  |                                   |                              |                                | 16,613                      | 16,613       |
| 2037  |                                   |                              |                                | 16,263                      | 16,263       |
| 2038  |                                   | 23.5                         |                                | 17,900                      | 17,900       |
| 2039  | 111/000                           |                              | 140                            | 17,500                      | 17,500       |
| 2040  |                                   |                              |                                | 17,100                      | 17,100       |
| 2041  |                                   |                              |                                | 16,700                      | 16,700       |
| 2042  |                                   |                              |                                | 16,300                      | 16,300       |
| Total | 871,730                           | 80,960                       | 162,188                        | \$339,150                   | \$1,454,027  |

Coverage Calculation: 121,133 x 110% = 133,246

| Completed By: Terry Threlkeld, PE/Updated by DNRC |    | City of         | City of White Sulphur Springs | Springs                                               |         |     | 12/16/2021 |
|---------------------------------------------------|----|-----------------|-------------------------------|-------------------------------------------------------|---------|-----|------------|
| Administrative/Finance Costs                      |    | Source:<br>TSEP | \$267,000<br>Loan             | Source:<br>WRF-22501<br>\$267,000 Loan<br>Forgiveness | Source: | _   | Total:     |
| Personnel Costs                                   | 69 | 2,500           | 9                             | 9                                                     |         | S   | 2.500      |
| Office Costs                                      | 49 | 1,500           | 8                             | 69                                                    |         | S   | 1,500      |
| Professional Services                             | 69 | 2,500           | 69                            | 69                                                    |         | S   | 2.500      |
| Legal Costs                                       | 69 | 3,548           | 69                            | \$ 3,549                                              |         | S   | 7,097      |
| Audit Fees                                        | 69 | 2,500           | \$ 2,500                      | 69                                                    |         | s   | 5,000      |
| Fravel & Training                                 | 69 | 750             | 69                            | 69                                                    |         | S   | 750        |
| Debt Service Reserve                              |    |                 | \$ 8,913                      | 49                                                    |         | S   | 8.913      |
| Bond Counsel & Related costs                      | 69 | 4,500           | \$ 6,800                      | \$ 700                                                |         | 69  | 12,000     |
| ADMIN/FINANCE COSTS:                              | 69 | 17,798          | \$ 18,213                     | \$ 4,249                                              | 8       | 69  | 40,260     |
|                                                   | 4  |                 |                               |                                                       |         | 69  |            |
| Soil & Geotechnical                               |    |                 |                               |                                                       |         | 69  |            |
| Basic Engineering                                 | 69 | 17,500          | \$ 6,250                      | \$ 6,250                                              |         | (s) | 30.000     |
| Engineering - Field                               | 69 | 10,000          | \$ 500                        | \$ 14,500                                             |         | 69  | 25.000     |
| Engineering Additional Svc                        | 69 | ,               | \$                            |                                                       |         | 69  |            |
| Construction                                      | 69 | 142,202         | \$ 219,247                    | \$ 219,247                                            |         | 69  | 580,696    |
| Contingency                                       | 69 | 12,500          | \$ 22,790                     | \$ 22,754                                             |         | 69  | 58.044     |
| ACTIVITY COSTS                                    | 69 | 182,202         | \$ 248,787                    | \$ 262,751                                            | S       | 69  | 693.740    |
| TOTAL PROJECT COSTS                               | 6  | 000000          | 0001000                       | -                                                     | 4       |     |            |

14:55:16

CITY OF WHITE SULPHUR SPRINGS Revenue Budget Report -- Multifear Actuals For the Year: 2021 - 2022

Report ID: B250

5210 Water Fund

| Account                                                              | 17-18           | 18-19   | Actuals | 1              | Current<br>Budget | Rec.       | Prelin.<br>Budget | Budget | Final           | P Old  | P    |
|----------------------------------------------------------------------|-----------------|---------|---------|----------------|-------------------|------------|-------------------|--------|-----------------|--------|------|
| 330000 INTERCOUPERATE                                                |                 |         | 09-61   | 20-21          | 20-21             | 20-21      |                   | 21-22  | Budget<br>21-22 | Budget | u    |
| 331010 CDBG/Nome                                                     | OES             |         |         |                |                   | -          |                   | -      |                 | 27-17  | × 1  |
| 336020 On-behalf attach                                              |                 | 2000    |         |                |                   | 10 0       |                   |        |                 |        |      |
| antipod pour                                                         | 1,098           |         | 691     |                |                   | 10 0       |                   |        |                 |        | 5 6  |
| Group:                                                               | 1,098           | 1,505   | 891     |                |                   |            |                   |        |                 |        | :    |
| 343021 Metered Water Sales                                           | 200             |         |         |                |                   | 5          | 0                 | 0      | SE 1.00         | 0      | *0   |
| 343022 Unmetered Water Sales -                                       | 616 067         | 180,853 | 163,837 | 186,952        | 160,000 1174      | 9/11/0     | 160,000           |        | 160,000         |        | 1004 |
| 343025 Water Permits                                                 |                 |         | 162     | 60<br>60<br>60 | 100               | \$888 O    | 100               |        | 100             |        | 1004 |
| 2000                                                                 |                 |         | 80      |                | 90                | 10 09      | 09                | +      | 09              |        | 1000 |
| Stock marks Installation                                             | 1,000           | 4,500   | 2,216   | 5,462          | 2.50              | 2.500 2188 | 0 600             |        |                 |        | *    |
| 343027 Miscellaneous (meter, or                                      | 4,873           | 11,195  | 9,342   | 2 834          |                   |            | 6,500             |        | 2,500           | 1004   | *0   |
| 343046 Miscellaneous Revenues                                        | ä               | - 34    |         | 2000           | 000 %             | 484        | 8,000             |        | 8,000           | 1004   | *0   |
|                                                                      | 4               | 76-     |         |                |                   | 10 0       |                   |        | •               |        | 10   |
| Group:                                                               | 201,370         | 196,517 | 175,637 | 197,136        | 170,660 1164      | 1164       | 170 660           |        |                 |        |      |
| 370000 Investment and Royalty Earnings<br>371010 Investment Earnings | Earnings<br>106 | 3,328   | 2,542   | 1,243          | 1,15              | 1,150 108% | 91.1              | •      | 170,660         |        | 1004 |
|                                                                      |                 |         |         | 1              |                   |            |                   |        | 1,150           |        | 1001 |
| Group:                                                               | 106             | 3,328   | 2,542   | 1,243          |                   | 1,150 108% | 1,150             | 0      | 1,150           |        | 1001 |
| Pund:                                                                | 202,574         | 201,350 | 179,070 | 198,379        | 171,810 115%      | 11154      | 171,810           | 0      | 171,810         | 1004   | 6    |
|                                                                      |                 |         |         |                |                   |            |                   |        |                 |        |      |

186,952 34,000 Unnated 171,006 Bond Assessment (5,000) Weers Not Paying 387,018

08/17/21

5220 Water Line Replacement

CITY OF WHITE SULPHUR SPRINGS Revenue Budget Report -- MultiYear Actuals For the Year: 2021 - 2022

Report ID: B250

| \$ 01d<br>Budget<br>21-22  | 34,000 1004                    |             | 50 1004                                                              | 50 05  | 34,050 974  |
|----------------------------|--------------------------------|-------------|----------------------------------------------------------------------|--------|-------------|
| Final<br>Budget<br>21-22   | 38                             |             | 5                                                                    |        | 34          |
| Budget<br>Change<br>21-22  |                                |             | •                                                                    |        | 0           |
| Prelin.<br>Budget<br>21-22 | 34,000                         | 34,000      | S                                                                    | 8      | 34,050      |
| Rec. 1                     | 34,000 104%                    | 34,000 104% | *6                                                                   | 86 0   | 35,000 101% |
| Current<br>Budget<br>20-21 | 34,00                          | 34,00       | 1,000                                                                | 1,000  | 35,00       |
| 20-21                      | 35,250                         | 35,250      | 80                                                                   | 89     | 35,338      |
| 19-20                      | 34,831                         | 34,831      | 2,726                                                                | 2,726  | 37,557      |
| 18-19 19-20                | 34,875                         | 34,875      | 4,675                                                                | 4,675  | 39,550      |
| 17-18                      | 36,012                         | 36,012      | Earnings                                                             |        | 36,012      |
| Account                    | 343022 Unmetered Mater Sales - | Group:      | 370000 Investment and Royalty Earnings<br>371010 Investment Earnings | Group: | Fund:       |

08/17/21

| 14:55:16<br>5223 Water Tank Project |         | Revenue Br | OF WHITE S<br>Idget Report<br>or the Year: | CITY OF WHITE SULPHUR SPRINGS Revenue Budget Report Multifear Actuals For the Year: 2021 - 2022 | MGS<br>or Actuals                       |                            | Report                    | Page: 4 of 4<br>Report ID: B250 |                          |
|-------------------------------------|---------|------------|--------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|---------------------------|---------------------------------|--------------------------|
| 360000 Miscellaneus Revenue         | 17-18   | 18-19      | 18-19 19-20 20-21                          | 20-21                                                                                           | Current &<br>Budget Rec.<br>20-21 20-21 | Rec. Budget<br>20-21 21-22 | Budget<br>Change<br>21-22 | Final<br>Budget<br>21-22        | % old<br>Budget<br>21-22 |
| Due Anderson I senere               | 70,950  |            |                                            |                                                                                                 | 0                                       |                            |                           |                                 |                          |
| Josuel Bond Principal               | 99, 811 | 171,535    | 170,622                                    | 171,066                                                                                         | 168,000 1021                            | 168,000                    |                           | 168,000                         | 1004                     |
| Group:                              | 170,761 | 171,535    | 170,622                                    | 171,066                                                                                         | 168,000 102%                            | 168,000                    | 0                         | 168,000                         | 1004                     |
| Pund:                               | 170,761 | 171,535    | 170,622                                    | 171,066                                                                                         | 168,000 102%                            | 168,000                    | 0                         | 168,000                         |                          |
| Grand Total:                        | 409,347 | 412,435    | 387,249                                    | 404,783                                                                                         | 874,810                                 | 873,860                    | ٥                         | 873.860                         | 122                      |

14:56:10

5210 Mater Fund

CITY OF WHITE SULPHUR SPRINGS Expenditure Budget Report -- Multifear Actuals For the Year: 2021 - 2022

Report ID: 8240

| Acce   | Account Object                 | 17-18  | 18-19                                   | 19-20   | 1       | Current      | Exp.       | Frelim.<br>Budget | Budget | Final  | t old           |
|--------|--------------------------------|--------|-----------------------------------------|---------|---------|--------------|------------|-------------------|--------|--------|-----------------|
| 195    | 430000 Public Norks            |        | *************************************** |         | 19_07   | 20-21        | 20-21      |                   | 21-22  | 21-22  | Budget<br>21-22 |
|        | esuedke uprame                 |        |                                         | -4,045  |         |              | *0 0       |                   |        |        | 1               |
|        | Account:                       |        |                                         | -4.045  |         |              |            |                   |        |        | *0 0            |
| 430500 | 430500 Water Utilities         |        |                                         |         |         |              | :          | 0                 | 0      |        | 00              |
|        | sacratur services              | -1,460 |                                         |         |         |              | 0          |                   |        |        |                 |
| 110    | 110 Salaries-Clerk-Treasurer   | 14,710 | 15,251                                  | -14,725 | 17,688  | 19.000       | ٥          | 10000             |        | 0      | ő               |
| 111    | 111 Salaries-Public Works Dir  | 30,604 | 22,929                                  | 18,659  | 19.117  |              |            | 000 67            |        | 19,000 | 1004            |
| 112    | 112 Salaries-Extra Relp        | 25,612 | 30.890                                  | 46. 140 |         | 2000         |            | 23,000            |        | 23,000 | 1004            |
| 140    | 140 Employer Contributions     | 8      |                                         | 067 64  | 62,109  | 53,000       | 1174       | 53,000            |        | 53,000 | 1004            |
| 190    | 190 payroll expense            | 6446   | 8,420                                   | 9,351   | 10,773  | 12,000       | 106 0      | 12,000            |        | 12,000 | 1004            |
|        | D                              |        | 18,120                                  |         |         |              | 10 0       |                   |        | ,      |                 |
| 195    | 195 Pension expense            | 7,280  |                                         |         |         |              |            |                   |        | 0      | 60              |
| 210    | 210 Office Supplies & Materia  | 4,578  | 5.272                                   | 6 003   |         |              | 50         | 1                 |        | 0      | 10              |
| 221    | 221 Chemicals                  | 100    |                                         |         | 9, 248  | 6,50         | 6,500 101% | 6,500             |        | 6,500  | 1004            |
| 230    |                                | 2      |                                         |         |         | 1,000        | 0.0        | 1,000             |        | 1,000  | 1004            |
|        | discontinuos saturquance supp  | 31,708 | 53, 603                                 | 1,710   | 12,342  | 40,000       | 314        | 40,000            |        | 900    |                 |
| 231    | 231 Gas, diesel, oil, tires    |        |                                         |         | 1363    | 8 4          |            |                   |        | 200    |                 |
| 238    | 238 Repair Parts for Water or  |        | 26,941                                  | 21, 576 | 100     | and or other |            | 2,000             |        | 5,000  | 1004            |
| 310    | 310 Communication & Transmore  | 0 276  |                                         |         | 04, 731 | 40,000       | 1624       | 40,000            |        | 40,000 | 1004            |
| 666    |                                | 47.140 | 4,044                                   | 3,770   | 2,897   | 5,000        | 185 0      | 2,000             |        | 5,000  | 1004            |
| 250    | 320 Printing, Duplicating, Ty  |        |                                         |         | 27      | 8            | **** 0     |                   |        |        |                 |
| 330    | 330 Publicity, Subscriptions   | 90     | 978                                     | 248     | 315     | 1,00         | 1,000 324  | 1,000             |        | 0 666  |                 |
| 332    | 335 Memberships and Registrat  | 1,013  | 1,563                                   | 1,236   | 650     | 2,000        | 334        | 2,000             |        | 0000   |                 |
| 341    | 341 Power                      | 52,324 | 53,941                                  | 46,069  | 42,267  | 55,000       | 774        | 55.000            |        |        |                 |
| 351    | 351 Consumer Fee               | 1,200  | 1,200                                   | 1,200   | 1,200   | 1 30         |            |                   |        | 25,000 | 1004            |
| 352    | 352 Easement and Degreed Water | 196    |                                         |         |         |              | 1001       | 1,200             |        | 1,200  | 1004            |
|        | 9                              | 117    | 243                                     | 245     | 245     | 200          | 465 0      | 800               |        | 200    | 1004            |
| 9 9 9  | Daylosty                       | 8,470  | 34,293                                  | 549     | 200     | 40,000       | 110        | 40,000            |        | 40,000 | 1004            |
| 256    | see water resting              | 2,264  | 1,803                                   | 3,297   | 1,074   | 5,000        | 0 21%      | 5,000             |        | 5,000  |                 |
|        |                                |        |                                         |         |         |              |            |                   |        |        |                 |

14:56:10

Expenditure Sudget Report -- MultiYear Actuals For the Year: 2021 - 2022

Report ID: 8240

9,875 2,509

360 Repair & Maintenance Serv

Account Object

5210 Water Fund

17-18

154

390 Other Purchased Services

380 Training Services

370 Travel

| Actu    | Actuals |          | Current         | +        | Prelin. | Budnes           |         |                 |
|---------|---------|----------|-----------------|----------|---------|------------------|---------|-----------------|
| 18-19   | 19-20   | 20-21    | Budget<br>20-21 | Exp.     |         | Changes<br>21-22 | Budget  | * old<br>Budget |
| 14,720  | 8,193   | 19,441   | 30,000          | 654      | 30,000  |                  |         |                 |
| 1,222   | 2,208   | 629      | 3,000           | 224      | 3,000   |                  | 30,000  |                 |
|         | 200     |          | 1,000           | 0.0      | 1.000   |                  | 3,000   |                 |
| 63      | 191     | 284      | 200             | 200 142% |         |                  | 1,000   |                 |
|         |         | 791      | 0               | :        |         |                  |         | 1001            |
| 154     |         | 13       | 5,000           | 24       | 5,000   |                  | 0 9     |                 |
| 91,920  | 92,276  |          | 93,000          | ő        |         |                  | 000,00  |                 |
|         |         | (18,088) | 40,000          | 454      |         |                  | 200 100 | 1004            |
| 387,572 | 247,720 | 282. 683 | 407 707         | -        |         |                  | 40,000  | 1004            |
|         |         | -        | 201, 100        | 60       | 481,400 | 0                | 481,400 | 1001            |
| 387,572 | 243,675 | 282,432  | #I,488          | 165      | 481,400 | 0                | 481,400 | 1004            |
|         |         | 224,344  | 7               |          |         |                  |         |                 |

90,924

830 Deprec-Closed to Retained

450 Sand - Gravel

410 Concrete

940 Machinery & Equipment

293,071

Account

293,071

Fund:

## **Appendix V**

**Water Rates and Account Information** 

### **Utility Rates for White Sulphur Springs**

| Callonal | Water                | Sewe    | r Rate Pa                               | irts, tota                              | ling to the | Sewer F  | Rate    | Sewer    | Utility  |
|----------|----------------------|---------|-----------------------------------------|-----------------------------------------|-------------|----------|---------|----------|----------|
| Gallons  | Rate                 | Base    | Resrv                                   | Debt 1                                  | Bond 1      | Debt 2   | Bond 2  | Rate     | Total    |
| 1000     | \$44.67              | \$15.43 | \$4.00                                  | \$3,48                                  | \$0,35      | \$16.37  | \$1.64  | \$41.26  | \$85.93  |
| 1500     | \$45.57              | \$15.43 | \$4.00                                  | \$3.76                                  | \$0.38      | \$17.65  | \$1.77  | \$42.98  | \$88.55  |
| 2000     | \$46.47              | \$15.43 | \$4.00                                  | \$4.03                                  | \$0.40      | \$18.94  | \$1.89  | \$44,69  | \$91.16  |
| 2300     | \$47.01              | \$15,43 | \$4.00                                  | \$4.19                                  | \$0.42      | \$19.71  | \$1.97  | \$45.72  | \$92.73  |
| 3000     | \$48.27              | \$15.43 | \$4.00                                  | \$4,58                                  | \$0.46      | \$21.51  | \$2.15  | \$48.12  | \$96.39  |
| 4000     | \$50.07              | \$15.43 | \$4.00                                  | \$5.12                                  | \$0.51      | \$24.08  | \$2.41  | \$51.55  | \$101.62 |
| 5000     | \$51.87              | \$15.43 | \$4.00                                  | \$5.67                                  | \$0.57      | \$26.65  | \$2,67  | \$54.98  | \$106.85 |
| 6000     | \$53.67              | \$15.43 | \$4.00                                  | \$6.22                                  | \$0.62      | \$29.22  | \$2,92  | \$58.41  | \$112.08 |
| 7000     | \$55.47              | \$15,43 | \$4.00                                  | \$6.76                                  | \$0.68      | \$31.79  | \$3.18  | \$61.84  | \$117.31 |
| 8000     | \$57.27              | \$15.43 | \$4.00                                  | \$7,31                                  | \$0.73      | \$34.36  | \$3.44  | \$65.27  | \$122.54 |
| 9000     | \$59.07              | \$15.43 | \$4.00                                  | \$7.88                                  | \$0.79      | \$36.93  | \$3.69  | \$68.70  | \$127.77 |
| 10000    | \$60.87              | \$15.43 | \$4.00                                  | \$8.40                                  | \$0.84      | \$39.50  | \$3.95  | \$72.13  | \$133.00 |
| 20000    | \$78.87              | \$15,43 | 1 2 2 3 3 4 4 4                         | \$13.87                                 | \$1,39      | \$65.21  | \$6.52  | \$106.42 | \$185.29 |
| 30000    | \$96.87              | \$15.43 | 4 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | \$19.34                                 | \$1.93      | \$90.92  | \$9.09  | \$140.72 | \$237.59 |
| 40000    | \$114.87             | \$15.43 |                                         | \$24.81                                 | \$2.48      | \$116.63 | \$11.66 | \$175.01 | \$289.88 |
| 50000    | \$132.87             | \$15,43 |                                         |                                         | \$3.03      | \$142.33 | \$14.23 | \$209.31 | \$342.18 |
| 60000    | \$150.87             | \$15,43 |                                         | \$35.75                                 | \$3.58      | \$168,04 | \$16,80 | \$243.60 | \$394.47 |
| 70000    | \$168,87             | \$15.43 |                                         |                                         | \$4.12      | \$193.75 | \$19.37 | \$277.89 | \$446.76 |
| 80000    | The second second    | \$15.43 |                                         | \$48.69                                 | \$4.67      | \$219,45 | \$21.95 | \$312.19 | \$499.06 |
| 90000    | THE RESIDENCE IN CO. | \$15.43 |                                         |                                         | 4 4 4 4 4   | \$245.18 | \$24.52 | \$346,48 | \$551.88 |
| 100000   |                      | \$15.43 |                                         | 200000000000000000000000000000000000000 |             | \$270.87 | \$27.09 | \$380.78 | \$603.65 |

Gallons Used - Number of gallons of water used per month, measured by the water meter.

Water Rate -- Amount charged for the water used during the month.

Base - Sewer base rate, based on the amount needed for operation and maintenance costs.

Reserve -- Amount set aside to cover future needs or emergencies.

Debt 1 - Amount of loan #1 for the sewer charged based on system useage.

Bond 1 -- Amount to cover the bond on loan #1, also based on system usage

Debt 2 — Amount of loan #2 for the sewer charged based on system useage.

Bond 2 — Amount to cover the bond on loan #2, also based on system usage.

Sewer Rate - Total sewer rate, including the Base, Reserve, Debt 1, Debt 2, Bond 1, Bond 2.

Utility Total -- Utility bill for the month, which is a total of the water rate and sewer rate.

#### UNDERSTANDING YOUR WATER BILL

SEWER BOND 1 Amount to cover the bond on Sewer Lagoon Phase Project # 1 Loan based on system usage.

SEWER DEBT 2 Amount of loan #2 for the sewer charged based on system usage.

SEWER BOND 2 Amount to cover the bond on Sewer Lagoon Phase Project #2 based on system usage.

WATER BASE Water base rate based on the amount needed for operation and maintenance costs.

WATER USAGE Water gallons used water rate.

WATER LINE REPL Water Line Replacement Reserve set aside to cover future needs or emergencies.

WATER TANK DEBT Amount of Water Tank loan.

SEWER BASE Sewer base rate based on the amount needed for operation and maintenance cost.

SEWER RSRV FUND Sewer Reserve set aside to cover future needs or emergencies.

SEWER DEBT 1 Amount of Sewer Lagoon Phase Project #1 for the sewer charged based on system usage.

Your bill is determined on the amount of water you use each month. If you see a very noticeable increase, check your toilet to see if it's shutting off when it should or check for plumbing leaks.

WSS CITY WATER DEPARTMENT

USAGE SUMMARY For 3-2023 For Account From 001-01 to 986-01

**SERVICES:** WATER BASE WATER USAGE WATER LINE REPL WATER TANK DEBT SEWER BASE SEWER RSRV FUND SEWER DEBT 1 SEWEI

BOND 2 LATE FEE LIEN FEE METER OR ON/OFF MISCELLANEOUS NSF CHARGES OVERPAYMENT

METER SIZES: ALL

| Service         | Usage in Actual                       | Unite                  | Page 1                 |                 |
|-----------------|---------------------------------------|------------------------|------------------------|-----------------|
| Meter Size      | Usage III Actual                      | Usage                  | Charges                | Number          |
| LATE FEE        |                                       |                        | <del>-</del>           |                 |
| .75             |                                       | 0                      | 1530.00                | 51              |
| 1               |                                       | 0                      | 60.00                  | 2               |
| 2               |                                       | 0                      | 60.00                  | 2               |
| _               | Subtotal for Service LATE FEE :       | ·                      | 1650.00                | -<br>55         |
| EWER BASE       |                                       |                        |                        |                 |
| .75             |                                       | 0                      | 9172.39                | 568             |
| 1               |                                       | 0                      | 123.44                 | 8               |
| 1.5             |                                       | 0                      | 138.87                 | 2               |
| 2               |                                       | 0                      | 200.59                 | 12              |
| 3               |                                       | 0                      | 15.43                  | 1               |
| 4               |                                       | 0                      | 15.43                  | 1               |
|                 | Subtotal for Service SEWER BASE :     |                        | 9666.15                | 592             |
| SEWER BOND 1    |                                       |                        |                        |                 |
| .75             |                                       | 0                      | 223.81                 | 525             |
| 1               |                                       | 0                      | 15.23                  | 6               |
| 1.5             |                                       | 0                      | 1.65                   | 2               |
| 2               |                                       | 0                      | 13.27                  | 12              |
| 3               |                                       | 0                      | 0.35                   | 1               |
| 4               |                                       | 0                      | 0.70                   | 1               |
|                 | Subtotal for Service SEWER BOND 1 :   |                        | 255.01                 | 547             |
| SEWER BOND 2    |                                       |                        |                        |                 |
| .75             |                                       | 0                      | 1048.69                | 525             |
| 1               |                                       | 0                      | 71.54                  | 6               |
| 1.5             |                                       | 0                      | 7.76                   | 2               |
| 2               |                                       | 0                      | 62.37                  | 12              |
| 3               |                                       | 0                      | 1.64                   | 1               |
| 4               |                                       | 0                      | 3.31                   | 1               |
|                 | Subtotal for Service SEWER BOND 2 :   |                        | 1195.31                | 547             |
| EWER DEBT 1     |                                       |                        |                        |                 |
| .75             |                                       | 1084758                | 2231.47                | 525             |
| 1               |                                       | 246100                 | 152.21                 | 6               |
| 1.5             |                                       | 19436                  | 16.49                  | 2               |
| 2               |                                       | 173287                 | 132.62                 | 12              |
| 3               |                                       | 7400                   | 3.48                   | 1               |
| 4               | Subtotal for Service SEWER DEBT 1 :   | 7490<br><b>1531071</b> | 7.03<br><b>2543.30</b> | 1<br><b>547</b> |
| SEWED DEDT 2    | SUBJUICATION SERVICE SERVER DEDIT 1 . | 1001071                | 2343.30                | J+1             |
| SEWER DEBT 2    |                                       | 4004750                | 40477.00               | 505             |
| .75             |                                       | 1084758<br>246100      | 10477.90               | 525             |
| 1               |                                       | 19436                  | 715.37<br>77.55        | 6               |
| 1.5             |                                       | 173287                 | 623.51                 | 2<br>12         |
| 2 3             |                                       | 0                      | 16.37                  | 1               |
| 4               |                                       | 7490                   | 33.05                  | 1               |
| 7               | Subtotal for Service SEWER DEBT 2 :   | 1531071                | 11943.75               | 547             |
| SEWER RSRV FUND |                                       |                        |                        | ÷ · ·           |
| .75             |                                       | 0                      | 2212.00                | 525             |
| .75<br>1        |                                       | 0                      | 24.00                  | 6               |
| 1.5             |                                       | 0                      | 36.00                  | 2               |
| 2               |                                       | 0                      | 52.00                  | 12              |
|                 |                                       |                        |                        |                 |

| Service       | Usage in Actua                        | al Units | Page 2   | _      |
|---------------|---------------------------------------|----------|----------|--------|
| Meter Size    |                                       | Usage    | Charges  | Number |
| 4             |                                       | 0        | 4.00     | 1      |
|               | Subtotal for Service SEWER RSRV FUND: |          | 2332.00  | 547    |
| WATER BASE    |                                       |          |          |        |
| .75           |                                       | 0        | 9111.22  | 546    |
| 1             |                                       | 0        | 112.00   | 7      |
| 1.5           |                                       | 0        | 144.00   | 2      |
| 2             |                                       | 0        | 208.00   | 12     |
| 3             |                                       | 0        | 16.00    | 1      |
| 4             |                                       | 0        | 16.00    | 1      |
|               | Subtotal for Service WATER BASE :     |          | 9607.22  | 569    |
| WATER LINE RE | EPL .                                 |          |          |        |
| .75           |                                       | 0        | 2852.26  | 547    |
| 1             |                                       | 0        | 35.00    | 7      |
| 1.5           |                                       | 0        | 45.00    | 2      |
| 2             |                                       | 0        | 65.00    | 12     |
| 3             |                                       | 0        | 5.00     | 1      |
| 4             |                                       | 0        | 5.00     | 1      |
|               | Subtotal for Service WATER LINE REPL: |          | 3007.26  | 570    |
| WATER TANK D  | EBT                                   |          |          |        |
| .75           |                                       | 0        | 13613.01 | 596    |
| 1             |                                       | 0        | 196.83   | 9      |
| 1.5           |                                       | 0        | 218.70   | 3      |
| 2             |                                       | 0        | 306.18   | 13     |
| 3             |                                       | 0        | 21.87    | 1      |
| 4             |                                       | 0        | 21.87    | 1      |
|               | Subtotal for Service WATER TANK DEBT: |          | 14378.46 | 623    |
| WATER USAGE   |                                       |          |          |        |
| .75           |                                       | 1151304  | 2072.49  | 385    |
| 1             |                                       | 246100   | 442.99   | 6      |
| 1.5           |                                       | 19436    | 34.99    | 2      |
| 2             |                                       | 173287   | 311.91   | 8      |
| 4             |                                       | 7490     | 13.48    | 1      |
|               | Subtotal for Service WATER USAGE :    | 1597617  | 2875.86  | 402    |

4659759

**Grand Total:** 

59454.32

5546

# **Appendix W**

**Target Rate and Income Information** 

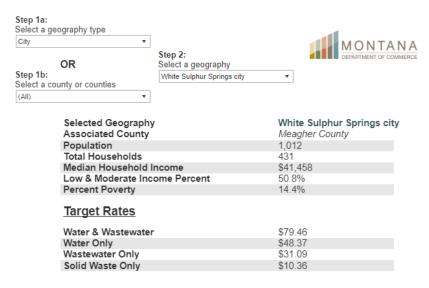
#### RESOURCES

Consolidated Plan

Past Programs

Census and Target Rate

Income and Rent Limits


#### TARGET RATE CALCULATION RESOURCE

The Community Development Division (CDD) has updated the U.S. Census Bureau's American Communities Survey (ACS) data set 2015-2019 for the calculation of local government target rates. The Montana Coal Endowment Program (MCEP) and Community Development Block Grant (CDBG) programs use ACS information as the base data set to calculate applicant target rates for community infrastructure systems.

These calculated rates, along with other demographic information, are components of the review and analysis of applications submitted to the programs for funding requests. Applications to be submitted in 2021 or later for MCEP or CDBG programs must use the 2015-2019 ACS data for the calculation of target rates for an applicant.

Low and moderate income (LMI) data is subject to change due to information released by the U.S Department of Housing and Urban Development (HUD).

Search below for 2015-2019 American Communities Survey data used to calculate target rates when applying to the **Montana Coal Endowment Program** and **Community Development Block Group Grant Program**.

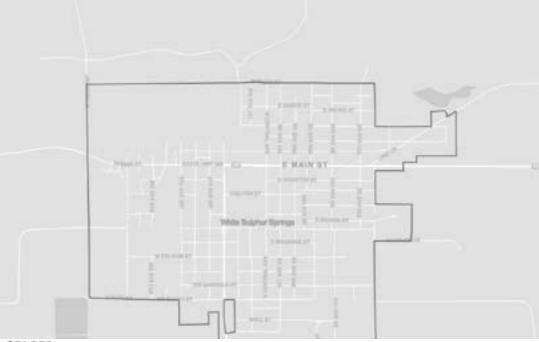


Place

### White Sulphur Springs city, Montana

White Sulphur Springs city, Montana is a city, town, place equivalent, and township located in Montana.

// United States: / Montana / White Sulphur Springs city, Montana Populations and People Total Population 955 PT | 2020 Decennial Census Bachelor's Degree or Higher 21.7% 51501 | 2021 American Community Survey 5 Year Estimates **Total Housing Units** 595 HT | 2020 Decennial Census


O Display Sources \$51,352 51901 | 2021 American Community Survey 5-Hear Estimates Employment 55.3% CP03 | 2021 American Community Survey 5-Year Estimates Without Health Care Coverage 5.9% 32701 | 2021 American Community Survey 5-Year Estimates

Share / Embed

\$70K

Families and Living Arrangements Race and Ethnicity 26 469 PS | 2020 Decennial Census DP02 | 2021 American Community Survey 5-Year Estimates

#### White Sulphur Springs city, Montana Reference Map



\$51,352 = \$7,982

Median Household Income in White Sulphur Springs city, Montana

\$67,631 ± \$1,498

Median Household Income in Montana

Median Income by Types of Families

S1901 | 2021 American Community Survey 5-Year Estimates

in White Sulphur Springs city, Montana amilies - \$65,652 \$35K \$55K \$65K

### Income and Poverty

#### Procurry and Earnings

8.5% ± 6.3%

Poverty, All people in White Sulphur Springs city, Montana